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Development of digital measures for nighttime scratch and
sleep using wrist-worn wearable devices
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Patients with atopic dermatitis experience increased nocturnal pruritus which leads to scratching and sleep disturbances that
significantly contribute to poor quality of life. Objective measurements of nighttime scratching and sleep quantity can help assess
the efficacy of an intervention. Wearable sensors can provide novel, objective measures of nighttime scratching and sleep;
however, many current approaches were not designed for passive, unsupervised monitoring during daily life. In this work, we
present the development and analytical validation of a method that sequentially processes epochs of sample-level accelerometer
data from a wrist-worn device to provide continuous digital measures of nighttime scratching and sleep quantity. This approach
uses heuristic and machine learning algorithms in a hierarchical paradigm by first determining when the patient intends to sleep,
then detecting sleep-wake states along with scratching episodes, and lastly deriving objective measures of both sleep and scratch.
Leveraging reference data collected in a sleep laboratory (NCT ID: NCT03490877), results show that sensor-derived measures of
total sleep opportunity (TSO; time when patient intends to sleep) and total sleep time (TST) correlate well with reference
polysomnography data (TSO: r=0.72, p < 0.001; TST: r = 0.76, p < 0.001; N = 32). Log transformed sensor derived measures of total
scratching duration achieve strong agreement with reference annotated video recordings (r = 0.82, p < 0.001; N = 25). These results
support the use of wearable sensors for objective, continuous measurement of nighttime scratching and sleep during daily life.
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INTRODUCTION

Pruritus (itch) is a primary symptom seen in numerous chronic
eczematous conditions, especially prevalent in patients with
atopic dermatitis (AD)'. A common reaction to the pruritus
sensation is to scratch the affected area®?, which results in
additional inflammation/lesion formation thus exacerbating the
pruritus and perpetuating the itch-scratch cycle®. Furthermore,
pruritus often occurs during the evening and at night and disrupts
patients’ sleep®. The itch-scratch cycle compounded with sleep
disturbances reduces the quality of life of patients as well as
caregivers®”’.

Traditional assessments of pruritus and sleep are primarily
based on clinical outcome assessments (COAs) and patient
reported outcome assessments (PROs). COAs are aimed at
assessing total body surface area (BSA) of the lesion® as well as
lesion severity (redness, induration, excoriations, etc.)’ but these
are physician-derived measurements and provide limited insight
into the fluctuations of symptoms experienced outside the clinic.
In contrast, while PROs provide insight into the perceived
condition from the patient’s perspective, they are subjective and
can be affected by mood or suggestion, lack compliance, and are
qualitative in nature'®. Therefore, there is a need for more
objective measures that accurately reflect the impact of AD on a
patient’s daily life. These types of measurements not only have the
potential to provide more reliable indicators of intervention
efficacy, but may also help improve management of the disease.

Advances in wearable sensor technology have already led to
more objective measures of health, both within and outside of
healthcare settings. Measurement of sleep/wake cycles using

wrist-worn accelerometers has continued to evolve since their
introduction''"'3. With improved algorithms, the hope is that
actigraphy would provide a more practical and valid option to
longitudinally monitor sleep compared to polysomnography (PSG)
(the gold standard for sleep assessment)'®. While PSG provides
rich information beyond distinguishing between sleep and wake
states (e.g. identifying sleep stages, gross body movements, and
respiration patterns), the technically demanding, in-clinic, over-
night requirements and cost make it a poor choice for long-term
monitoring in situations when these additional parameters are not
needed. By leveraging wrist-worn accelerometers, high-resolution
measurements can be collected for weeks to months at a time
with minimal disturbance to a patient’s daily life. Although
methods that rely on accelerometer data are unable to reliably
detect sleep stages, they have been used to effectively detect
long-term changes in circadian rhythms and sleep quantity'?™',

More recently, there have been efforts to leverage data
captured using wrist-worn accelerometers in combination with
machine learning (ML) techniques to measure nighttime scratch-
ing'> '8, Feuerstein et al.'® utilized four signal features derived
from accelerometer data with a k-means clustering technique to
segment simulated scratching movements (scratching performed
on command in a clinic setting) from walking and restless
movements during sleep. Petersen et al.'” built on this approach
by leveraging the same four signal features with logistic
regression to also classify simulated scratching movements from
walking and restless movements during sleep. However, while
both methods achieved high sensitivity in predicting scratch
movements (0.90 and 0.96, respectively), because both methods
rely on simulated scratching movements and were not designed
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to support unsupervised monitoring, performance under free-
living conditions may suffer. To address some of these limitations,
Moreau et al.'® trained Recurrent Neural Networks (RNNs) using
annotated scratch events during an overnight clinic visit to classify
nighttime scratch directly from sample-level accelerometer data.
While this approach improves upon previous works by enabling
continuous measurement and leveraging data from non-
simulated scratch events, it does not segment data into patient’s
sleep periods, which can increase the likelihood of false positives
during free-living conditions. In addition, while RNNs have proven
to be successful with sequence learning tasks'®, the resulting
models often lack interpretability, which is highly valued in
regulated environments. Most recently, Ikoma et al.>° implemen-
ted a heuristic scratch detection approach into a mobile
application for use on an Apple Watch (Apple Inc., Cupertino,
CA, USA). Since the Apple Watch is a widely used consumer
device, this effort represents a considerable step forward toward
enabling scalable objective monitoring of patients at home,
although the small sample size (N=5) used for algorithm
validation as well as the lack of automatic sleep detection are
important limitations. While these efforts have certainly advanced
the field, there is a need for validated methods that combine both
sleep and nighttime scratch detection and allow for deployment
under free-living conditions.

