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W) Check for updates

Data-driven testing program improves detection of COVID-19
cases and reduces community transmission

Steven J. Krieg’, Carolina Avendano (7, Evan Grantham-Brown', Aaron Lilienfeld Asbun?, Jennifer J. Schnur,

Marie Lynn Miranda™ and Nitesh V. Chawla ®'®

COVID-19 remains a global threat in the face of emerging SARS-CoV-2 variants and gaps in vaccine administration and availability. In this
study, we analyze a data-driven COVID-19 testing program implemented at a mid-sized university, which utilized two simple, diverse, and
easily interpretable machine learning models to predict which students were at elevated risk and should be tested. The program
produced a positivity rate of 0.53% (95% Cl 0.34-0.77%) from 20,862 tests, with 1.49% (95% Cl 1.15-1.89%) of students testing positive
within five days of the initial test—a significant increase from the general surveillance baseline, which produced a positivity rate of 0.37%
(95% Cl 0.28-0.47%) with 0.67% (95% Cl 0.55-0.81%) testing positive within five days. Close contacts who were predicted by the data-
driven models were tested much more quickly on average (0.94 days from reported exposure; 95% Cl 0.78-1.11) than those who were
manually contact traced (1.92 days; 95% Cl 1.81-2.02). We further discuss how other universities, business, and organizations could adopt
similar strategies to help quickly identify positive cases and reduce community transmission.

npj Digital Medicine (2022)5:17 ; https://doi.org/10.1038/s41746-022-00562-4

While schools, businesses, and other intuitions seek to continue
normal operations, COVID-19 remains a global threat—especially as
global vaccine rollouts remain in progress and the ongoing
emergence of SARS-CoV-2 variants introduces new uncertainties'=>.
These organizations must therefore be prepared to detect and
mitigate its risk to their people and activities. In this report, we share
key lessons learned from an adaptive COVID-19 testing program
implemented at the University of Notre Dame. The adaptive testing
program utilized two different, data-driven network models to
quickly and accurately predict which students had an elevated risk of
contracting COVID-19 and should be called proactively for testing.
Both models utilized a social network representation of the university
community in which each node represented a person (our analysis
focuses exclusively on students) and each edge represented a
connection between two people (e.g., roommates, enrolled in the
same course, active on the same sports team). The first model
predicted individual student risk directly, and the second model
predicted which pairs of students were most likely to be close
contacts. The key difference between the two lies in the problem
formulation: the first model was trained for a node-level task
(classifying students as high-risk or low-risk using prior COVID-19 test
results as training data), while the second was trained for an edge-
level task (predicting contact tracing relationships between students
using contact tracing records from the previous semester as training
data). While both models operated within the same social network,
the difference in model inputs and optimization strategy resulted in
models that were diverse and complementary, able to identify high-
risk individuals within the campus network while reducing the
overhead of manual contact tracing. The success of this program
suggests that machine learning strategies can improve the
effectiveness of surveillance testing or other efforts to efficiently
distribute testing resources and reduce community transmission.
Importantly, both the node classification and link prediction models
produced useful predictions. When we also consider the flexibility of
social network representations, these results suggest that even in the

absence of data on positive tests organizations could make use of
other available data to model transmission risk via activity in a social
network. In our university context, this data included shared classes,
sports teams, and dormitories. In workplaces, enterprise social
network (ESN) analysis has used data such as shared meetings,
formal organizational structure, project assignments, office proximi-
ties, and virtual interactions via e-mail or instant messaging systems
to great effect on other tasks*®. Given the present uncertainties
about the COVID-19 pandemic, making full use of available data and
machine learning techniques may be more important than ever in
mitigating future outbreaks.

