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Development and validation of a reinforcement learning
algorithm to dynamically optimize mechanical ventilation in
critical care
Arne Peine1,10, Ahmed Hallawa 1,2,10, Johannes Bickenbach1, Guido Dartmann3, Lejla Begic Fazlic3, Anke Schmeink 4,
Gerd Ascheid 2, Christoph Thiemermann5, Andreas Schuppert6, Ryan Kindle7,8, Leo Celi 7,8,9, Gernot Marx1 and Lukas Martin 1✉

The aim of this work was to develop and evaluate the reinforcement learning algorithm VentAI, which is able to suggest a
dynamically optimized mechanical ventilation regime for critically-ill patients. We built, validated and tested its performance on
11,943 events of volume-controlled mechanical ventilation derived from 61,532 distinct ICU admissions and tested it on an
independent, secondary dataset (200,859 ICU stays; 25,086 mechanical ventilation events). A patient “data fingerprint” of 44
features was extracted as multidimensional time series in 4-hour time steps. We used a Markov decision process, including a reward
system and a Q-learning approach, to find the optimized settings for positive end-expiratory pressure (PEEP), fraction of inspired
oxygen (FiO2) and ideal body weight-adjusted tidal volume (Vt). The observed outcome was in-hospital or 90-day mortality. VentAI
reached a significantly increased estimated performance return of 83.3 (primary dataset) and 84.1 (secondary dataset) compared to
physicians’ standard clinical care (51.1). The number of recommended action changes per mechanically ventilated patient
constantly exceeded those of the clinicians. VentAI chose 202.9% more frequently ventilation regimes with lower Vt (5–7.5 mL/kg),
but 50.8% less for regimes with higher Vt (7.5–10mL/kg). VentAI recommended 29.3% more frequently PEEP levels of 5–7 cm H2O
and 53.6% more frequently PEEP levels of 7–9 cmH2O. VentAI avoided high (>55%) FiO2 values (59.8% decrease), while preferring
the range of 50–55% (140.3% increase). In conclusion, VentAI provides reproducible high performance by dynamically choosing an
optimized, individualized ventilation strategy and thus might be of benefit for critically ill patients.
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INTRODUCTION
Despite intense efforts in basic and clinical research, an
individualized ventilation strategy for critically ill patients remains
a major challenge1. If not applied adequately, suboptimal
ventilator settings can result in ventilator-induced lung injury
(VILI), hemodynamic instability and toxic effects of oxygen.
Pathophysiologically, VILI is triggered by volutrauma (high tidal
volumes), barotrauma (high pressures) and/or atelectrauma (low
positive end-expiratory pressure (PEEP) levels), mechanisms that
are predominantly described in association with the acute
respiratory distress syndrome (ARDS)2–4. Established ventilation
strategies aim at applying appropriate settings for ideal body
weight-adjusted tidal volume (Vt), PEEP and fraction of inspired
oxygen (FiO2)

2. In terms of lung protective ventilation, solid
evidence exists for limiting Vt to 6 ml/kg ideal body weight and
driving pressures to 15 mbar5,6. Particular patient groups,
especially those with a more pronounced severity of illness, may
benefit from an individualized, ultraprotective ventilation
regime7,8. However, an individualized mechanical ventilation
approach remains a challenging task: A multitude of factors, e.g.,
lab values, vitals, comorbidities, disease progression, and other
clinical data must be taken into consideration when choosing a
patient’s specific optimal ventilation regime. In addition, an

iterative re-evaluation of the optimal mechanical ventilation
strategy throughout the course of the treatment is mandatory.
In particular, in environments with high data density, such as
intensive care units (ICUs) or emergency rooms, the amount of
acquired data can result in a complex decision-making process,
the outcome of which is strongly influenced by experience and
medical knowledge of the attending physician3. Enabled by the
increase of computational power and availability of high-
frequency medical data, new computational approaches have
been introduced into the decision making process in medicine:
Artificial Intelligence (AI) based on Machine Learning (ML) is
increasingly used to capture high complexity patterns in medical
data and consequently to predict future events in individual
patients (personalized medicine)9. Of note, a computational
approach using Reinforcement Learning (RL), a specific area of
ML, has recently been used to assess vasopressor dosing regimes
and volume therapy in septic patients10. RL aims to find the
optimal policy (e.g. optimal therapeutic strategy) for an agent
interacting with an unknown environment by attempting to
maximize a cumulative reward11. Notably, in RL, rewards can be
stochastic. This gives more flexibility to the adopted policy, which
is, indeed, needed when developing solutions for complex
problems, such as finding the optimal therapeutic (ventilation)
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strategy in critically ill patients12. The application of RL to support
the attending physician in finding the optimal mechanical
ventilation regime for individual patients has not been investi-
gated. In this study, we developed the VentAI algorithm, a
computational model using RL, which is able to dynamically
support the physician in choosing the optimal, mechanical
ventilation regime. VentAI is built and validated on the Medical
Information Mart for Intensive Care III database (MIMIC-III), a large
ICU dataset consisting of patient data for 61,532 distinct ICU stays
with a total of 11,943 mechanical ventilation (volume-controlled)
events13. We finally tested the performance of VentAI on two
independent datasets, the MIMIC-III and the secondary dataset of
eICU Collaborative Research Database v2.0 (eICU). The latter
comprises patient data for 200,859 patient distinct ICU stays with a
total of 25,086 mechanical ventilation events14. Including the
three dimensions Vt, PEEP, and FiO2, VentAI dynamically develops
an optimized mechanical ventilation strategy for the individual
patient state.