Herein, we present a method for continuous, objective
assessment of nighttime scratch and sleep based on acceler-
ometer data captured using a wrist-worn wearable device. The
proposed method follows a hierarchical paradigm by first
determining when the participant intends to sleep, then detecting
sleep—wake states and presence of scratch movements, and finally
deriving objective measures for both. A pragmatic approach was
taken during development of each module in this method, using
ML for more complex tasks and heuristic, rule-based algorithms
for simpler tasks. Leveraging reference data collected in a sleep
laboratory with thermal video scoring (NCT ID: NCT03490877), we
examine the performance of each module individually as well as
the performance of the proposed method as a whole for
continuously deriving endpoints of sleep and nighttime scratch.

RESULTS

Participants used for analysis

Of the 45 total AD patients recruited, 12 participants were
excluded for algorithm development due to missing acceler-
ometer data, reference thermal video malfunctions, or issues with
time alignment between sensor data and reference thermal video,
leaving 33 participants (age: 31.1 + 15.8 [12-63]; sex: 10 (30.3%)

male) available for analysis. A table of the relevant data exclusions
can be found in Supplementary Table 1. Detailed characteristics of
participants used in this analysis are listed in Table 1. Of the
available 33 participants, 31 participants had accelerometer data
from both wrists, 1 had accelerometer data from the left wrist, and
1 participant did not wear accelerometers on either wrist during
the second in-clinic night. A detailed description of the experi-
mental protocol and algorithm development steps for each
module in this method can be seen in the “Methods” section.

Sleep detection performance

As seen in Table 2, we observed almost identical sleep-state
detection performance when compared to PSG at the epoch level
(30 s) between the left and right wrists. Specifically, the sensitivity
and F1 scores for both wrists were consistently high (0.95 and 0.9
for left and right, respectively). There was low observed specificity
(0.44 for both left and right) for wake periods.

Scratch detection performance

Across all available in-clinic participant visits, a total of 753.2 min
of scratch and restless (non-scratch hand movements; refer to
“Methods” section for further details) data (22.8 +26.5 min per
participant) obtained from both in-clinic visits were used for

Table 1. Characteristics of participants used for analysis.
Characteristic Atopic dermatitis patients
(N=33)
M/F (n) 10/23
Age (years) 31.1+15.8
Race 1 Asian
17 African American
15 White
Body surface area (%) 21.52+22.654
Investigator’s Static Global Assessment 9 Mild
20 Moderate
4 Severe
2.85+0.62
Patient Global Impression of Severity 4.52+1.06
Peak Pruritus Numerical Rating Scale 6.00+2.36
Severity of Pruritus Scale 5 Mild
14 Moderate
14 Severe
2.27+0.72

Table 2.

Summary statistics on epoch level classification of sleep (30s) and scratch (3 s).

Sleep detection (left wrist)

Sleep detection (right wrist) Scratch detection

Visit 2 only Visit 2 only Visit 1 and visit 2

n 32 31 33

Accuracy (mean (SD)) 0.85 (0.09) 0.85 (0.10) 0.73 (0.09)
Sensitivity (mean (SD)) 0.95 (0.08) 0.95 (0.0 7) 0.61 (0.15)
Specificity (mean (SD)) 0.44 (0.24) 0.44 (0.23) 0.80 (0.10)
Positive predictive value (mean (SD)) 0.87 (0.11) 0.87 (0.13) 0.73 (0.17)
Negative predictive value (mean (SD)) 0.66 (0.24) 0.69 (0.21) 0.68 (0.17)
F1 score (mean (SD)) 0.90 (0.07) 0.90 (0.09) 0.66 (0.15)

participant level performance.

