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COVID-19 information retrieval with deep-learning based
semantic search, question answering, and abstractive
summarization
Andre Esteva 1,3✉, Anuprit Kale1,3, Romain Paulus1, Kazuma Hashimoto1, Wenpeng Yin1, Dragomir Radev 1,2 and Richard Socher1

The COVID-19 global pandemic has resulted in international efforts to understand, track, and mitigate the disease, yielding a
significant corpus of COVID-19 and SARS-CoV-2-related publications across scientific disciplines. Throughout 2020, over 400,000
coronavirus-related publications have been collected through the COVID-19 Open Research Dataset. Here, we present CO-Search, a
semantic, multi-stage, search engine designed to handle complex queries over the COVID-19 literature, potentially aiding
overburdened health workers in finding scientific answers and avoiding misinformation during a time of crisis. CO-Search is built
from two sequential parts: a hybrid semantic-keyword retriever, which takes an input query and returns a sorted list of the 1000
most relevant documents, and a re-ranker, which further orders them by relevance. The retriever is composed of a deep learning
model (Siamese-BERT) that encodes query-level meaning, along with two keyword-based models (BM25, TF-IDF) that emphasize
the most important words of a query. The re-ranker assigns a relevance score to each document, computed from the outputs of (1)
a question–answering module which gauges how much each document answers the query, and (2) an abstractive summarization
module which determines how well a query matches a generated summary of the document. To account for the relatively limited
dataset, we develop a text augmentation technique which splits the documents into pairs of paragraphs and the citations
contained in them, creating millions of (citation title, paragraph) tuples for training the retriever. We evaluate our system (http://
einstein.ai/covid) on the data of the TREC-COVID information retrieval challenge, obtaining strong performance across multiple key
information retrieval metrics.
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INTRODUCTION
The evolution of the SARS-CoV-2 virus, with its unique balance of
virulence and contagiousness, has resulted in the COVID-19
pandemic. Since December 2019, the disease threatens exponen-
tial spread across our society, catalyzed by a modern air and road
transportation system, along with dense urban centers where
close contact amongst people yielded hubs of viral spread.
Global efforts have arisen in an attempt to quell the spread of

the virus. National governments have shut down entire economic
sectors, enforcing stay-at-home orders for many people. Hospitals
have restructured themselves to cope with an unprecedented
influx of intensive care unit patients, sometimes growing
organically to increase their number of beds1. Institutions have
adjusted their practices to support efforts—repurposing assembly
lines to build mechanical ventilators2, delaying delivery of non-
COVID-related shipments3, creating contact-tracing mobile apps4

and "digital swabs”5 to track symptoms and potential spread.
Pharmaceutical enterprises and academic institutions have
invested significantly in developing vaccines and therapeutics6,
while deeply studying both COVID-19 and SARS-CoV-2.
The health impacts of this crisis have been matched only by the

economic backlash to society. Hundreds of thousands of small
businesses have shut down, entire industrial sectors have been
negatively impacted7, and tens of millions of workers have been
laid off or furloughed8. Even after our global society succeeds at
controlling the virus’s spread, we will be faced with many
challenges, including re-opening our societies, lifting stay-at-

home orders, deploying better testing, developing vaccines and
therapeutics, aiding the unemployed and out-of-business, etc.
The global response to COVID-19 has yielded a growing corpus

of scientific publications—increasing at a rate of thousands per
week—about COVID-19, SARS-CoV-2, other coronaviruses, and
related topics9. The individuals on the front lines of the fight—
healthcare practitioners, policy makers, medical researchers, etc.—
will require specialized tools to keep up with the literature.
CO-Search is a cascaded retriever-ranker semantic search engine

that takes complex search queries (e.g. natural language questions),
and retrieves scientific articles strictly over the coronavirus-related
literature. CO-Search indexes content from over 400,000 scientific
papers made available through the COVID-19 Open Research
Dataset Challenge (CORD-19)9—an initiative put forth by the US
White House and other prominent institutions in early 2020. The
goal of this line of work is to offer an alternative, scientific search
engine, designed to limit misinformation in a time of crisis.
We evaluate CO-Search on data from the TREC-COVID chal-

lenge10—a five-round information retrieval (IR) competition for
COVID-19 search engines—using several standard IR metrics:
normalized discounted cumulative gain (nDCG), precision with N
documents (P@N), mean average precision (MAP), and binary
preference (Bpref). For full details see the “Methods” section. TREC-
COVID considers IR system submissions that are either manual—in
which queries and retrieved documents may be manually adjusted
by a human operator—or automatic (such as CO-Search)—in which
they may not. A third category is accepted in Rounds 2–5, of type
feedback, in which systems are trained with supervision from the
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annotations of prior rounds. Submissions compete on a predefined
set of topics, and are judged using a number of metrics, including
those listed above. Expert human annotators provide relevance
judgments on a small set of topic–document pairs, which are
included, together with non-annotated pairs, in the evaluation.
The CORD-199 coronavirus-related literature corpus, primarily