The adaptive testing program was one of many COVID-19
mitigation strategies implemented throughout the 2020-21 aca-
demic year at the University of Notre Dame’. During the fall of 2020,
1,556 students (12.0%) and 200 faculty and staff tested positive from
a total of 88,283 tests. In just the first four weeks of the spring
2021 semester (Feb. 3 through Mar. 2, 2021), another 734 students
(5.7%) and 34 faculty and staff tested positive from a total of 57,661
tests. This provided a rich set of test results, contact tracing
interviews, and symptom reporting to use as training data. The
situation also necessitated urgent intervention—especially with
respect to asymptomatic and presymptomatic cases, which con-
tributed significantly to community transmission®, Thus a targeted
and data-driven adaptive testing program was initiated on March 3,
2021 to supplement general surveillance testing, manual contact
tracing, quarantine/isolation protocols, and self-reported health
checks with more targeted and data-driven testing.

RESULTS

Positive tests

The adaptive testing program began on March 3 and finished on
April 30. Cohorts were tested daily with only a few exceptions (e.g.,
no adaptive tests were administered from April 17 to 19 to provide
testing staff with time off during Easter weekend). During this
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Table 1.

Summary of testing results. NR and LP represent the students in the adaptive cohort who were predicted by either the node risk or link
prediction model, respectively, and NR + LP represents the students who were predicted by both models.

Positive tests Positivity rate

Cohort # Tests administered
General surveillance 79,932

Adaptive 20,862

Adaptive (NR model only) 10,251

Adaptive (LP model only) 8,089

Adaptive (both NR + LP models) 2,608

297 0.37% [0.28%, 0.47%)]
111 0.53% [0.33%, 0.76%)]
50 0.49% [0.42%, 0.56%]
32 0.40% [0.30%, 0.47%)]
21 0.81% [0.51%, 1.24%)]
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Fig. 1 The percentage of students who tested positive during the

initial appointment or a follow-up test within 14 days. Day 0 is the
day they were selected for the cohort. Shaded regions indicate 95%
confidence intervals.

period 115,224 total tests were administered to students: 79,932
(69.4%) to the general surveillance cohort, 20,862 (18.1%) to the
adaptive cohort, and the remaining 14,430 (12.5%) to other cases
such as students who reported symptoms or were contact traced.
Of the 12,211 active students at the university, 11,833 were tested
at least once via general surveillance and 6,459 via adaptive
testing. A total of 641 students tested positive: 297 (46.3%) during
a general surveillance appointment, 111 (17.3%) during an
adaptive testing appointment, and the remaining 235 (36.3%)
during symptomatic appointments. As summarized in Table 1, the
general surveillance cohort thus produced a positivity rate of
0.37% (95% Cl 0.28-0.47%), while the adaptive cohort produced a
positivity rate of 0.53% (95% Cl 0.34-0.77%).

Many students returned for a follow-up test within several days
of being selected for the adaptive cohort. When we look beyond
the same-day test results, students selected for adaptive cohorts
were even more likely to test positive. Within five days of being
called for testing, 0.67% (95% Cl 0.55-0.81%) of the general
surveillance and 1.49% (95% Cl 1.15-1.89%) of the adaptive cohort
tested positive—a 122% increase for the adaptive cohort. As Fig. 1
demonstrates, this gap in positivity rate between the two cohorts
widens with the length of the follow-up window for at least
14 days after selection to the adaptive cohort.

Differences between predictive models

We emphasize in Table 1 that the adaptive cohort is essentially
comprised of three groups of students: 10,251 who were selected
by only the node risk (NR) model, 8,089 who were selected only by
the link prediction (LP) model, and 2,608 who were selected by
both models. As shown in Fig. 2, students selected by both models
were by far the most likely to test positive, with a positivity rate of
0.81% (95% ClI 0.51-1.24%) on the initial test and 2.72% (95% Cl
1.97-3.21%) testing positive within five days. They also tended to
have the highest predicted risk from each model individually via
connections like living on the same dorm floor or being in
multiple courses with a student who had tested positive. Students
selected by only one of the NR or LP models were at lower risk:
positivity rates were 0.49% (95% Cl 0.42-0.56%) and 0.40% (95% Cl
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Fig. 2 The percentage of students from the adaptive cohort who
tested positive as predicted by the node risk (NR) and/or link
prediction (LP) models within 14 days. Day 0 is the day they were
selected for the adaptive cohort. Shaded regions indicate 95%
confidence intervals.
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Fig. 3 The distribution of average time to receive a test for
students who were exposed to COVID-19 via close contact with
another student. Day 0 is the day the exposing student tested
positive. Shaded regions indicate 95% confidence intervals.