Epoch level sleep classification performance was assessed using data from the left and right wrist sensors independently. Scratch performance is based on a
leave-one-subject-out validation routine, where annotated scratch and restless events from the left and right wrists were pooled together to train a single
scratch classifier. Visit 1, visit 2 refer to the two in-lab overnight visits. PSG was available only for visit 2. Mean and standard deviation were computed across
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training the binary ML scratch classifier. This equated to 15,064
distinct 3-s training samples. Epoch level classification perfor-
mance of the classifier from a leave-one-subject-out validation
routine can be seen in Table 2. Per subject classifier performance
can be seen in Supplementary Table 2. We observed an
improvement in leave-one-subject-out performance of the scratch
classifier when using 3 s windows (sensitivity: 0.61+0.15; speci-
ficity: 0.8 £0.1) compared to 2s windows (sensitivity: 0.58 £0.11,
specificity: 0.7 £ 0.08), confirming the decision to use 3 s windows.
Using Investigator's Static Global Assessment (ISGA) scores
determined at screening, we observed comparable specificity
across AD severity groups (mild: 0.83 (n=9); moderate: 0.80
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Fig. 1 _Binary machine learning scratch classifier feature analysis.
SHAP?'?2 analysis was used to assess feature importance and
impact on classifier predictions. SVM signal vector magnitude, PC1
first principal component of signal, PC2 second principal compo-
nent of signal. Features of signal periodicity (e.g. dominant
frequency, mean cross rate) and smoothness (e.g. sparc, jerk) are
predominant features for distinguishing scratch movements from
other restless movements. Further, high values of mean cross rate
and dominant frequency increase the likelihood of scratch being
predicted, indicating scratching movements involve more rapid and
periodic hand movements compared to restless movement.
Similarly, high values of jerk and low values of sparc are predictive
of scratch, indicating that scratch movements are more irregular and
less smooth compared to restless movements.
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(n = 20); severe: 0.80 (n =4)) and improved sensitivity in patients
with severe AD (mild: 0.54 (n = 9); moderate: 0.66 (n = 20); severe:
0.83 (n=4)). However, statistical tests were not performed
because of the small sample size (Supplementary Table 3). In
addition, classifier performance by sex showed no clear differ-
ences in performance between males and females (Supplemen-
tary Table 4). The area under the curve (AUC) of receiver operating
characteristics (ROC) was also analyzed to assess the tradeoff
between sensitivity and specificity based on the classifier's
prediction threshold. We observed an AUC of 0.81 with the
default prediction threshold of 0.5.

Scratch classifier feature analysis

Figure 1 shows SHapley Additive exPlanation (SHAP)?'*2 summary
values for the top 20 features based on their importance for
detecting scratch. We observed that measures of signal periodicity
(e.g. dominant frequency, mean cross rate) and smoothness (e.g.
sparc, jerk) are the predominant features for scratch detection.
Specifically, the mean cross rate of the second principal
component signal is the most influential feature. Higher values
of this feature (an indication of rapid hand movements) result in
higher SHAP values, which indicates a higher probability that the
model will predict scratch for the given window. Measures of
smoothness (sparc) and dominant frequency are the next two
most important features for distinguishing scratch movements
from other movements. We observed that higher sparc values (an
indication of smoother movements) and lower dominant
frequency values (an indication of slower movements) result in a
lower probability of scratch prediction by the classifier.

Evaluation of digital endpoints for sleep and nighttime
scratch

We assessed the agreement of aggregate endpoints of sleep
(average value of endpoints derived from left and right wrists) and
scratch (sum of endpoints derived from left and right wrists) with
endpoints derived from PSG and video annotations, respectively.
The feasibility of averaging sleep endpoints from the left and right
wrists was confirmed by the high agreement observed between
left and right-wrist-derived endpoints of total sleep opportunity
(TSO), total sleep time (TST), and percent time asleep (PTA)
(Pearson correlation coefficient = 0.83, 0.93, 0.94, respectively; all
p-values < 0.001, see details in Supplementary Fig. 1). Table 3
highlights the Pearson correlation coefficient, statistical signifi-
cance, and Bland-Altman mean bias and limits of agreement for
each endpoint. Thirty-two participants were used for sleep
endpoint comparisons (one participant did not wear devices on
night 2 and therefore was excluded). In this analysis, TSO derived
from PSG was defined as lights-off to lights-on. Significant linear
correlations were observed for estimated TSO and TST compared
to PSG (p<0.0001). On average, we observed that the sleep
module underestimates TSO by 29.7 min and overestimates TST
by 24.2 min. Compared with TSO and TST, the linear trend for
predicted PTA with PSG is significant but not as strong (r = 0.41,

Table 3. Agreement of predicted digital summary endpoints with reference system (PSG for sleep, video annotations for scratch) derived endpoints.
Digital measure Sample size (n) Pearson correlation coefficient Mean bias and limits of agreement
Total sleep opportunity 32 0.72%%* 29.66 (—88.63, 147.94)

Total sleep time 32 0.76%** —24.19 (—148.14, 99.75)

Percent time asleep 32 0.41* —10.17 (—38.89, 18.55)

Total scratch counts (log transformed) 25 0.63%** 0.13 (—1.16, 1.41)

Total scratch duration (log transformed) 25 0.82%** 0.71 (—0.22, 1.63)

Pearson correlation coefficients along with statistical significance (***p < 0.001, **p <0.01, *p < 0.05) as well as Bland-Altman limits of agreement are shown.
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p =10.019). Results for exploratory sleep endpoints, specifically
number of wake bouts (NWB), wake after sleep onset (WASO), and
sleep onset latency (SOL), derived from the binary sleep/wake
predictions can be seen in Supplementary Fig. 2. We observed
moderate correlations for NWB and WASO. Similar results for
single-wrist sleep prediction validation can be seen in Supple-
mentary Fig. 3.