from PubMed, mostly published in 2020, has quickly generated a
number of data science and computing works11. These cover
topics from IR to natural language processing (NLP), including
applications in question answering12, text summarization, and
document search10.
In 2020, more than 20 organizations have launched publicly

accessible search engines using the CORD-19 corpus. For instance,
Neural Covidex13 was constructed from various open source
information-retrieval building blocks, as well as a deep learning
transformer14 finetuned on a machine-reading comprehension
dataset (MS MARCO)15 to predict query-document relevance, for
ranking. SLEDGE16 extends this by using SciBERT17—the scientific
text-trained version of the prominent BERT18 NLP model—also
finetuned on MS MARCO, to re-rank articles retrieved with BM25.
One of the first question–answering systems built on top of the

CORD-19 corpus is CovidQA (http://covidqa.ai), which includes a
small number of questions from the CORD-19 tasks12. CAiRE is a
multi-document summarization system19 which works by first pre-
training on both a general text corpus20,21 and a biomedical
review dataset, then finetuning on the CORD-19 dataset.
One of the applications of the corpus has been Named Entity

Recognition (NER). Wang et al.22 introduce the COVID-NER corpus,
which includes 75 fine-grained entity types, both conventional
(e.g., genes, diseases, and chemicals) and corpus-specific (e.g., viral
proteins, coronaviruses, substrates, and immune responses).
Ahamed and Samad perform a network analysis of the corpus23,
in which they use word associations to identify the phrases that
co-occur with the most medically relevant keywords. This allows
them to identify information about different antiviral drugs,
pathogens, and pathogen hosts, as well as proteins and medical
therapies, as to how they are connected to the central topic of
“coronavirus”.
Broader surveys11 of the COVID-19-related literature have

already arisen, covering a wider range of research perspectives
including molecular, clinical, and societal factors. Roberts et al.
(2020)10 offers an in-depth analysis of the TREC-COVID competi-
tion structure, including the notable differences in IR systems for
pandemics, which deviate substantially from typical IR systems.
They address key questions around COVID-19-specific IR systems,
including: How are topics different from typical web-based search?

What is the appropriate search content? How to deploy quickly?
What are the appropriate IR modalities? How to customize IR
systems for pandemics? Can existing data be leveraged? How to
best respond to the rapidly growing literature corpus? How to
evaluate systems? And so forth. COVID search engines differ from
more general neural IR engines24,25 because of the relatively
limited and focused, and also rapidly changing collection of
documents. Another recent system paper from the challenge is
ref. 26, in which the authors describe an ensemble system that
combines more than 100 IR methods, including lexical rankers,
embeddings, as well as relevance feedback. Our proposed method
builds on these insights by selectively choosing three deep-
learning methods and showing how they each enhance COVID-
specific scientific search.

RESULTS
Dataset
To quantitatively evaluate the effectiveness of our search engine,
we combine the CORD-19 corpus with the TREC-COVID competi-
tion’s evaluation dataset. The evaluation dataset consists of topics,
along with relevance judgments which assign topic–document
pairs into one of the following groups: irrelevant, partially relevant,
or relevant. See Table 1 for example topics. The relevance
judgments are determined by human experts in related fields
(biology, medicine, etc.).
The U.S. White House, along with the U.S. National Institutes of

Health, the Allen Institute for AI, the Chan-Zuckerberg Initiative,
Microsoft Research, and Georgetown University recently prepared
the CORD-19 Challenge in response to the global crisis. As of
February 2021, this resource consists of over 400,000 scientific
publications (up from 29,000 at the challenge inception in February
2020) about COVID-19, SARS-CoV-2, and earlier coronaviruses9.
This challenge represents a call to action to the artificial

intelligence (AI) and IR communities to "develop text and data
mining tools that can help the medical community develop
answers to high priority scientific questions”. It is currently the
most extensive coronavirus literature corpus publicly available.
To build on CORD-19, the Text Retrieval Conference (TREC)

recently partnered with the National Institute of Standards and
Technology (NIST), to define a structured and quantitative
evaluation system for coronavirus IR systems. The TREC-COVID
challenge10 is composed of five successive rounds of evaluation
on 30–50 topics. The first round includes 30 topics. Each
subsequent round takes the prior round’s topics and adds five
new ones.