RESULTS
VentAI Performance
The complete dataset from MIMIC-III comprised of 61,532 ICU
stays with 11,943 events of mechanical ventilation (Fig. 1). After
preprocessing, the cohort (Table 1) has been randomly divided
into three datasets (training, validation, and testing) for each
model. The evaluation of the performance of the attending
physician was conducted via temporal difference Q-learning15,16.
In order to compare the VentAI (validation and testing) with the
clinicians performance, we built a total of 500 models, while the
whole learning cycle was repeated for each model.
To evaluate the differences in performance conservatively, we

compared the 90% lower bound of the VentAI performance return
with the 90% upper bound of the clinicians (Fig. 2), demonstrating
the estimated performance return after the exposure of the
policies to 500 models. The red line represents the 90% lower
bound (LB) for best VentAI policy on MIMIC-III validation data set
(2,443 mechanical ventilation events). The green line represents
the 90% LB for best VentAI policy on MIMIC-III test data set (2,443
mechanical ventilation events). The orange line represents the
90% LB for best VentAI policy on eICU test data set (25,086
mechanical ventilation events). The estimated clinicians policy
performance is shown in blue, representing the 95% upper bound
(UB). The shades represent the up-to-the-point cumulative
standard deviation across models. VentAI consistently exceeded
the clinicians performance return already after four models built.
The best dynamically chosen mechanical ventilation regime by
the VentAI algorithm resulted in a 93.64 estimated performance
return in validation and 91.98 in the testing dataset, respectively.
This represents an improvement of 42.6% (40.9% for the test set),
compared to the best performance of the clinicians (51.1
estimated performance return), based on the learned model
(Fig. 1). In addition, there was an improvement of 22.6% (20.9% for
the test set), compared to observable clinician behavior.

VentAI policy analysis
We next elucidated the frequency distributions of the chosen
optimal performing VentAI policy, compared to the clinicians, after
conducting evaluations on 500 models. We performed a detailed
frequency analysis on the three action dimensions (Vtset, PEEP,
FiO2) focusing in particular on the action bins with a change in at
least 1% of the total number of possible decision instances (36,225
total decision time instances) (Fig. 3, Tables 2 and 3). This analysis
revealed that the VentAI algorithm chose more frequently (202.9%
increase relative to the clinicians) ventilation regimes with lower
Vtset (5–7.5 mL/kg), but less frequently (50.8% decrease relative to
the clinicians) regimes with higher Vtset (7.5–10mL/kg). Of note,

high Vtset settings of >15ml/kg were avoided completely by
VentAI (decrease of 100%). Moreover, VentAI recommended 29.3%
more frequently ventilation regimes with PEEP levels of 5–7
cmH2O and 53.6% more frequently settings with 7–9 cmH2O,
compared to the clinicians. Of note, VentAI avoided low PEEP
settings of less than 5 cmH2O with a relative decrease of 27.3%
compared to the clinicians (Fig. 3, Tables 2 and 3, Supplementary
Figs. 1–6). Interestingly, the VentAI policy avoided high FiO2 values
(> 55%) with a decrease of 59.8% relative to clinicians, while
preferring FiO2 values in the range of 50–55%, indicated by an
increase of 140.3% in this range (Fig. 3, Tables 2 and 3).
Having shown that VentAI exceeded the clinicians estimated

performance and observed policy by adopting Vtset, PEEP, and
FiO2 with different frequency distributions within the test set, we
analyzed the dynamics of VentAI by observing the number of
action changes performed at each 4-h time-step during the 72 h
observation period (Fig. 4a–c). Of note, the number of action
changes per mechanically ventilated patient, chosen by VentAI,
were constantly above the number of action changes chosen by
the clinicians over the whole observation period (Fig. 4a–c),
underlining the high dynamicity of the VentAI algorithm.
In order to visualize the dynamic, individualized approach of

VentAI, we present two representative individual courses of
patient treatment (Fig. 5a, b). Patient #1 was 46 y/o male,
admitted as an emergency to the Surgical Intensive Care Unit
with end stage renal disease and in need of mechanical
ventilation due to respiratory decompensation. Patient #2 was a
82 y/o male, admitted to the cardiac surgery recovery unit in need
of mechanical ventilation due to pleural effusions. Both patients
died within the observed 90 days (reward −100). Of note, in both
cases, clinicians chose to apply an almost static ventilation regime
over the entire 72 h observation period (Fig. 5a, b). In contrast, the
VentAI algorithm dynamically explored a wide range of ventilator
settings, which resulted in a reward of +96 and +98, respectively.
Most notably, in both cases VentAI adjusted ventilator settings
more frequently than clinicians (23 changes vs. 16 and 25 vs. 5,
respectively). We further analyzed the importance of each feature
included into the patient data fingerprint with respect to its
impact in changing the chosen mechanical ventilation settings
(Fig. 6a–c). We applied an out-of-bag analysis using random
forest10,17. In fact, 19, 14, and 18 individual features constituted to
80% of the overall feature importance for choosing the optimized
Vtset, PEEP, and FiO2 settings (Fig. 6a–c). This illustrates the wide
range of impactful clinical parameters that are taken into
consideration by VentAI. Of note, the weight of importance
differed between the three dimensions of the action space (Vtset,
PEEP, and FiO2).
Finally, we tested VentAI on an independent secondary dataset,

comprising patient data for 200,859 patient distinct ICU stays with
a total of 25,086 mechanical ventilation events (eICU dataset). In
fact, the best dynamically chosen mechanical ventilation regime
by the VentAI algorithm resulted in an estimated performance
return of 84.1. In line with the findings from testing on MIMIC-III,
the VentAI policy exceeded the relative action changes per
mechanically ventilated patient indicating a similar dynamic
algorithmic behavior (Supplementary Figs. 6–12).