To evaluate the performance of aggregate nighttime scratch
endpoints, we required accelerometer data from both wrists,
complete video recordings for a night, and PSG. We compared
predicted total scratch counts and duration during the sleep-
module-determined TSO against video-annotation-based total
scratch counts and duration during the PSG-determined TSO
(during night 2 only; when PSG was utilized). Of the 33
participants, 8 participants were excluded (1 participant did not
wear the devices during night 2, 1 participant had no
accelerometry data for one wrist; and 6 participants had video
malfunctions during night 2), leaving 25 participants for this
analysis. We observed moderate correlation for scratch counts (r
=0.63, p <0.0001) and strong correlation (r=0.82, p < 0.0001) for
total scratch duration. Additional validation results by pooling
scratch counts and durations from night 1 and 2 together (where
video annotation data were segmented using the sleep-module-
predicted TSO) can be seen in Supplementary Fig. 4, where
consistent high correlations were observed. We also observed
strong linear correlation between predicted scratch endpoints and
WASO (r=0.9, p <0.001 for scratch events, and r=0.82, p < 0.001
for scratch durations) and no significant association between
scratch endpoints and TST (r= — 0.3 for scratch events, and r=
—0.31 for scratch durations), see details in Supplementary Fig. 5.

DISCUSSION

We investigated the use of accelerometer and temperature data
captured by wrist-worn wearable devices for monitoring sleep and
nighttime scratching in patients with AD. The proposed approach
was developed with the goal of continuously capturing objective,
non-invasive, high-resolution measurements during a patient’s
daily life, and enabling scalable deployment in clinical studies.
Digital measures of sleep quantity and nighttime scratch showed
high correlation with corresponding reference measures of sleep
quantity (obtained from PSG) and scratch (obtained from in-clinic
video recordings). An example of the continuous measures
produced by the proposed approach can be seen in Fig. 2.

An important aspect of the proposed method is the automatic
detection of the TSO window. To effectively determine how a

subject’s sleep and nighttime scratch vary on a day-to-day basis,
the ability to reliably detect the period during which sleep is the
intended behavior is paramount. Every endpoint derived by the
system relies upon the TSO window to properly bound analysis to
the nighttime period. The TSO was chosen over other options,
such as the TST window (measured from first sleep epoch to last
sleep epoch), with the objective of capturing any difficulties the
participant has in falling asleep. While results show that the
detected TSO window correlates well with PSG, the system does
underestimate the duration by 29.7 min on average. However, the
algorithm performance should be viewed in the context of well-
known challenges associated with determining TSO boundaries*
and the fact that PSG-determined TSO window is set with
reference to lights-off/lights-on times rather than actual partici-
pant behaviors. For example, we observed based on video
recordings that one participant spent until ~3 AM upright in
bed working on the computer before lying down to sleep (see
Supplementary Fig. 6). The sleep module was able to accurately
capture this, but the PSG-based TSO was recorded for the duration
between 10 PM and 6 AM. These results remain consistent with
previous findings, which saw anywhere from 25-40 min mean
absolute error for sleep window duration®*. The findings with
respect to wake epoch detection may in part be related to the
relatively small number of PSG-scored wake epochs and is
consistent with prior work. Furthermore, the performance of the
sleep module (85%) for sleep-wake detection at the epoch level
was comparable to that reported by Cole et al."" (88%).

We trained a binary ML classifier using time and frequency
domain features extracted during annotated periods of nighttime
scratching and restless movements within the TSO window to
predict episodes of scratch. SHAP analysis revealed that, of the top
five influential features, two are a measure of signal periodicity
while the remaining three are a measure of smoothness of
movement. Because high values for mean cross rate and
dominant frequency increase the likelihood of scratch being
predicted, we can infer that scratching movements involve more
rapid and periodic hand movements compared to restless
movement. Further, high values of jerk-ratio and low values of
sparc are predictive of scratch, which suggests that scratching
movements are more irregular and less smooth compared to
restless movements.