Table 1. Sample TREC COVID topic Search topics are tuples consisting of a query, a question, and a narrative, each sequentially more detailed.

Query coronavirus drug repurposing

Question which SARS-CoV-2 proteins–human proteins interactions indicate potential for drug targets. Are there approved drugs that can be
re-purposed based on this information?

Narrative Seeking information about protein–protein interactions for any of the SARS-CoV-2 structural proteins that represent a promising
therapeutic target, and the drug molecules that may inhibit the virus and the host cell receptors at entry step.

Example articles • Re-purposing approved drugs as inhibitors of SARS-CoV-2 S-protein from molecular modeling and virtual screening.

• Drug repurposing using computational methods to identify therapeutic options for COVID-19.

• Virtual screening, ADME/Tox predictions and the drug repurposing concept for future use of old drugs against the COVID-19.

Query coronavirus mental health impact

Question How has the COVID-19 pandemic impacted mental health?

Narrative Includes increasing/decreasing rates of depression, anxiety, panic disorder, and other psychiatric and mental health conditions.

Example articles • Early impacts of the COVID-19 pandemic on mental health care and on people with mental health conditions.

• Impact on mental health care and on mental health service users of the COVID-19 pandemic.

• Mental Health and the COVID19 Pandemic.

Here we show two such topics, along with example articles which have been judged by experts as being relevant to the given topics.
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Each topic is represented as a tuple consisting of a query, a
question, and a narrative, with an increasing amount of detail in
each. IR systems must retrieve up to 1000 ranked documents per
topic from the CORD-19 publications, and are evaluated on many
metrics. See the “Methods” section for further details.

System architecture
CO-Search consists of a retriever, which returns a sorted subset of
documents from the general corpus, a re-ranker, which further
sorts them, and an offline pre-processing step known as
document indexing, which parses documents via a combination
of deep learning and keyword-based techniques to make them
both semantically and syntactically searchable at scale. This
process converts pieces of raw text into high-dimensional vector
representations, such that one vector’s proximity to another
indicates similar content. The full system is shown in Fig. 2.
The index is created by processing documents in three ways: a

deep learning model called Siamese-BERT (SBERT27) embeds
single paragraphs and image captions, and two keyword-based
models (TF-IDF, BM2528) vectorize entire documents (see Fig. 2a).
SBERT is an extension of the widely used BERT18 language
representation model which uses two BERT models with tied
network parameters. It has been shown to be superior to BERT in
semantic similarity search27 by being significantly more compu-
tationally efficient at learning correspondences between sen-
tences. For instance, finding the most similar pair of sentences,
using BERT, in a collection of n= 10,000 sentences would require
each possible pair to be fed into the network, one sentence at a
time, yielding n(n− 1)/2= 49,995,000 inference computations, or
about 65 h on an NVIDIA V100 GPU. In contrast, SBERT reduces this
to 10,000 inference computations and the computation of cosine
similarity distances between them, yielding about 5 s of compute
time. SBERT is trained to take a short text string and a longer text
document and output the correspondence between the two (i.e.
their similarity) as a real-valued number between 0 and 1. In this
use case, semantic embeddings from the SBERT model face the
challenge of working with a relatively small number of long
documents. We account for this by pre-training SBERT on a large,
synthetic dataset of millions of training examples, constructed as

follows. We split documents into paragraphs, extract the titles of
the citations of each paragraph, and form a bipartite graph of
paragraphs and citations with edges implying that a citation c
came from a paragraph p. We use the graph to form tuples ((p, c)
s.t.c∈ p) for training SBERT to predict if a title was cited by a
paragraph. Additionally, we generate an equivalent number of
negative training samples of incorrect tuples ((p, c) s.t.c∉ p). The
full pipeline for this step is shown in Fig. 1a.
The structure of the embedded space is such that proximal

queries and documents share semantic meaning. Visualizing this
reveals a human-understandable clustering of documents and
topics. Figure 1b shows a two-dimensional t-SNE29 plot—an
effective method for visualizing high-dimensional data—of the
embedded space, with different colors representing topics of
TREC-COVID, and points representing documents. We can observe
that semantically similar documents cluster by topic.
Document retrieval (Fig. 2b, top row)—which returns a list of

the top 1000 documents for a query—is accomplished by fusing
the returned lists of the SBERT, TF-IDF, and BM25 models. SBERT
allows for variable-length queries and documents to be
embedded into the same vector space (the multi-dimensional
internal representation of the data, by the model), in order to
model semantic proximity and enable k-nearest-neighbor (kNN)
retrieval. We use approximate kNN retrieval using the Annoy
framework (https://github.com/spotify/annoy), to account for the
large number of paragraphs parsed by SBERT. TF-IDF and BM25
independently return two document lists (TF-IDF uses kNN with
cosine distance; BM25 uses a Lucene inverted index30, built with
Anserini) that either share in the most unique keywords of the
query (TF-IDF) or share many of the same keywords as the query
(BM25-Anserini)28.
These three lists are then combined by first linearly fusing the