DISCUSSION
In this study, we built VentAI based on 11,943 events of
mechanical ventilation in order to dynamically support the
attending physician in choosing an optimized mechanical
ventilation policy for the individual patient state with the highest
probability of 90-day or in-hospital survival. The algorithm
provided reproducible high performance (on two independent
datasets) in choosing the optimal ventilation policy. Most notably,
the number of recommended action changes proposed by VentAI
per mechanically ventilated patient consistently exceeded the
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number of action changes chosen by the clinicians. This indicates
that VentAI might be of benefit in dynamically supporting the
clinician’s decision making on individualized mechanical ventila-
tion settings of the critically ill patient in order to achieve a
personalized medicine within the ICU setting.
To date, the evidence for choosing an optimal mechanical

ventilation regime is almost entirely determined by clinical
studies. Other areas of medicine including genetics, cardiology,
and radiology have a long (and strong) history of mathematical

and engineering research that has been fundamental in driving
significant advances in clinical care9. The lung of a patient
suffering from acute respiratory failure has a very heterogeneous
physiology18,19, with mixed healthy and diseased alveoli, display-
ing significant inter- and intra-patient variability. Thus, a mechan-
ical ventilation protocol, which is highly effective in one patient
may lead to VILI in another patient20. Consistent with other
medical conditions, the real-world compliance to evidence-based
recommendations for choosing the best mechanical ventilation

Fig. 1 VentAI Data Routine. Flow diagram of the overall cohort, architectural overview of the VentAI algorithm and independent testing on
eICU dataset.
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regime, however, is often suboptimal. Clinicians tend to adjust the
mechanical ventilation settings only infrequently and moderately
during the clinical course of the patient21. In this retrospective
analysis, we found a significantly increased estimated perfor-
mance return of 83.3 (primary dataset) compared to physicians
standard clinical care in the validation and testing dataset (51.1). In
fact, the best dynamically chosen mechanical ventilation regime
on the eICU dataset resulted in an estimated performance return
of 84.1. Most notably, we observed, that the number of VentAI
recommended action changes per mechanically ventilated patient
constantly exceeded the number of action changes chosen by the
clinicians over the whole observation period (Fig. 4a-c). These
findings go in line with an animal study showing that the degree
of variability of tidal volumes and respiratory frequency affects
lung functional variables and hence, potentially improve patient
outcomes22. It is important to acknowledge that a large part of the
clinicians’ daily routine is covered by evaluating up to 1000 data
points per patient per hour, also in order to choose the correct
ventilation scheme. An algorithm evaluating those factors in a
structured and reasonable manner, could potentially significantly
cut down this time, hence free time for actual patient care (and
ventilator adjustment) and reduce the burden on the treating
medical personnel. This clearly indicates, that VentAI iteratively re-
evaluates the optimal mechanical ventilation strategy throughout
the course of the treatment while exploring a larger space of
actions (Vtset, PEEP, FiO2) to find an optimized mechanical
ventilation regime for the individual patient. It is important to
underline that the used data from the MIMIC-III database includes
data from 2001–2012. As the learnings from the mentioned trials
are now broadly implemented into clinical practice, the physicians’
performance is likely to be closer to the VentAI algorithm with a
newer database.

Table 1. Clinical and demographic properties of the study population.

Dataset MIMIC-III eICU

Number of ICUs 5 335

Acquisition timespan 2001–2012 2014–2015

Number of included patients 11,443 23,699

Number of mechanical
ventilation events

11,943 25,086

Age, years 66.9 (56.3–77.5) 65.0 (54–74)

Body weight, kilogram 85.7 (±18.1) 83.5 (±22.0)

Sex, female 4,329 (36.3%) 10,546 (42.0%)

Sex, male 7,614 (63.7%) 14,540 (58.0)

90-days mortality, % 15.8 Not available

In-hospital mortality, % 11.1 13.2

LOS ICU, days 3.1 (1.6–6.1) 3.0 (1.71–5.9)

LOS hospital, days 9 (6–15) 8 (5–15)

PEEP, cmH2O 6 (±1.7) 6.3 (±7.0)

FiO2, % 45.9 (±5.8) 44.9 (± 23.6)

Vt, mL/kg 8.3 (±1.6) 7.5 (±1.2)

SOFA at ICU admission, points 5.6 (±2.9) 2.3 (± 2.2)

Demographic and clinical data of the assessed patient cohort, extracted
from the MIMIC III and eICU database, respectively. LOS: Length of stay,
SOFA: Sequential Organ Failure Assessment Score.
Demographic and clinical data of the assessed patient cohort, extracted
from the MIMIC III and eICU database, respectively. Data is presented in n
(%), mean (SD) or median (IQR); LOS: Length of stay, SOFA: Sequential
Organ Failure Assessment Score.