Our approach incorporates hierarchical layers of context
detection, simplifying the binary scratch classification task to just
determining scratch movements from other restless motion
during the night. We observed strong agreement of aggregate
endpoints of scratch duration with reference video annotations (r

Total Sleep Total Sleep | Percent Time Total Scratch Total Scratch
Opportunity (min) | Time (min) Asleep (%) Events (counts) | Duration (min)
Tuesday 414.0 300.0 72.46 249.0 32.65
Wednesday 551.0 469.0 85.12 197.0 28.65
Thursday 491.0 430.0 87.58 135.0 24.25
Friday 543.0 498.0 91.71 103.0 14.75
B Activity
Detected TSO
Detected Scratch
0 0 o o 0 I\ o o I\ I\ o0 I\ 0 0 o I\ N
< o » i\ <} ) 3 " > o §y §\ ) ) 3 1 3
e et SRS ™ WS Y o ° «® > @ @ ° >

Time (Day HH:MM)

Fig. 2 Continuous detection of sleep and nighttime scratch for a 5-day participant recording. The proposed approach is able to process
continuous accelerometer recordings from wearable devices worn on the wrist with no input from the user. The total sleep opportunity (TSO)
and subsequent scratch events within the TSO period are dynamically detected and assessed for each night of the recording.
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=0.82, p<0.0001) and comparable epoch level scratch detection
performance to the approach outlined in Moreau et al."® (total
sensitivity: 0.67 vs. 0.66, total F1 score: 0.74 vs. 0.68; see
Supplementary Table 2). However, the proposed approach for
scratch detection has an added advantage of being more
interpretable compared to the RNN/long-short-term-memory
neural network approach outlined in Moreau et al.'®. For example,
we analyzed the feature space of participants where the classifier
reported low sensitivity and discovered that misclassified scratch
windows had slower (lower mean cross rate values) and smoother
(lower jerk-ratio and higher sparc values) movements, indicating
that the classifier has difficulty in detecting lower intensity
movements. These observations align with previous work'?, and
suggest that there may be a ceiling effect on the performance of
wrist-based accelerometry to detect scratch. Further research
incorporating different sensing modalities (e.g. electromyography
(EMG) for measuring activation of muscles, acoustic surveillance,
vibration transducers®®) and locations (e.g. ring sensor for
detecting fine finger movements) may be warranted.

While the proposed method achieves good accuracy for
detection of scratch events, further work is needed to evaluate
the impact of scratching severity (i.e. frequency and intensity of
scratching episodes) on the disease state. As discussed above,
while the proposed method is more likely to miss low intensity
scratching episodes, it is unclear if these episodes contribute
significantly to lesion size and the overall patient experience with
the disease. Furthermore, when evaluating efficacy of therapeutic
interventions in clinical studies, changes in the endpoint values
over time rather than their absolute value at a particular moment
are more important. Therefore, a consistent bias associated with
missing low-intensity scratching episodes may not have a major
impact on the reliability of the endpoints for clinical decision
making.

Generally, as AD severity increases, the prevalence of sleep
disturbances also increase®®?”, which may be attributed at least
partly to increased scratching frequency and intensity. Our results
provide some evidence to confirm this hypothesis, as we observed
a strong correlation between scratch endpoints and WASO. In
contrast, we observed a weak correlation between scratch
endpoints and TST. These results indicate that increased nighttime
scratching does not necessarily contribute to shorter sleep
duration but may result in a more disturbed sleep. Further
exploration is needed to better understand this effect.

Prior work suggests that not only scratching, but restless
movements (ex. rubbing affected areas on sheets?®) may
contribute to disease progression and AD patients generally
exhibit increased restless periods during the night compared to
normative populations®®. Further investigation is needed to better
understand how restless movements can affect disease severity,
and whether measuring only scratching episodes provides
enough information about disease progression to be clinically
meaningful. In addition, the increased likelihood of restless
behavior in AD populations may also affect the performance of
the proposed method by contributing to higher rates of false
positives, which may compromise the reliability of digital end-
points of scratch.

Moreover, prior work has also shown a lack of correlation
between objective measures of scratch and subjective measures
of disease state and itch. Benjamin et al. report minimal
agreement between objective measures of scratch and parental
assessments of itch®®. Similar results have been reported for
patient reported measures of itch (Visual Analogue Scale)'®, six
area, six sign atopic dermatitis (SASSAD) severity score, patient
oriented eczema measure (POEM), or the dermatitis family impact
(DFI) score®®. We interpret these results as evidence of a
disconnect between objective, accelerometry-based measures of
scratch and subjective measures of itch. While the terms itch and
scratch are often used interchangeably, they are different
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phenomena. ltch is a feeling with complex neurological under-
pinnings that may result in the action of scratching, and this
distinction between perception and behavior is one that merits
further investigation. Additional studies applying this method
longitudinally are needed to better understand the relationship of
these objective endpoints to changes in disease state in patients
with AD.

Scalability was an important factor that we took into account for
the design of the proposed method. In order to maximize
generalizability, we imposed a constraint that the solution be
device agnostic. This meant building algorithms that operate
solely on sample-level data directly, instead of proprietary data
streams that numerous wearable devices today output. Addition-
ally, we minimized reliance on device orientation (as sensor
components might be oriented differently from device to device)
by performing transformations and dimensionality reduction on
the sample-level data where possible. In order to minimize the
number of times patients must remove the device for the purpose
of charging the battery, we focused on using accelerometer and
temperature data sampled at 20 Hz to maximize battery life and
believe these choices will also improve patient compliance. Along
with that, the proposed method allows for the possibility of
deploying a single-device solution by processing each wrist
independently. As a result of these design choices, the proposed
solution offers the flexibility to use devices and deployment
strategies that best fit the use-case while minimizing patient
burden.