SBERT list with the TF-IDF list, then using reciprocal rank fusion
(RRF)31 to merge this with the BM25 list. This retrieval process
returns the top 1000 documents as a function of their semantic
and syntactic distance to the query.
Document re-ranking (Fig. 2b, bottom row) takes this set of

documents, runs them through both a question–answering module
(QA) and a summarizer, then ranks the documents by a weighted
combination of their original retrieval scores, the QA output, and the

Fig. 1 Semantic search: learning to match queries to publication titles. a Documents are split into paragraphs and the citations included in
them to form a bipartite graph that induces training tuples (p, c). These are fed to a Siamese-BERT (SBERT) model trained to discern if a citation
is contained in a given paragraph. This process makes SBERT match user search queries to scientific publication titles. b t-SNE visualization of
the SBERT embeddings of entire documents, each denoted by a single point. Their color represents the topic to which they are most closely
matched. Notably, queries pertaining to the same topic tend to cluster together.
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summarizer output. Whereas standard question answering systems
generate answers, our model extracts multiple answer candidates
(text spans) from the paragraphs of the retrieved documents. This is
accomplished by taking the query and the retrieved paragraphs, and
using a sequential paragraph selector32, to filter for a set of
paragraphs that, when combined, could answer the query. Specifi-
cally, the model uses multi-hop reasoning to model relationships
between paragraphs, and selects sequentially ordered sets of them. It
is pre-trained using a Wikipedia-derived dataset of 113k
question–answer pairs and sentence-level supporting facts33, and
further finetuned on a QA dataset built from PubMed34, for
biomedical specificity. Once filtered, these sequential paragraph sets
are fed into a reading comprehension model (trained on a standard
question–answering dataset with topic structure similar to CORD-
1935) to extract answer candidates.
In a parallel fashion, the summarizer generates a single

abstractive summary from the retrieved documents. It is built in
an encoder–decoder fashion, in which an encoder (BERT18) first
embeds an entire document, and a decoder (a modified GPT-2
model36) converts this embedding into raw text, outputting a
summary. To increase the probability that a generated summary
matches (and thus, helps re-rank) the contents of the retrieved
paragraphs, we tuned the model to generate short summaries of
fewer than 65 words37.

Finally, the system uses the generated answers and summary to
compute two scores for each retrieved document. The first
measures the relevance of a document, given the query, and the
second measures the degree to which any single document
summarizes the entire set of retrieved documents. These two
scores are combined with the original relevance scores to output a
final ranked list of documents.

Evaluation
We evaluate our system quantitatively using the CORD-19 document
dataset and the topics and relevance judgments provided by TREC-
COVID. The dataset contains five sets of topics, where each topic is
represented as a (query, question, narrative) tuple. Relevance
judgments—provided on a very small subset of all possible
topic–document pairs—scores topic–documents as irrelevant, par-
tially relevant, or relevant. These judgments have been iteratively
gathered throughout the course of the five-round TREC-COVID
competition, in which search engines submitted up to 1000 ranked
documents per query, and the organizers pooled from amongst the
most common topic–document pairs for judging (i.e. depth-N
pooling, in which the top N documents from each response provided
by the set of contributing systems are judged for relevance by human
assessors38, with N ranging from 7 to 20 for the various rounds). The

Fig. 2 Cascaded semantic search engine architecture. a Indexing: Raw documents are processed into a searchable format. Documents are
split into paragraphs and image captions, embedded with an SBERT deep learning model, and stored into an index. The raw documents are
also embedded with two-keyword-based models (TF-IDF and BM25). b Retrieval and re-ranking: The system computes a linear combination of
TF-IDF and SBERT retrieval scores, then combines them with the retrieval scores of BM25 using reciprocal rank fusion31, to generate a sorted
candidate list. k-Nearest-Neighbors are used for TF-IDF and SBERT, and the Lucene Inverted Index is used for BM25. The retrieved documents
and the query are parsed using a question answering model and an abstractive summarizer prior to being re-ranked based on answer match,
summarization match, and retrieval scores.
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pool depths results in many relevant documents being missed.
Though this labeling procedure is inherently sparse and somewhat
biased, this is the best available method for evaluating IR systems, as
obtaining relevance judgments on all possible topic–document pairs
is infeasible.
In order to better evaluate our approach, we use a variety of IR