Fig. 2 VentAI Performance. a VentAI estimated performance return on both datasets (MIMIC-III and eICU) versus clinicians’ performance
return with variance in MIMIC-III dataset after the exposure of the policies to 500 models. b Relation between VentAI performance return and
estimated 90-day mortality risk in the MIMIC-III dataset. c Relation between VentAI performance return and in-hospital mortality risk in the
eICU dataset.
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The consistently good performance of the VentAI algorithm
(Fig. 2) can be explained by several attributes of a computerized
ML approach: As the algorithm recognizes the full scope of the
complex patients data fingerprint (including 44 features; Supple-
mentary Table 1), it is able to categorize a patient’s individual
development (state transition) faster and with finer granularity,
compared to human physicians. Indeed, we found that 19, 14, and
18 features constituted 80% of the overall feature importance for

choosing the optimized action (Fig. 6a-c). This clearly illustrates
the wide range of impactful clinical parameters that are taken into
consideration by VentAI, representing a holistic view of the
patient’s status. The algorithm is able to compare the outcomes of
a very detailed patient characteristic to a database of 11,943
mechanical ventilation events, predicting patient’s outcome
precisely and consistently. As the attending physician is only able
to compare the current patient’s status with a limited set of

Fig. 3 Visualization of the action distribution in the 3-dimensional action space (MIMIC-III dataset). The test set includes 36,225 decision
time instances and the designed model facilitates 343 action bins in the action space.
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experienced scenarios (low amount of training data), the VentAI
learning curve can be compared to the long-term experience of an
extraordinarily experienced intensivist (high amount of training
data). Given the availability of high computational power, the
decision can be re-evaluated frequently, resulting in a highly
dynamic system, repeatedly adapting the ventilation settings to
the patients individual course and the optimal outcome23. While
there is some general agreement on which mechanical ventilation
settings and clinical parameters are preferred, there are several
conflicting trial results17,24–29. Although focusing on patients with
ARDS, the American Thoracic Society (ATS), the European Society
of Intensive Care Medicine (ESICM), and the Society of Critical Care
Medicine (SCCM) have recently endorsed clinical practice guide-
lines on mechanical ventilation in adult patients with ARDS. They
suggest that an initial Vt should be set at 6 mL/kg predicted ideal
body weight, while higher Vt should be avoided. Also in patients
without ARDS, guidelines recommend the use of Vt of less than
8mL/kg. The action space bins and their distribution are explained

in detail in the Supplementary tables 2a and have been chosen
with respect to the well accepted ventilation titration protocol
published by the ARDS network as well as the S3 guideline on
non-invasive ventilation29.
Our results strongly support this strategy but most importantly

allow the treatment to be individualized for each patient in a
constantly re-evaluating manner (Fig. 5). In fact, the VentAI policy
chose more frequent ventilation regimes with lower Vt (5–7.5 mL/
kg), but significantly less frequently regimes with higher Vt
(10–12.5 mL/kg), compared to the clinician’s policy. Of note, high
Vt settings of >15 ml/Kg were completely avoided by VentAI (Fig.
3, Tables 2 and 3). Taking two meta-analyses on different PEEP-
levels into account27,29, there is clear evidence for the use of
higher PEEP levels in patients with moderate or severe ARDS.
However, adverse effects of PEEP, like cardiocirculatory instability
and overexpansion of regional parts of the lung, make it still
difficult to find individual PEEP settings. In line, VentAI chose
significantly more often ventilation regimes with higher PEEP (5–7
cmH2O and 7–9 cmH2O) by avoiding very low PEEP settings (less
than 5 cmH2O), compared to the clinicians. Most notably,
however, the VentAI algorithm explored the PEEP-action space
dynamically and extensively (Fig. 3, Tables 2 and 3, Supplementary
Tables 2 and 3). As RL is an ML-approach to optimize sequences of
decisions for long-term outcomes (e.g., 90-day survival), the choice
of this toolset is ideal for decision making in longer observed
timeframes, such as the treatment of critically ill patient12.
However, RL-based approaches are not without limitations, and
if used improperly, these approaches can replicate/suggest non-
evidence based practices rather than improve the therapeutic
strategy (and outcome) of the patients12.
Furthermore, importance sampling and off policy evaluation for

reinforcement learning remain a challenge, especially in health-
care. Of note, there are alternatives to importance sampling such
as Fitted Q Evaluation (FQE)30. One trade-off in off-policy learning
is the fact that importance sampling is driven by mimicking the
clinician policy. This can have negative implications in case of a
suboptimal policy. On the other hand, not using importance
sampling may eventually result in harmful recommendations31–33.
In fact, in the context of healthcare, RL has recently been applied
to different use cases, such as optimizing antiretroviral therapy in
HIV34, modeling therapeutic strategy for epilepsy35, predicting
time-to-extubation readiness36 and suggesting the optimal dose
of fluids and vasopressors in sepsis therapy10. It is crucial to
recognize that all these studies, including our work, are retro-
spective studies. Thus, some of the laboratory and clinical values
retrospectively available to the algorithm, might not be immedi-
ately available in a prospective setting.

Table 2. Distribution of the chosen action by VentAI in comparison to the clinician’s performance (MIMIC-III dataset).