0.30-0.47%), respectively, on the initial test; and 1.32% (95% ClI
1.17-1.42%) and 1.15% (95% Cl 1.04-1.32%), respectively, tested
positive within five days. We did not observe significant
differences between the models with respect to the types of
connections that produced high-risk predictions. For example, the
conditional probabilities learned by the link prediction model had
similar values to the edge weights learned by the node risk model
(Table 3).

Test timing and response rates

Another key finding was that the adaptive testing program
resulted in a significantly shorter average time to test for close
contacts. Of 1,907 contacts that were traced to the 641 positive
cases, 1,483 were administered a test on campus within seven
days. 188 were administered a test via selection to the adaptive
cohort within an average of 0.94 days (95% Cl 0.78-1.11), while the
remaining 1,295—who were tested only after being notified of
their exposure by contact tracers or the student who exposed
them—were administered a test within an average of 1.92 days
(95% ClI 1.81-2.02). Figure 3 shows the full distribution of test
timings for confirmed contacts.
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Table 2. Node base risk scores learned by the node risk prediction
model. Higher scores indicate a greater transmission risk. To predict
high-risk students, each student’s base risk score (Py) is propagated to
neighboring nodes via Eqg. 1. Q/I represents quarantine/isolation.

# Days prior Positive test Assigned to Q/I Reported symptoms/

exposure
1 0.9839 0.0294 0.0010
2 0.9208 0.1799 0.0283
3 0.9904 0.3884 0.0118
4 0.2026 0.2518 0.0010
5 0.0010 0.0043 0.0010
6 0.0679 0.1760 0.0010
7 0.3180 0.0518 0.0010
Table 3. Edge type weights learned by the node risk prediction

model. These weights (w;,) are utilized in Eq. 1. Each value represents
the risk for a student given that they share an edge of type t with
another student at i hops in the network.

Edge type (t) W1 We2

Shared address (roommates) 0.9978 0.9180
Shared dorm suite 0.3898 0.3718
Shared dorm floor 0.3064 0.2672
Shared dorm building 0.0868 0.0351
Enrolled in same course 0.0010 0.0010
Active on same sports team 0.8903 0.8566
Close contact 0.9806 0.0543

We additionally found that the average same-day response
rates were 78.1 and 95.0% for the general surveillance and
adaptive cohorts, respectively. The differences between under-
graduate, graduate, and professional students were marginal
(79.4, 78.1, and 82.1%, respectively) for the general surveillance
cohort. For the adaptive cohort, the differences between means
were more significant (96.8, 85.6, and 92.7%, respectively);
however, the number of adaptive tests administered to graduate
and professional students was only 442 (2.3%) and 631 (3.3%),
respectively. While the general surveillance cohort was least likely
to respond on Saturdays and Sundays (61.2%), only 8.3% of these
appointments were scheduled on these days, and the response
rate for weekday appointments was only 79.6%. Thus in all cases,
the response rate for adaptive testing was higher than for general
surveillance.