metrics. Key amongst them are high-precision metrics such as
nDCG, top-N precision, and MAP. The critical limitation with these
is that their effectiveness relies on complete relevance judgments
across all topic–document pairs. To account for this, an additional
metric, Bpref, which is robust to missing relevance judgments, is
considered. For full details, see the “Methods” section.
Our results on this data are shown in Table 2. We compare the

performance of our system in two contexts. The first context is
within the general set of submissions. This includes metric
evaluations on all documents—annotated and non-annotated—
and this includes ranking against the three possible system types
in the competition: manual, automatic, and feedback systems.
Manual submissions use human operators that can iteratively
adjust the query or the retrieved documents to improve ranking.
Feedback systems are trained using the relevance judgments of
prior rounds. Automatic search engines may not do either. Strictly
speaking, feedback systems are also automated (in that they do
not use a human in the loop), though they have an inherent
advantage over automatic systems and are thus considered
separately. In the second context, we evaluate our system (and all
others) strictly on relevance judgments, and we compare our
automatic system strictly against other automatic systems.
Specifically, we re-score every automatic system’s runs after
removing non-judged topic–document pairs. To determine team
rankings, we account for both multiple submissions per team, and
for multiple submissions with the same score, assigning to each
the highest one (i.e., if the top two scoring submissions for a
metric have the same score, each would be ranked #1).
Each round builds on the previous rounds, adding five new

topics, many documents, as well as new relevance judgments. As a
result, Round 5 is the most complete round. In the first context
(columns “All submissions, All pairs”), our system ranks in the top
21 (Table 2) across all rounds. In considering the rankings from
Round 1 through Round 5, there is a pronounced improvement in
rankings from Round 1 to Round 2, with a drop then plateau in
performance from Rounds 3 to 5. The improvement from Round 1
to 2 can be explained by the judgment fraction—the percentage
of relevance judgments goes up, increasing the performance
across these metrics. This happens because metrics such as
precision penalize search engines for retrieving relevant but non-
annotated documents for a topic. Rounds 3–5 have sufficient
relevance judgments from prior rounds to improve feedback
systems, leading to a drop in the ranking.
In the second context, our system ranks in the top 6 across all

metrics and all rounds, in the top 4 across all but four, and as the top
1 system across half of them. The stability in performance is largely
due to the consistent judgment fraction (100%, implicitly), and the
absence of feedback and manual systems, both of which improve
with relevance judgments. This stability—evident also in the metrics
—implies a system that is robust to increasing corpus size.
Of note, the availability of relevance judgments is quite sparse

throughout all rounds, with Round 1 exhibiting a coverage of
0.57%, and Round 5 a coverage of 0.24%. This is precisely what
motivates the use of the Bpref metric, which is robust to missing
annotations, as evidenced by its consistency across contexts.

DISCUSSION
Here we present CO-Search, a scientific search engine over the
growing corpus of COVID-19 literature. We train the system
using the scientific papers of the COVID-19 Open Research
Dataset challenge, and evaluate its performance using the data

of the TREC-COVID competition on a number of key metrics,
achieving strong performance across metrics and competition
rounds. The system uses a combination of semantic and
keyword-based models to retrieve and score documents. It
then re-ranks these documents by using a Wikipedia-trained &

Table 2. TREC-COVID results.

Score Team rank Score Team rank

Round 1 All submissions (144) Automatic
submissions (102)

All pairs (1.53M) Judged pairs (8691)

Bpref 0.5176 2 0.5176 1

MAP 0.2401 13 0.4870 1

P@5 0.6333 19 0.8267 1

P@10 0.5567 21 0.7933 1

nDCG@10 0.5445 13 0.7233 1

Round 2 All submissions (136) Automatic
submissions (73)

All pairs (2.20M) Judged pairs (12,037)

Bpref 0.5402 2 0.5232 1

MAP 0.3487 1 0.5138 1

P@5 0.8000 3 0.8171 1

P@10 0.7200 3 0.7629 1

nDCG@10 0.6996 1 0.7247 1

Round 3 All submissions (79) Automatic
submissions (32)

All pairs (5.14M) Judged pairs (12,713)

Bpref 0.5665 7 0.5665 1

MAP 0.3182 7 0.5385 1

P@5 0.7800 14 0.8200 2

P@10 0.7600 12 0.7850 2

nDCG@10 0.6867 12 0.7065 2

Round 4 All submissions (72) Automatic
submissions (28)