1 2 3 4 5 6 7

Vt (mL/Kg) 0–2.5 2.5–5 5–7.5 7.5–10 10–12.5 12.5–15 >15

n (%) 218 (0.6%) 2406 (6.6%) 12504 (34.5%) −11415 (−31.5%) −3006 (−8.3%) −576 (−1.6%) −131 (−0.36%)

PEEP (cmH2O) 0–5 5–7 7–9 9–11 11–13 13–15 >15

n (%) −4399 (−12.1%) 4049 (11.1%) 1508 (4.2%) −895 (−2.4%) −11 (−0.03%) −278 (−0.8%) 26 (0.07%)

FiO2 (%) 25–30 30–35 35–40 40–45 45–50 50–55 >55

n (%) 47 (0.12%) −369 (−1.1%) −753 (−2.1) −1069 (−2.9%) 895 (2.4%) 2602 (7.2%) −1353 (−3.7%)

Ranges for the action space bins are highlighted in bold for Vt, FiO2 and PEEP, respectively. Data is presented in total numbers and relative percent of the total
numbers of actions chosen (36,225 total decision time instances). Positive numbers indicate that an action has been chosen more frequently by VentAI,
negative numbers indicate that an action has been chosen less frequently.
Specific setting ranges for the action space bins are highlighted in grey for Vt, FiO2 and PEEP, respectively. Data is presented in total numbers and relative
percent of the total numbers of actions chosen (36,225 total decision time instances). Positive numbers indicate that an action has been chosen more
frequently by VentAI, negative numbers indicate that an action has been chosen less frequently. Vt: Tidal Volumes; FiO2: Fraction of inspired oxygen; PEEP:
positive end-expiratory pressure.

Table 3. Comparison of percentage of change for each action bin
between VentAI policy and clinicians’ policy (MIMIC-III dataset).

1 2 3 4 5 6 7

Vt [mL/
Kg]

0–2.5 2.5–5 5–7.5 7.5–10 10–12.5 12.5–15 >15

% * 5119.1 202.9 −50.8 −49.5 −83.7 *

PEEP
[cmH2O]

0–5 5–7 7–9 9–11 11–13 13–15 >15

% −27.2 29.3 53.6 −44.9 * * *

FiO2 [%] 25–30 30–35 35–40 40–45 45–50 50–55 >55

% * * −20.1 −10.8 5.3 140.3 −59.8

*Less than 1% from the total possible time decision incidence, total table
see Table 2c in the Supplemental Files.
Specific setting ranges for the action space bins are highlighted in bold for
Vt, FiO2 and PEEP, respectively. Data is presented as the percentage of
change for each bin by comparing VentAI with the clinician. Positive
numbers indicate that an action has been chosen more frequently by
VentAI, negative numbers indicate that an action has been chosen less
frequently.
Specific setting ranges for the action space bins are highlighted in grey for
Vt, FiO2 and PEEP, respectively. Data is presented as the percentage of
change for each bin by comparing VentAI with the clinician. Positive
numbers indicate that an action has been chosen more frequently by
VentAI, negative numbers indicate that an action has been chosen less
frequently. Vt: Tidal Volumes; FiO2: Fraction of inspired oxygen; PEEP:
positive end-expiratory pressure.
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Furthermore, to estimate the value of a new action based on
historical data, it is vital to take into account any information that
was used by clinicians in their decision making in order to avoid
estimates that are confounded by spurious correlation/relation-
ships. Moreover, as MIMIC-III and eICU databases are exclusively
derived from United States hospitals, these findings are not
necessarily applicable to other countries. Local hospital policies
and regional patient demographics are likely to have influenced
the doctors’ performance in the observed patient datasets. Thus,
additional verification of the algorithms’ performance on different
multinational databases, including a more diverse dataset, is
needed. Finally, assessment of the algorithm’s impact is necessary
in a prospective setting designed to compare the clinical
outcomes of the “treatment” group to a control group. Moreover,
this study focuses on the “acute phase” of respiratory failure in the
intensive care unit and is, thus, restricted to the first 72 h of the
first mechanical ventilation event. Further work is needed to
investigate the AI-policies in different phases of mechanical
ventilation. The applied computational model could potentially be

enhanced by conducting a manual analysis of the state’s specific
characteristics from a medical perspective and projecting the
outcome of this analysis on the reward function. Furthermore, a
specific reward function (i.e., risk of VILI, etc.) might strengthen the
directly related causation between ventilator settings and ventila-
tion related outcome. By choosing to include a feature space of 44
included variables, we assured a broad applicability of the
algorithm in the most common cases in the ICU. In special clinical
situations, however, a deviation from these recommendations
might be necessary (e.g., in cases of external oxygenation). It is
important to underline, that in some cases, e.g., severe restrictive
lung disease, it is impossible to reach a certain tidal volume.
Although our algorithm focuses only on cases with volume-
controlled ventilation, that are mostly sedated, there might be
certain situations in which the algorithm’s suggested ventilation
parameters cannot be implemented in clinical practice. Moreover,
for the application to other ventilation modes (i.e., pressure-
controlled modes), additional ventilation related variables, such as
peak inspiratory pressure, have to be included. We plan to expand