DISCUSSION

Rapidly identifying COVID-19 cases is of paramount importance to
reducing community transmission®. While the adaptive program
did produce higher same-day positivity rates, the model predic-
tions gained value over time (Fig. 1). We suggest that this is
explained largely by the following. First, the incubation period of
SARS-CoV-2 means that students who are tested immediately (the
next day) after a close contact tests positive may not yet have a
detectable viral load'. Second, networks excel at modeling
transmission dynamics in local communities (e.g., a dormitory
floor). High-risk individuals should therefore be tested as soon as
possible, but a single negative test does not allay the risk of
further transmission through a third party. An ideal follow-up
protocol should include cadenced re-testing for at least 14 days.
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Prior to March 3, students were informed of the adaptive testing
program and its data-driven approach to identifying individuals
who were at high-risk. Therefore, some of the differences in
response rates could be due to students’ perceiving an adaptive
testing call as more important than a general surveillance one.
However, it is also possible that adaptive testing appointments
were correlated with individuals’ knowledge of potential exposure.
It seems likely that both of these factors contributed to the
increased response rate.

Because we can directly observe both the social network structure
and the learned parameters for both models, their outputs are easily
interpretable. For example, Tables 2 and 3 report the base risk scores
for each student and the weights that govern risk flow to other
students, as utilized by the node risk model in Eqg. 1. After these
parameters have been learned by the model via the evolutionary
strategy, their contribution to individual predictions can be easily
observed. Similarly, the conditional probabilities for the link
prediction model (o(t) in Eq. 3) could be easily observed once they
had been learned on the training data. The university's COVID-19
response team regularly utilized this interpretability to validate daily
predictions, adjust the size of the testing cohort, and direct resources
to the high-risk parts of the student body. In the context of our
operational needs, this provided a substantial advantage over state-
of-the-art models like graph neural networks".

The shortcomings of contact tracing have been well-documen-
ted, including that the process requires a high amount of manual
effort’? and that individuals can be reluctant to disclose their
social activity'3. The ability of an adaptive testing program to
identify high-risk individuals and produce shorter times to test for
close contacts can mitigate both of these problems. However,
while our models are an effective supplement to manual contact
tracing, they are not a replacement for it. There are many close
contacts that were not predicted by our models, and many
student behaviors that are not captured in a social network.
Additionally, while we attempted to model the spread of
symptoms in the social network (e.g., how likely is student A to
test positive given that one of her classmates, student B, reported
a fever), we found that symptom profiles were too noisy® and did
not improve predictive performance.

In addition to the imperfections of contact tracing, limitations of
this work include that it only studied a relatively homogenous
population of university students, a majority of whom are white
(65%) and 19-22 years old (67%). Our analysis also assumes a
closed community and cannot account for inter-community
transmission, which can introduce noise into the predictive
models. Further, social networks are limited in their ability to
represent the full complexity of social activity in any community.
For example, about 83% of reported close contacts shared one of
the relationships listed in Table 3, meaning that the other 17% of
close contacts could not be described by these data types. Finally,
all machine learning is vulnerable to bias in the training data. For
example, the lower node risk weights on days 5 and 6 in Table 2
may be attributable to our cadence for testing exposed students
(follow-up tests on days 4 and 7 after exposure) rather than the
true distribution of SARS-CoV-2 incubation'.

The simplicity of this adaptive testing approach lends itself well to
generalization to other contexts. Universities and schools can easily
construct a social network representation using data on class
schedules, housing arrangements, and extracurricular activities.
Workplaces and other organizations can draw on the rich history
of ESN analysis to construct a social network that incorporates both
formal (e.g., organizational reporting structures, meeting schedules,
project assignments, physical work locations) and informal elements
(e.g., email, SMS, and instant messaging interactions)*®. In an ideal
scenario where both testing data and social activity is available, we
suggest that training multiple models for different tasks will produce
the most effective results. Specifically, COVID-19 testing produces
node-level data and therefore supports node-level tasks; likewise,
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social activity produces edge-level data and thus supports edge-
level tasks. As our results demonstrate, training models for both
tasks can make predictions that are diverse and complementary.
However, even in the absence of data on positive tests, our results
show that a model optimized to predict close contacts serves as an
effective proxy for predicting viral transmission directly. Such
approaches may prove to be not only effective, but also necessary
in order to rapidly detect positive cases and drive down community
transmission.