All pairs (7.10M) Judged pairs (13,262)

Bpref 0.5887 7 0.5887 3

MAP 0.3436 10 0.5653 3

P@5 0.8222 14 0.8222 5

P@10 0.7978 12 0.8133 4

nDCG@10 0.7391 12 0.7449 6

Round 5 All submissions (126) Automatic
submissions (49)

All pairs (9.56M) Judged pairs (23,151)

Bpref 0.5253 13 0.5253 3

MAP 0.3089 14 0.4884 3

P@5 0.8760 13 0.876 3

P@10 0.8260 15 0.842 3

nDCG@10 0.7488 16 0.7567 4

Performance evaluation of the COVID-19 search engine on the five rounds
of the TREC-COVID challenge dataset. Two contexts are considered.
Context 1 (columns “All submissions, All pairs”) considers our search
engine performance against all search engines—manual, feedback, and
automatic engines—using both annotated and non-annotated topic-
document pairs. Context 2 (“Automatic submissions, Judged pairs”)
considers our search engine performance strictly against those in its
class—automatic search engines, using topic–document pairs annotated
by experts.

A. Esteva et al.

5

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2021)    68 



PubMed-trained question–answering system, together with an
abstractive summarizer, to modulate retrieval scores.
We perform an ablation study of our system using Round 5 data

(first context) in order to examine the performance effects of its
components (Table 3). This is done in two steps, first for the retriever,
then for the re-ranker. For each, we analyze the metric performance
of various components individually, and united. The retriever’s
components (TF-IDF, BM25, SBERT) each perform poorly, but benefit
from substantial synergy when united into the full retrieval pipeline
(top half of Table 3). This occurs because keyword-based techniques,
on their own, do not perform as well on queries in natural language.
Similarly, semantic techniques tend to underweight the most salient
keywords of a natural language query. Combined, these two
techniques work well for this unique dataset. The retrieval subsystem
accounts for most of the performance of the overall system. The
addition of the re-ranker, with its two other deep learning modules
(Q&A, summarizer) serve to further boost this performance on the
order of 1–2% across the various metrics employed.
We compare our system against three of the top-performing

systems of Round 5, as shown in Table 4. As can be seen, no single
system outperforms the rest across all metrics, indicating the
possibility of forming hybrid systems that benefit from the
strengths of each. The system covidex13 uses a transformer fine-
tuned on the MedMARCO machine-reading comprehension
dataset16 to predict query-document relevance. The system uogTr
linearly combines a SciBert model17 trained on the medical
queries of MSMarco15 and SciColBERT. The system unique_ptr
leverages synthetic query generation39 for training data

augmentation. RRF enables easy merging of ideas. It would be
straightforward for CO-Search to be extended to benefit from
these ideas: synthetic query generation could augment the SBERT
training tuples shown in Fig. 1; the outputs of both a medically
fine-tuned SciBert model, or a transformer fine-tuned on the
MedMARCO data, could be joined with our own output via RRF.
From Round 5, the two topics on which CO-Search performs

best, as ranked by Bpref, are “what kinds of complications related
to COVID-19 are associated with diabetes” and “are patients taking
Angiotensin-converting enzyme inhibitors (ACE) at increased risk
for COVID-19?”. Conversely the system performs worst on “what
are the guidelines for triaging patients infected with coronavirus?”
and “what causes death from Covid-19?”. This is likely due to the
hybrid semantic-syntactic nature of the system. The keyword
models allow the system to focus in on important words like
“diabetes” and “angiotensin”, while the semantic SBERT model
would focus on broader meanings inherent in pieces of the text
such as “complications..associated with...”. Note that the worst-
performing topics lack the obvious keywords of the first.
The semantic search capability of CO-Search allows it to

disambiguate between subtle variations in word ordering that,
in biological contexts, result in critically different meanings (e.g.
“What regulates expression of the ACE2 protein?” vs. “What does
the ACE2 protein regulate?”), maximizing its utility to the medical
and scientific communities in a time of crisis. Key to the fair
evaluation of the system is considering the general use case (all IR
systems, all documents), and a specific use case (automatic
systems, judged documents).
This work is intended as a tool to support the fight against COVID-

19. In this time of crisis, tens of thousands of documents are being
published, only some of which are scientific, rigorous, and peer-
reviewed. This may lead to the inclusion of misinformation and the
potential rapid spread of scientifically disprovable or otherwise false
research and data. People on the front lines—medical practitioners,
policy makers, etc.—are time-constrained in their ability to parse this
corpus, which could impede their ability to approach the returned
search results with the appropriate levels of skepticism and inquiry
available in less exigent circumstances. Coronavirus-specialized
search capabilities are key to making this wealth of knowledge both
useful and actionable. The risks are not trivial, as decisions made
based on returned, incorrect, or demonstrably false results might
jeopardize trust or public health and safety. The authors acknowl-
edge these risks, but believe that the overall benefits to researchers
and to the broader COVID-19 research agenda outweigh the risks.