Fig. 4 Number of action changes (MIMIC-III dataset). The relative number of action changes (ideal body weight-adjusted tidal volume (Vt),
positive end expiratory pressure (PEEP), and fraction of inspired oxygen (FiO2)) is shown in relation to the number of mechanically ventilated
patients at each 4 h time step. Clinicians action changes are shown in blue while the VentAI action changes are shown in red.
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the algorithm in the future to other ventilation modes, as more
reliable data sources become available. As the ability to reach a
certain set level of tidal volume is also influenced by the current
consciousness level, we decided to implement the Glasgow Coma
Scale as a combined indicator of both pharmacological and
pathophysiological (i.e. neurological disorders) reasons for an
altered mental state. One advantage of VentAI is the ability to
continuously observe a large feature space, which can draw new
and unexpected clinical associations. This is a particularly
important finding from the clinical perspective. An algorithm like
VentAI continuously observes a multitude of clinical factors,
weighing them individually for the patient case, trajectory and,
most important, in a different pattern for each ventilation setting
(PEEP, FiO2, and Vt). This means that even less acknowledged
features, such as metabolic parameters or fluid status have to be
taken into account, when choosing an optimal ventilation regime
for a patient. For example, prothrombin time was found to
be the second most influential feature highlighting the known
association between coagulation abnormalities and acute lung
injury and sepsis37. In summary, these findings clearly highlight
the advantage of the usage of a computational algorithm like
VentAI in the clinical routine, as the numbers of features that have
to be taken into consideration clearly exceed the surveillance
capacity of the treating physician or nurse.

As the aim of this work was to build an algorithm that is
applicable in a wide range of clinical scenarios in hospital settings
with variable technical abilities, we decided to include only
features with a broad availability. Indeed, the algorithm could
potentially be enhanced by providing additional confounders,
which would lead to a more accurate presentation of the state
space (e.g., pulmonary pressures, cardiac indices, image data, etc.).
An observational study for this purpose must be based on a causal
model validated by existing domain knowledge of medical
experts. Further, it must also include well-known short-term
indicators of deterioration in patient health, alongside long-term
outcomes. Suitable alternatives to evaluate the performance of
methods for estimating individual treatment effects in the
mechanical ventilation setting would be to conduct a semi-
synthetic simulation study38,39. Unfortunately, with the currently
available dataset (MIMIC-III), we are unable to further stratify the
cohort based on the Berlin criteria, as there is a lack of associated
X-ray imaging for the observed cases as well as the information on
potential cardiogenic cause for respiratory failure. However, as the
X-ray data will become available in the upcoming release of
MIMIC-IV database, we are already preparing the data preproces-
sing pipelines in order to further examine this mentioned aspect.
However, the proposed computational model fits well with the
problem statement as it is not possible to pick a no action/zero

Fig. 5 Visualization of two representative patient cases (MIMIC-III dataset). Visualization of two representative case studies in 4-hour
intervals. Both patients died within the observed 90 days. Clinicians’ actions are shown in blue while the VentAI actions are shown in red.
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policy. In other words, clinicians and AI policies included an active
setting for each decision time instant. This increases the validity of
the performance comparison between clinicians and VentAI. Of
note, the reduction in mortality on the test dataset is clear
evidence that the algorithm is converging towards optimality.
However, it is inaccurate to estimate the exact risk of 90-day
mortality based on the VentAI performance return (Estimate of 90-
day/in hospital mortality from return is presented in Supplemen-
tary Table 4). This is because VentAI is developed to optimize the
probability of survival at 90 days, therefore, the mortality risk
estimate, when VentAI is applied, might differ from the actually
observed mortality rate. Addressing the high effect size in
potential mortality reduction, we want to underline that from
our perspective, this is not only the result of the correct ventilator
settings alone but instead the result of an adapted, dynamic
ventilation management, taking into account the whole status of
the patient and the disease progression. Further, it is important to
acknowledge that we apply a modern ventilation regime onto
older datasets. Applying VentAI on a recent dataset would
potentially show a smaller effect as modern guideline-adherent
regimes are more widely adopted into practice. In conclusion, this
study demonstrates the potential (on two independent datasets)
of the application of VentAI, in the critical care domain, in
particular in solving the complex and dynamical challenge of
choosing the optimal mechanical ventilation regime. Rising
computational power enables physicians to base medical
decisions on patient-individual data patterns instead of simplified
scoring systems. This might be particularly true for complex
decision patterns, such as mechanical ventilation, because
numerous clinical observations and data points must be
considered when deciding on an optimal ventilation strategy.
Special care must be taken when implementing decision-making
tools based on RL algorithms into clinical routine. Patient safety
can only be guaranteed with extensive clinical testing, taking
aspects like algorithm bias, missing/false data, emergency
situations and clinical particularities, such as rare diseases into
account. Continuous monitoring of algorithmic performance must
be implemented in order to maintain quality assurance. Until the
long-term benefits and safety have been proven, the final decision
on a complex task like mechanical ventilation will be in the
physician’s hand and an algorithm like VentAI will stay a
suggestive tool, thus highlighting the synergy between human
and machine intelligence. Summarizing, computational algo-
rithms, like the presented VentAI algorithm, will help to evaluate
data fingerprints on a patient-individual basis and will likely be
useful tools for decision making at the patient bed in intensive
care medicine.