Although utilizing hierarchical layers of context detection
simplifies the downstream classification tasks, there is a risk of
error propagation. While the performance of the proposed
solution was promising based on data collected in the clinic,
application on data collected at home for longer durations (weeks
or months) is necessary to investigate generalizability. Along with
that, accurate on-body detection while monitoring under daily-life
conditions is critical to ensure reliability of the endpoints. The
proposed solution relies on near-body temperature to detect and
exclude non-wear periods from analysis, which limits its applica-
tion to devices that either have that sensing capability or provide
another approach (e.g. capacitive touch sensing) for robust
detection of non-wear periods. A future direction could also focus
on assessing the proposed digital endpoints’ sensitivity for
detecting clinically meaningful changes associated with disease
progression or therapeutic interventions.

METHODS

Participants

Forty-five AD patients were recruited as part of a larger research effort
(determined by the criteria of Hanifin and Rajka, the ISGA (=2), and BSA
(=5%) obtained at screening (0-30 days prior to visit 1); aged 31.7 + 16.01
years [12-63; range]; sex: 16 (35.5%) male). Participants were also required
to have active pruritus as determined by PROs: Peak Pruritus Numerical
Rating Scale (ppNRS*° (Instrument copyrighted by Regeneron and Sanofi-
Aventis); =3) and Severity of Pruritus Scale (SPS; =1) at screening, and
permitted to continue concomitant AD treatments during the study. The
algorithm development and validation presented in this work is derived
from a subset of data collected in the larger research study (12 participants
excluded due to missing data required for algorithm development and
evaluation).

Study design and experimental protocol

Participants were monitored for a total of four nights: two nights in a sleep
laboratory (in-clinic) and two nights at home. During each in-clinic visit,
participants were monitored throughout the night via infrared radar
thermal videography (FLIR A35; Flir Systems, Wilsonville, OR, USA) in a
sleep lab. Video recordings of each participant were subsequently
reviewed by two trained human annotators to identify the presence of
scratch and restless movements and a final arbitrator if there were
disagreements on the assessments. Further details about the scratch and
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Fig. 3 Flowchart highlighting hierarchical approach for detection and assessment of sleep and nighttime scratch using accelerometer
data from a wrist-worn device. Raw accelerometer data are first sliced to a 24-h period (12:00 PM-12:00 PM), then segmented to the total
sleep opportunity (TSO) window, and finally measures of sleep and scratch are computed during the TSO window.

restless movement criteria used to define and annotate scratch behaviors
(developed by Boston University School of Medicine Laboratory for Human
Neurobiology) are in Supplementary Note 1. In addition to videography,
during the second overnight clinic visit, participants’ sleep was monitored
via limited PSG. Following the in-clinic visit, participants were monitored
for two nights at home. All procedures in this study had approval from the
University of Rochester Medical Center Institutional Review Board. All
participants in the study gave written informed consent prior to
enrollment. Data from both in-clinic visits were used for scratch algorithm
development and data from the second in-clinic visit were used for sleep
algorithm development.

Instrumentation

Participants wore two devices (GeneActiv Original; Activinsights, Kimbol-
ton, UK), one on each wrist, during both in-clinic and at-home visits. These
devices have a watch-like form factor (although no watch face) and are
designed for continuous, multi-day recordings in both free-living and
clinical environments. Sample-level sensor data (triaxial acceleration, near-
body temperature, and ambient light) is logged on the device and can be
downloaded at the end of the monitoring period. In this study, data from a
triaxial accelerometer (sampling rate: 100 Hz, unit: g), ambient light sensor
(sampling rate: 100 Hz, unit: Lux), and near-body temperature sensor
(sampling rate: 0.334 Hz, unit: Celsius) were collected. Participants were
instructed to wear the devices at least 3 h prior to the first overnight clinic
visit and leave them on throughout the evaluation period (i.e. not remove
during the day). During the second overnight clinic visit, participants
underwent PSG, which was used as the ground truth measurement of
sleep. PSG recordings consisted of external electrodes (three electro-
encephalography (EEG) sites (C3, C4, and Occipital), two electrooculo-
graphy (EOG) sites, two facial EMG sites, reference electrodes, and ground)
that were placed on the head and face (one on either side of each eye, one
behind each ear, and two on the chin/jawline). PSG recordings did not
include measurement of respiration, limb movement, or oximetry, and
were scored in 30-s epochs per revised American Academy of Sleep
Medicine scoring guidelines®’. Both in-clinic visits included thermal
videography recorded in 72,000 frame batches at 60 Hz (equating to
20 min per video) for the duration of the subject’s overnight visit.