METHODS
Evaluation metrics
Below we define key metrics in evaluation. Throughout this work we adopt
the standard convention that m@N refers to an evaluation using metric m,
and the top N retrieved documents.
Precision (P):

P@N ¼ jf relevant documents in top� N gj
N

(1)

nDCG: For position i∈ {0, 1, . . . , N}, the nDCG of a retrieved set of
documents over Q queries is given by

nDCG@N ¼ 1
Q

XQ
q¼1

DCGðqÞ
p

IDCGðqÞ
p

;with DCGðqÞ
p ¼ relðqÞ1 þ

XN
i¼2

relðqÞi

log2ðiÞ
(2)

where rel ðqÞi denotes the relevance of entry i, ranked according to query q.
IDCG denotes the ideal and highest possible DCG. In the limit of perfect
annotations, nDCG performs reliably in measuring search engine perfor-
mance. Since it treats non-annotated documents as incorrect (reli evaluates
to zero), it is less reliable for datasets with incomplete annotations.
MAP: The average precision (AP) of a retrieved document set is defined

as the integral over the normalized precision-recall curve of the set’s query.

Table 3. Ablation study.

System Bpref MAP P@5 P@10 nDCG@10

Retrieval

SBERT 0.3594 0.1128 0.4640 0.4180 0.3658

TF-IDF 0.2567 0.0781 0.3320 0.3380 0.2567

BM25 0.4581 0.1313 0.2360 0.2300 0.2221

Retrieval (all above) 0.5146 0.2987 0.8680 0.8200 0.7254

Re-Ranking

Retrieval+QA 0.5205 0.3075 0.8720 0.8210 0.7298

Retrieval+ AS 0.5246 0.3049 0.8680 0.8235 0.7312

Retrieval+QA+ AS 0.5253 0.3089 0.8760 0.8260 0.7488

We iteratively eliminate various pieces of the search engine in order to
compute their effect on the system’s performance. In the retrieval
subsystem (top half ), Siamese-BERT semantic retrieval (SBERT) and
keyword-based retrieval (TF-IDF, BM25) each perform substantially worse
than the unified whole (Retrieval). In the re-ranker subsystem (bottom
half ), both the Question–Answering (QA) and Abstractive Summarization
(AS) modules marginally boost the performance of the retrieval metrics.
Bold values indicate the top-scoring system for the given column’s metric.

Table 4. Comparison to top automatic runs, using judged documents.

System Bpref MAP P@5 P@10 nDCG@10

covidex 0.5052 0.4739 0.9040 0.8900 0.8325

uogTr 0.4933 0.4580 0.9040 0.8720 0.7918

unique_ptr 0.5364 0.5100 0.8680 0.8380 0.7746

CO-Search 0.5253 0.4884 0.8760 0.8420 0.7567

We compare the performance of CO-Search against the top three systems
from Round 5, in the automatic category, using various metrics. The bolded
numbers indicate the top-scoring system for the given column’s metric. As
can be seen, different systems exhibit different strengths—no single
system achieves the highest score across all metrics.
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MAP is defined as the mean AP over all queries:

MAP ¼ 1
Q

XQ
q¼1

Z 1

0
PqðRÞdR (3)

where R is recall, Pq is precision as a function of recall, for a particular query.
Note that, as in the case of nDCG, MAP penalizes search engines that yield
accurate but unique (i.e. non-annotated) results, since non-annotated
documents are treated as irrelevant by P.
Bpref: Bpref strictly uses information from judged documents. It is a

function of how frequently relevant documents are retrieved before non-
relevant documents. In situations with incomplete relevance judgments
(most IR datasets) it is more stable than other metrics, and it is designed to
be robust to missing relevance judgments. It gives roughly the same
results with incomplete judgments as MAP would give with complete
judgments38. It is defined as

Bpref ¼ 1
R

XR
r¼1

1� jn rankedhigher than rj
R

(4)

where R is the number of judged relevant documents, r is a relevant
retrieved document, n is one of the first R irrelevant retrieved documents,
and non-judged documents are ignored.