METHODS
Study design
We built, validated and tested the performance of the VentAI algorithm on
the MIMIC-III database, an open-access, anonymized database for ICU
patients. The database contains data associated with 61,532 distinct
ICU stays of adult patients admitted to the ICU of Beth Israel Deaconess
Medical Center (Boston, MA, USA) between 2001 and 2012. We
(repeatedly) randomly split the MIMIC-III database in three groups of
60% (training data), 20% (validation data), and 20% (testing data). Unlike
the training set, the validation and testing sets are not used in establishing
the model. Meanwhile, the testing set was used to quantify the
performance of the policy with data never used in training or validation.
Finally, we tested our findings on an independent, secondary dataset, eICU.
This dataset contains data associated with 200,859 patient unit encounters
for 139,367 unique adult patients admitted to 335 different ICUs in 208
teaching and nonteaching hospitals in the United States of America
between 2014 and 2015. The overall methodological approach of this
study is shown in Fig. 1.

Fig. 6 Out-of-Bag feature weight analysis of VentAI (MIMIC-III
dataset). Relative weight of each feature using out-of-bag
feature weight analysis, based on the relative loss of prediction,
represented by an increase of the mean squared error. a Ideal
body weight-adjusted tidal volume (mL/kg). b PEEP (cmH20).
c FiO2 (%).
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Patient cohort and data collection
61,532 and 200,859 ICU stays of adult patients are reported in the MIMIC-III
and eICU datasets, respectively. An ICU stay has been created every time a
patient is admitted to any ICU. This resulted in a specific unique ICU stay ID
number, which refers to one single ICU stay. A single patient may have
multiple ICU stays during the hospital stay, and all ICU stays are included in
this study. The inclusion criteria for mechanically ventilated patients were
the following: Age >18 years at the time of admission; treatment was not
withdrawn within the assessed time frame; 90-day or in-hospital mortality
was documented, mechanical ventilation for at least 24 h, and documen-
ted set tidal volume (Vtset). By focusing on a documented Vtset, we ensured
the presence of a human-set target tidal volume, thus indicating a volume-
controlled ventilation. This resulted in a total of 11,943 (MIMIC-III) and
25,086 (eICU) mechanical ventilation events, respectively. Data were
collected for a period of 4 h before and 72 h after the onset of mechanical
ventilation in 4-hour time steps. Patient demographics and clinical
characteristics are shown in Table 1. This time window has been chosen
based on the mean length of stay 6 (MIMIC: 3.1days (IQR 1.6–6.1); eICU: 3.0
(1.71–5.9)) in order to cover the majority of cases.
During preprocessing of the data, a mechanical ventilation event has

been defined by applying the following criteria: The presence of a
documented Vtset starts a new ventilation event. The presence of a value of
either Vtset, PEEP, or FiO2 during two sample periods (8 h) continued the
event. The documentation of an extubation or the initiation of non-
invasive ventilation and/or supplemental oxygen supply ends the current
event. If multiple ventilation events were present during one single ICU
stay, only the first event was included in the analysis. For training,
validation, and testing, we collected a patient data fingerprint of 44
features for each patient included in the study (e.g. lab values, inputs/
outputs, demographics) from both the MIMIC-III database and eICU
database, extracted as multidimensional discrete time series in 4-hour time
steps, averaged or summed as appropriate. As previously described, the
features were selected according to their representativeness of the patient
status and on clinical evidence towards the problem. Outliers were sorted
out with univariate statistical approaches (Tukey’s range test) and
frequency analysis (90% confidence interval). The observed primary
outcome was the patients in-hospital or 90-day mortality.

Data extraction
The extraction process has been performed by customized scripts (queries)
of Standardized Query Language (SQL) for MIMIC and eICU on the object-
relational database system PostgreSQL. The approval of data collection,
processing and release for the eICU database has been granted
by the eICU research committee and exempt from Institutional Review
Board approval.

Preprocessing steps
In time-varying datasets with high volume, one common practice for
handling missing data is applying time-windowed sample-and-hold. In this
method, a data point is simply repeated (held) to cover the available data
point until either a new data point is available or the hold limit is reached.
This limit protects the data from corruption by overholding a certain point.
To choose the appropriate window size, we conducted a frequency
analysis of the dataset and calculated an estimation of how frequently a
new data point is produced. Thus, if the holding process goes further than
this estimated limit, the data is corrupted with high probability40.
Furthermore, k-nearest neighbor imputation23 with mean imputation
and singular value decomposition (SVD), was adopted to handle the
remaining missing data. If the preprocessing sample-and-hold resulted in
over 50% missing data, the mechanical ventilation event was discarded
(total incidence < 1% of the overall cohort). Notably, we tested the
correlation between the data and the probability distribution of missing
values for each of the 44 features. The feature Glasgow Coma Scale was
associated with the highest p-value of 0.08. Thus, we were able to
distinguish missing at random (MAR) from missing completely at random
(MCAR) and not missed at random (NMAR) before proceeding further
preprocessing steps41.

Computational model
We used a Markov decision process (MDP), a discrete time stochastic
control process, suitable for modeling decision problems, where outcomes
are only partially under the decision makers control42. We projected

our problem as MDP defined by the 4-tuple <S, A, T, R, γ > in the following
sections.