Analytical approach
As illustrated in Fig. 3, the proposed method for assessment of nighttime
scratch and sleep follows a hierarchical paradigm by first performing
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context detection and then estimating symptom severity. Context
detection consists of wear detection (on-body vs. off-body), detection of
the subject’s TSO window (defined as the largest period in a 24-h window
during which sleep is the intended behavior, or more simply the time from
when the participant laid down to go to bed to the time when they rise in
the morning), and detection of hand movement during the predicted TSO
window. Symptom severity estimation consists of detection and assess-
ment of sleep quantity and nighttime scratch. In order to evaluate sleep
and scratch independently, we separate the method into two modules: (1)
sleep module, consisting of the wear detector, TSO detector, sleep/wake
detector, and sleep assessment, and (2) scratch module, consisting of the
hand movement detector, scratch detector, and scratch assessment. The
development procedure for each module of the method is explained in
detail below.

Sleep module
The sleep module incorporates several previously published algo-
rithms'"?*3? in a modular framework to provide measures of sleep
quantity®®. An overview of the processing pipeline can be seen in Fig. 4.
Accelerometer data obtained from the wrists were first down sampled
from 100 Hz to 20 Hz. Data were then separated into 24-h segments (12:00
PM to 12:00 PM the next day). Any 24-h periods with less than 6h of
recording time were discarded. This was done to exclude data recorded
before and after the official visit period, incomplete data, or data from a
misconfigured device (each recording was expected to be approximately
48 h). Periods of non-wear were determined by applying a heuristic rule to
the near-body temperature data recorded by the GeneActiv Original device.
The temperature data were first processed similarly to the sample-level
accelerometer data (5-s rolling median, consecutive 5-s average, rolling 5-
min median) so that the wear/non-wear periods would be aligned with the
candidate TSO periods. Any candidate period with a temperature value less
than 25°C was considered non-wear. The 25 °C threshold was empirically
derived from known wear data during sleep (Supplementary Fig. 7).
Candidate TSO periods for each 24-h segment were then determined
using a heuristic approach based on change in arm angle calculated using
accelerometer data from the wrist?®. Any candidate TSO period that was
classified as non-wear was excluded. Of the remaining candidate TSO
periods in a given 24-h segment, the longest one was chosen as the TSO
window. Once the TSO window was identified, predictions of sleep and
wake were generated for each 1-min epoch using a heuristic approach'’.
The previously published sleep-wake classification algorithm that was
implemented relies on a proprietary method to derive activity counts,
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Fig. 4 Overview of the sleep module processing pipeline. The pipeline consists of data preprocessing, total sleep opportunity (TSO) and
wear detection, sleep/wake classification, and sleep assessment. *Global minimum is set to 0.1 based on the 25th percentile value of all valid
(on-body) data (see Supplementary Fig. 7). Block with a dashed outline provides a detailed illustration of steps in the preceding block with a

solid outline.

which were not available for the wearable device used in this study.
Therefore, an open-source activity index metric>? was used as a proxy for
activity counts in our implementation. Webster's rescoring rules were
applied to the binary sleep-wake predictions to improve specificity'".
Digital measures of sleep were derived for each 24-h segment by
processing the sleep-wake predictions during the determined TSO
window as seen in Table 4.
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Scratch module

Predictions of nighttime scratch were generated via a two-tiered approach
(Fig. 5b). First, the presence of hand movement was determined, and then
those periods of hand movement were classified as either scratch or non-
scratch events. Sample-level accelerometer data were segmented into 3-s
non-overlapping windows within the selected TSO window for a given 24-
h period. After testing multiple window lengths (1, 2, and 3 s), we found
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Table 4. Description of digital measures output from the analytics solution.
Digital measure Type Units Description
Total sleep opportunity (TSO) Sleep Minutes Largest window of time where sleep is the intended behavior.
Total sleep time (TST) Sleep Minutes Total time spent asleep during the total sleep opportunity window.
Percent time asleep (PTA) Sleep Percentage Percentage of the total sleep opportunity window spent in the sleep state.
Total scratch events Scratch Counts Total scratch bouts during the total sleep opportunity window.
Total scratch duration Scratch Minutes Total time scratching during the total sleep opportunity window.
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Fig. 5 Overview of the prediction and classifier training pipeline for the scratch module. a Scratch classifier training pipeline, consisting of
data preprocessing, signal preprocessing, feature engineering, and leave-one-subject-out validation. b Scratch module prediction pipeline,
consisting of data preprocessing, hand movement detection, scratch classification, and scratch assessment.

that a 3-s window achieved a good tradeoff between temporal resolution
and detection performance. This choice is in agreement with prior work on
scratch classification'®'” and human activity recognition®*. Each 3-s
window was passed through a heuristic hand movement detection
algorithm® to determine the presence of hand movement. The primary
parameter of the hand movement algorithm (a threshold applied to rolling
coefficient of variation) was tuned empirically based on our dataset. After
testing several threshold values, we selected the 25th percentile of the
distribution of coefficient of variation values (0.023) based on our dataset.
Scratch classification was performed on a 3-s window only if hand
movement was present for the entirety of the window.