Document indexing
We train the SBERT model of the indexing step with cross-entropy loss,
Adam optimization40 with a learning rate of 2e–5, a linear learning rate
warm-up over 10% of the training data, and a default pooling strategy of
MEAN (see Fig. 1a).

Document retrieval
At runtime, the retrieval step takes an input query, embeds it using SBERT,
computes approximate nearest neighbors over the SBERT paragraph
embeddings, and returns a set of paragraphs, together with each
paragraph’s cosine similarity to the query. TF-IDF and BM25 take as input
queries and documents, returning vectors t 2 RM and b 2 RM such that ti
= TF-IDF(query, document i), bi= BM25(query, document i), and M is the
size of the document corpus. We build a Lucene index with BM25 retrieval
function with default parameters of k1= 1.2, b= 0.75 in the Anserini IR
toolkit. The formula for TF-IDF is given by

TF-IDF ðt; dÞ ¼ tf ðt; dÞ log
1þ n

1þ df ðtÞ þ 1

� �
(5)

where tf(t, d) is the term frequency—the number of times term t appears in
document d—and df(t) is the document frequency—the number of
documents in the set that contain term t. We use the scikit-learn41 version
of TF-IDF, with a vocabulary size of 13,000, a max document frequency of
0.5, a minimum document frequency of 3, and L2 normalization42 of the
vectors computed from Eq. (5), above.
The SBERT and TF-IDF scores are combined linearly. For document d

(containing paragraphs p), and query q, with subscript es denoting an
SBERT embedding, their combination C is given by

Cðq; dÞ ¼ μmax
p2d

½cosðpes; qesÞ� þ ð1� μÞ TF-IDF ðq; dÞ (6)

This induces a ranking RqC on the documents, which is then combined with
the BM25-induced ranking RqB using reciprocal ranked fusion31, to obtain a
final retrieved ordering:

RRFðq; dÞ ¼ 1
k þ RqCðdÞ

þ 1
k þ RqBðdÞ

(7)

In practice, we find that the constants μ= 0.7 and k= 60 yield good
results. Future work could consider using a learned layer to attend over
semantic embeddings and keyword vectors, given the query.

Document re-ranking
Re-ranking combines the RRF scores of the retrieved documents with the
outputs of the QA engine and the summarizer. We define Q to measure the
degree to which a document answers a query:

Qðq; dÞ ¼ 1:1N ;withN ¼
X
a2AðqÞ

1ða 2 dÞ (8)

where 1(x) is the indicator function: 1(x)= {1 if x is true, 0 otherwise}. The
set A(q) contains the text span outputs of the QA model. We define S to

measure the degree to which a document summarizes the set of
documents retrieved for a query:

Sðq; dÞ ¼ 1
2
þ 1
2
max
p2d

cosðpe;MðqÞeÞ (9)

where M(q)e is the embedded abstractive summary of q, summarized
across all retrieved documents. Then the final ranking score R(d, q) of a
document, for a particular query, is given by

Rðq; dÞ ¼ Sðq; dÞ � Qðq; dÞ � RRFðq; dÞ (10)

With higher scores indicating better matches. In essence, rank score R is
determined by letting S and Q modulate the retrieval score of a
query–document pair.
Question-Answering: We follow the HotPotQA setup32 and all model

parameters contained therein. We use paragraphs with high TF-IDF
scores for the given query as negative examples for the sequential
paragraph selector. The original beam search is modified to include
paragraph diversity and avoid extracting the same answers from
different paths.
Abstractive summarization: We extend the original GPT-2 model by

adding a cross-attention function alongside every existing self-attention
function. We constrain the cross-attention function to attend strictly to the
final layer outputs of the encoder. We use the base models and
hyperparameters of Wolf et al.43, with 12 layers, 768-dimensional activations
in the hidden layers, and 12 attention heads. The model is pre-trained using
self-supervision with a gap-sentence generation objective44, where we
select a random source sentence per document, replace it with a special
mask token in the input 80% of the time, and use that sentence as a
prediction target in all cases. We then finetune the model with single-
document supervised training, using the first 512 tokens of CORD-19
documents after the abstract as input, and the first 300 tokens of the
abstract as target output.
Abstracts are split into five groups based on the number of tokens: <65,

65–124, 125–194, 195–294, >295. During training, a special token is
provided to specify the summary length in these five categories. At
inference time, the model is initialized to output summaries of token
lengths <65 in order to generate more concise summaries.
To adapt the model to operate on multiple retrieved paragraphs from

different documents, we concatenate the first four sentences of the
retrieved paragraphs until they reach an input length of 512 tokens, then
feed this into the summarization model.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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