Model attributes
Assigned every 4 h, S is defined as a finite number of states, summarizing a
patients clinical state (in total 650 different states) by clustering the
patient’s data fingerprint (44 clinical features). In the clustering procedure,
the state space was defined by clustering all patient time series from the
MIMIC-III dataset. This was achieved using k-means clustering. Further-
more, we require a high value of k to ensure a highly granular model, while
avoiding the usage of a too large state space. Thus, we adopted Bayesian
and Akaike information criteria to determine the optimal number of
clusters. This kept the state space away from having sparsely populated
states. T is the transition matrix, describing the probability that an action A
will lead in the next time step to state s0. γ is the discount factor,
determining the weight of future rewards, regarding the current action. A
high discount factor has the effect of resulting in a higher value of rewards
received earlier than those received later in the decision process. Of note, a
distribution of average return per patient in survivors and non-survivors is
shown in Supplementary Fig. 1.

Action space
The goals of a mechanical ventilation regime are the reduction of VILI
while maintaining adequate oxygenation and decarboxylation. Conse-
quently, we focused on a total of three parameters to be included in the
action space, influencing these overall goals: Ideal body weight-adjusted
(target) Vtset, PEEP, and FiO2. Ideal body weight-adjusted Vt was calculated
relative to a predicted body weight for males as 50 + (0.91 × [height in
centimeters − 152.4]) and for females as 45.5 + (0.91 × [height in
centimeters − 152.4]). As a result, A is the finite number of possible actions
at any given state based on a combination of the three aforementioned
parameters: Vtset, PEEP, and FiO2. Based on frequency analysis, we divided
the action space into three dimensions of seven treatment levels (bins),
each representing a specific range of ventilator settings. This results in a
multi-dimensional action space of 343 discrete actions. It is worth
mentioning that there was no option of a zero policy and the algorithm
always had to decide towards one ventilation policy. Of note, we analysed
the effect of adding respiratory rate in the action space. Results related to
the analysis of this added dimension are shown in the Supplementary.

Reward system and patient trajectories
As there is strong evidence showing a direct link between VILI and
mortality risk in critically ill patients, we decided on 90-day mortality as the
primary reward in this study3. R is the given reward signal representing
feedback received after the transition to a defined state (Supplementary
Discussion). We modeled sequences of actions and states, so-called patient
trajectories, using a reward/penalty system based on the patients 90-day
mortality or the in-hospital mortality. Positive reward points of +100 were
given to the trained model, if the patient survived, a penalty of −100
points assigned, if the patient died. As a result, a three-dimensional reward
matrix R(s, s0, a) with current state s, next state s0 and action a, is computed
by assigning the +100 or −100 values on the s0 dimension corresponding
to a terminal state. Afterwards, this three-dimensional matrix is multiplied
with the transition matrix T(s, s0, a) and summed over the dimension s0 to
obtain R(s, a).
As the implementation of new policies (therapeutic strategies) in real-

world patients may expose them to a not well-defined risk, we used off
policy evaluation to assess the performance of a policy in a model-free
manner43. We used Weighted Importance Sampling (WIS) to directly
compare the policy performance of the VentAI algorithm to the
performance of the attending physician. Of note, WIS is typically adopted
in off-policy evaluation (OPE) problems such as ours. As long as the MDP is
correctly specified, sequential exchangeability holds, and the observation
policy is consistently estimated, it provides an accurate estimate of the
performance of a trained policy without the need to execute it. In this
regard, Important Sampling (IS) provides a way to decrease the differences
between the learned policy (VentAI) and the observed policy (clinicians).
This helps in decreasing the chance of suggesting a risky policy that may
harm the patients. Additionally, we included a multiplicative control variate
to reduce variance of the WIS estimate44. So-called off-policy evaluation,
the evaluation of a certain policy given the behaviour data following a
different policy, is used to evaluate the models performance. Of note, we
conducted a correlation analysis of states versus time for each
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ICU stay within the observed 72 hours time period to observe separation
between different disease states with respect to time (Supplementary
Figs. 3 and 4).

Learning scheme
In this work, we adopt Q-learning. This reinforcement learning algorithm
fits well with our problem as it is a model-free algorithm, thus it does not
require to learn the model of the environment. In MDP, Q-learning seeks to
maximize the expected overall reward by tuning the treatment policy
(Supplementary Discussion).
We generated 500 different models from various random splits (80%) of

the MIMIC-III dataset. In each model, k-means clustering is performed to
instantiate a different state space. Based on the Euclidean distance to the
nearest cluster centroid, state membership and corresponding action for
test set data points is determined. We then evaluated the AI policies using
WIS on the remaining 20% of the data. Furthermore, we adopted
bootstrapping on the validation dataset (20% from the 80% random split
of the MIMIC-III dataset) in order to estimate the actual distribution of the
policy value. This bootstrapping procedure offers confidence intervals for
the WIS, and is adopted in wide range of high-risk applications43,45.
For each model, we estimate the value for the random policy. The

selected final model maximizes the 95% confidence lower bound of the AI
policy among the 500 candidate models.

Ethics approval
Approval of data collection, processing, and release for the MIMIC-III
database has been granted by the Institutional Review Boards of
Beth Israel Deaconess Medical Center (Boston, MA, USA)13 and the
Massachusetts Institute of Technology (Cambridge, MA, USA). Approval of
data collection, processing and release for the eICU database has been
granted by the eICU research committee and exempt from Institutional
Review Board approval14. All data was processed on the computational
infrastructure of the Rheinisch Westfälische Technische Hochschule (RWTH)
Aachen University and the University Hospital RWTH Aachen in accordance
to European Union data protection laws.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.
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