We trained a binary ML classifier to detect the presence of scratch. For
training, we used all available 3-s windows across both in-clinic visits. To
generate labels for training the classifier, instances of nighttime scratch
and restless (non-scratch) movements observed via thermal videos of each
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in-clinic participant visit were annotated by human raters using criteria
outlined in Supplementary Note 1. Annotations were performed by two
annotators and reviewed by an arbitrator if there were disagreements with
regard to timing or behavior classification. Each annotation included
metadata about which hand was moving (right, left, or both), the affected
body location, as well as severity of scratching (mild, moderate, severe; see
Supplementary Note 1 for definitions). Annotations of 3's or longer were
used for training the binary classifier. If an annotation was greater than 3's,
it was segmented into 3 s windows with 50% overlap prior to training to
maximize data availability. To ensure that the ground truth was reliable, all
annotations were manually time-aligned with the accelerometer data
based on a prescribed clap event (participant instructed to clap in front of
camera while wearing accelerometer devices) during each in-clinic visit.
The pipeline for training the binary scratch classifier included steps for
preprocessing, feature extraction, feature selection, model training, and
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model evaluation (Fig. 5a). The preprocessing step generated three
processed signals by applying filtering and dimensionality reduction to the
sample-level accelerometer data. First, the data were filtered using a first-
order Butterworth infinite impulse response (lIR) high-pass filter with a
cutoff frequency of 0.25 to remove acceleration due to gravity. Next, to
reduce dependence on device orientation, the signal vector magnitude
(SVM) (1/x? + y? + z2) as well as the first (PC1) and second (PC2) principal
components of the filtered signal were computed.

A total of 36 time and frequency domain features were then calculated
from the preprocessed signals for each window (Supplementary Table 5).
Observations were then randomly sampled to balance the positive and
negative classes prior to feature selection. We performed feature selection
using recursive feature elimination with cross-validation with a decision
tree as the estimator®®, which resulted in a total of 26 selected features. A
random forest classifier with 50 estimators was then trained based on the
selected features. Performance of the binary model was assessed using a
leave-one-subject-out validation. We evaluated multiple settings for
number of estimators in the random forest classifier (25, 50, 75, and 100)
and saw no significant improvement in model performance as we
increased the number of estimators past 50.

Digital measures of nighttime scratch were derived by processing the
binary scratch predictions during the predicted TSO window for each 24-h
segment (Table 4). Total scratch counts were computed by taking the sum
of contiguous 3-s bouts of predicted scratch detected from both wrists.
Total scratch duration was computed by taking the sum of the duration of
all predicted scratch bouts from both wrists.

Statistical methods to measure agreement between sensor-
derived measures and reference data

Performance of both the sleep and scratch algorithms were evaluated at
the epoch (30s and 3, respectively) and summary endpoint (summary
metrics seen in Table 4) levels. With the aim of transitioning to a single
device setup in the future, epoch predictions of sleep were derived from
both the left and right wrists and were assessed independently against
PSG during the second in-clinic visit. A leave-one-subject-out validation
was used to assess scratch performance at the epoch level. Annotated
scratch and restless movements from the left and right wrists during both
in-clinic visits were pooled together to train a single scratch classifier.
Conventional classification performance metrics (accuracy, sensitivity,
specificity, F1 score, and AUC of the ROC) were used to summarize epoch
level performance for both sleep and scratch modules. SHAP?'?%, a game
theoretic approach, was used to analyze the importance of the selected
features used in the ML scratch classifier.

Epoch predictions of sleep and scratch (with scratch based on leave-
one-subject-out model predictions) are summarized for each participant
night to obtain endpoint level predictions. Summary statistics of scratch
algorithm performance are calculated for different ISGA severities (taken at
screening) and sex. Pearson correlation coefficients (along with their p-
values), Bland-Altman plots, and limits of agreement were used to assess
agreement with reference data on endpoint level metrics throughout. The
Bland-Altman limits of agreement describe the 95% confidence interval
between the measurements being compared. The agreement between
sensor-derived sleep endpoints from the left and right wrists was also
assessed. Subsequently, aggregate endpoints of sleep (derived by taking
the average between the left and right wrists) were assessed against PSG-
derived endpoints of sleep during the second in-clinic visit. Aggregate
endpoints of scratch (derived by taking the sum of left and right wrist
outputs) during the TSO window predicted by the sleep module were
assessed against video annotation derived endpoints of scratch during
PSG determined TSO window. Since the distributions of sensor-derived
scratch endpoints were right-skewed, log transformation was applied
(specifically, log(x + 1) to include possible zero values).

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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