METHODS
Adaptive testing overview

During each day from March 3 and finished on April 30, 2021, two cohorts
of students were sampled for surveillance testing. The first, which we call
the general surveillance cohort, was determined by the students selecting
a day of the week to be tested to ensure each student was tested once
every week. The second, which we call the adaptive cohort, was selected
via risk scores as predicted by two distinct machine learning models.
Depending on the available testing resources (which increased substan-
tially from fall to spring), at the beginning of each day the adaptive testing
team chose the n students with the highest predicted risk from each
model. Students who were already being tested for another reason such as
reporting symptoms, living at the same address as a new positive case,
having been contact traced, or having been tested twice already during
the week (defined as a 7-day period from Monday to Sunday) were
excluded from the adaptive sampling. Students in both the general
surveillance and adaptive cohorts were notified of their selection for
testing via email and text and administered either a saliva or nasal reverse
transcription-polymerase chain reaction (RT-PCR) test at the university
testing center (performed by a local commercial laboratory primarily using
a Roche platform'®) within 24 h of notification. When a test yielded a
positive result, the student was instructed to isolate for 14 days. A response
team, consisting of clinical and non-clinical personnel, conducted a brief
phone interview to identify anyone who had been in close contact with
the student. Confirmed close contacts were informed of exposure through
contact tracers (without revealing the identity of the index case), instructed
to quarantine, and administered a Sofia SARS Antigen Fluorescent
Immunoassay (Quidel) rapid antigen test. If the antigen test produced a
negative result, they were also administered a PCR test, instructed to
quarantine, and called for additional tests on days four and seven after
exposure. If all tests were negative by day seven, exposed students were
released from quarantine. Students who were tested via the contact
tracing procedure are excluded from both the general surveillance and
adaptive cohorts.

Network models

Foundational to the adaptive testing program was the modeling of the
university as a heterogeneous network, a widely-used formalism in graph
theory and network analysis'®. Formally, we define a network G = (V,£),
where V is a set of n nodes and E is a set of m edges. Each node ueV
represents one student, and each edge ecE is a tuple (u,v,t) that
represents a relation between two nodes u and v of type t. Possible relation
types included two nodes sharing the same home or dorm address, being
enrolled in the same course, playing the same team sport, sharing a dorm
floor or building, and being confirmed as close contacts by a contact
tracer. We additionally consider a weight function w : E — R that maps
each edge to a real-valued weight, or 0 if the edge does not exist. In our
context, all edges have a weight of 1 except for students who were
enrolled in the same course(s), in which case the edge weight was the
number of courses they shared. This representation is thus a flexible and
expressive means of modeling interactions among students in the context
of a large community, and served as the input to the predictive models.

In designing the predictive models we prioritized the following
principles:

1. Simplicity. The operational needs of the program were urgent, so we
designed models that were relatively simple to develop, test, and
deploy. This is true of both the learning algorithms and the
underlying data.

2. Diversity. The combination of diverse models is the cornerstone of
the success of ensemble methods in machine learning'’. In our case,
we encouraged diversity by optimizing each model for a different
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task within the campus social network: one model for a node-level
task, and the other for an edge-level task. Taken together, the
strengths and limitations of both models proved to be comple-
mentary in solving the operational problem.

3. Interpretability. The outputs of the predictive models were monitored
by the adaptive testing team and subject to further operational
constraints. For example, roommates of students who tested positive
were already being called for testing, and so were excluded from
adaptive testing selection. However, roommate connections contri-
bute significantly to the campus social network structure. By designing
models with interpretable outputs, we simultaneously enabled the
models to make full use of the information provided by roommate
connections and the adaptive testing team to make informed
decisions with the aid of model outputs.

Node risk prediction

The first model predicted risk at the node level by first assigning each node
u €V a base risk score P, based on whether the student had recently
tested positive, been assigned to quarantine/isolation, or reported COVID-
19 symptoms (Table 2). Next, each node sent a portion of its risk to its
neighbors based on the type of relationship they share. This risk
propagation approach, known more generally as message passing, is
foundational to many network inference tasks'®. For a given node u we
iteratively computed its final risk P,(u) according to the following:

Pi(u) = Py_ny(u) + Z WP a

teT veN (u)

where i is a parameter defining the number of message passing iterations,
7 is the set of edge types, \¢(u) is the set of u’s neighbors via edge type t
(i.e., (u,v,t) € E for all v € N¢(u)), and w,; is a learned weight parameter
associated with edge type t at hop i. Intuitively, this means that during
each iteration each node’s risk is updated with the weighted sum of the
risk of its neighbors, where the weights are fixed for each combination of
edge type and hop number. We treat P, as the final score, such that each
student’s risk is influenced by nodes up to two hops away in the network.

To learn the set of base risk scores P, and weights w,; (Tables 2 and 3),
we utilized the following evolutionary strategy:

1. Given an initialized set of weights, target a random previous day in
the semester, denoted as d.

2. Create a copy of the weights and make several small and random
adjustments to them.

3. Simulate the testing results for day d via Eq. 1, and evaluate the
predictions for both sets of weights.

4. Keep the weight set that more accurately predicted which nodes
tested positive on day d.

5. Repeat steps 1-4 until convergence.

To choose students for the adaptive cohort, we simply selected the
nodes with the highest values of P, that were susceptible (i.e., had not yet
tested positive during the semester).

Link prediction

The second model predicted risk at the edge (link) level by utilizing
correlations between edge types to predict unobserved contact tracing
relationships. Our approach to this problem, known as multi-relational link
prediction, is adapted from the work of Yang et al."®. For each pair of nodes
u,v € V we computed the probability of a contact tracing relationship P(u,
v) according to:

P(u,v) = Craz (u)(F1(u,v) + f2(u,v)), (2)

where Cy,,(u) is the Katz centrality?® of node u, and f; and £, represent the
one-hop and two-hop information flow, respectively, from u to v. We
define f; as follows:

Z\Nr( u)l

teT

>

veN(u)

w(u,v,t)?, 3)

where o(t) is a learned conditional probability that two nodes u and v will
be contact traced given that they are connected by an edge of type t. We
compute f, in the same manner as f;, but with respect to a two-hop
neighbor graph of G. The two-hop neighbor graph is constructed by
adding an edge of type t between any two nodes u and v if they are both
neighbors to a common node x via edge type t (i.e, (uxt)€E and
(x, v, t) € E. To learn the conditional probabilities for o, we utilized a training
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network built from student and contact tracing data from the (previous)
fall 2020 semester. For each edge of type t, we simply computed the
probability that the pair of students connected by that edge were also
identified as close contacts. This approach assumes that although student
information (dorm address, course schedule, etc.) may change between
semesters, the conditional probability distribution of contact tracing
relationships does not.

To choose students for the adaptive cohort, we first computed P(u, v) for
each node u that had tested positive within the previous four days with
respect to each other node v # u. Then we chose the nodes that were most
likely to be contact traced to a positive node u that were also susceptible
(i.e., had not yet tested positive during the semester).

Implementation details

The node risk model was implemented using version 4.2 of Neo4j's graph
database. The link prediction model was implemented in Python 3.7.3 and
NetworkX 2.5. All analysis was conducted using Python 3.7.3 and
Pandas 1.2.

Ethics

The University of Notre Dame Institutional Review Board (IRB) reviewed the
research protocol and determined it to be exempt from human subjects
research regulations (approval number: 20-12-6364). All analysis was
conducted on a secure remote server in order to maintain student privacy
and confidentiality.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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