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Data-driven causal model discovery and personalized
prediction in Alzheimer's disease
Haoyang Zheng 1, Jeffrey R. Petrella 2, P. Murali Doraiswamy3, Guang Lin 1,4✉, Wenrui Hao5 and for the Alzheimer’s Disease
Neuroimaging Initiative*

With the explosive growth of biomarker data in Alzheimer’s disease (AD) clinical trials, numerous mathematical models have
been developed to characterize disease-relevant biomarker trajectories over time. While some of these models are purely
empiric, others are causal, built upon various hypotheses of AD pathophysiology, a complex and incompletely understood
area of research. One of the most challenging problems in computational causal modeling is using a purely data-driven
approach to derive the model’s parameters and the mathematical model itself, without any prior hypothesis bias. In this paper,
we develop an innovative data-driven modeling approach to build and parameterize a causal model to characterize the
trajectories of AD biomarkers. This approach integrates causal model learning, population parameterization, parameter
sensitivity analysis, and personalized prediction. By applying this integrated approach to a large multicenter database of AD
biomarkers, the Alzheimer’s Disease Neuroimaging Initiative, several causal models for different AD stages are revealed. In
addition, personalized models for each subject are calibrated and provide accurate predictions of future cognitive status.
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INTRODUCTION
Among the top 10 causes of death in the United States,
Alzheimer’s disease (AD) is the only condition without a viable
treatment to cure or prevent it, or even significantly slow its
progression1. Failure to develop a successful disease-modifying
therapy for AD, despite large investments of public and private
resources, is rooted in its complexity2–4. For instance, signaling
pathway analyses of AD pathophysiology has implicated over
30 metabolic pathways and over 1000 chemical species4. Our
incomplete understanding of how these mechanisms vary and
interact at an individual level to create a clinically and
biologically heterogeneous phenotype has resulted in an
attempt to treat patients with varying underlying pathophysiol-
ogy in a similar fashion5,6. Thus, failure to characterize and
subtype AD at an individual level has represented a major
roadblock in the development of effective therapeutic strate-
gies to slow or halt AD progression. Recent biological
classification of AD, based on imaging and cerebral spinal fluid
(CSF) biomarkers, represents a major step toward the future
development of personalized prognoses and therapeutic
strategies7,8. The increasing availability of such data in large
cohorts of subjects has made possible the development and
testing of rigorous quantitative models of AD pathophysiology.
For example, the Alzheimer’s Disease Neuroimaging Initiative
(ADNI), a multicenter, prospective, naturalistic study, began in
2003, comprises four sequential studies—ADNI-1, ADNI-GO,
ADNI-2, and ADNI-3—which followed subjects up to 15 years,
using genetic, blood- and CSF-based, imaging, and cognitive
biomarkers. The abundance of data from this and similar

multinational biomarker studies in AD will require a rigorous
quantitative data-driven modeling approach to analyze, inte-
grate and interpret data at the level of the individual, where it
can have maximum clinical impact.
Several mathematical models of AD progression have been

developed recently. For example, one mathematical model
includes a cellular biologic system of neurons, glia, macro-
phages, amyloidβ aggregation, and tau to simulate and validate
at a cellular level the mechanisms underlying the failure of
several drugs in recent clinical trials, and suggest alternative
approaches9. Moreover, a mathematical modeling approach has
also been used to describe the key AD clinical biomarkers
including pathologic hallmark biomarkers (beta-amyloid and
tau), neuronal loss biomarkers, and cognitive impairment10. This
model was parameterized and tested to successfully simulate
the natural history scenarios of three sub-types of AD presented
in11: (1) early-onset autosomal dominant AD, (2) late-onset
amyloid-first AD, and (3) late-onset tau-first AD.
Although these mathematical models bring new insights in

understanding AD progression and enable simulation of
therapeutics, the current models are built upon a priori
hypotheses of the AD pathophysiological network which still
is an open area of research12. In fact, there are dozens of
pathophysiological pathways implicated in AD by systems
biologists, and our understanding of these networks and their
interactions remains incomplete13. Moreover, there has been
limited work on mechanistic modeling of clinically measurable
AD biomarkers. Most research to date on the keyAD biomarkers
has been observational or correlational. Such modeling
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approaches do not benefit from the tools of a more integrative
systems approach that address disease mechanism14,15.
Computational data-driven modeling approaches have

already achieved success in analyzing multi-dimensional
clinical data in diseases such as cancer16,17 and cardiovascular
disease18,19. Such data-driven approaches employ mathema-
tical models for patient populations using clinical, omics, and
biomarker data, as well as powerful and new means to
personalize such models based on individual data, yielding
personal risk profiles. These data-driven modeling approaches
can simulate complex systems, helping to elucidate complex
physiological interactions and optimize personalized preven-
tion and treatment strategies. Examples of such work include
statistical approaches, such as Bayesian generalized linear
models20, Bayesian hierarchical models21,22, and those based
on Markov chain Monte Carlo simulations23–26 to analyze
genome sequencing and biomarker dynamics. Recently,
machine learning techniques, such as deep recurrent neural
networks, have been used to predict AD progression27.
In this paper, we propose to develop a computational data-

driven modeling framework to predict AD biomarker progres-
sion. We propose a methodology to construct data-driven
causal models at a group and individual patient level. This
method does not depend on any specific hypothesis of AD
progression and extracts the causal model completely from the
empirical data. More specifically, we derive the causal model
based on clinical biomarkers in the ADNI dataset. In this data-
driven modeling approach, the causal model is learned from
four biomarkers (amyloid-beta pathology, total-tau pathology,
hippocampal volume, and cognitive decline) to describe AD
progression. Moreover, we incorporate a disease progression
score (DPS) in the causal model28 to unify AD progression for
different subjects since the onset age and rates of progression
may markedly vary within and across the different subject
classes in ADNI.

RESULTS
We elaborate on the effectiveness of the proposed data-driven
causal model here. First, we construct a population-based causal
model that describes the biomarker dynamics for all eligible
subjects in ADNI-1, including normal controls. By fitting the
population parameters via the ADNI dataset, the population
model describes the transition of AD biomarkers between three
different disease stages, cognitively normal (CN), late mild
cognitive impairment (LMCI), and Alzheimer’s disease (AD).
Second, we derive a population model for LMCI and AD subjects
only. Third, we analyze the Sobol sensitivity29,30 of the parameter
space of the population model, which identifies the attribution of
each model parameter. Based on the sensitivity analysis results,
we finally construct a personalized model for each subject and
provide personalized biomarker predictions for subjects who have
more than four longitudinal biomarker data points.

A population model
We construct a causal model by fitting biomarkers of all
subjects across the ADNI dataset. Since the causal model is a
dynamic system expressed as ordinary differential equations
(ODEs), we require at least two longitudinal data points for each
subject. More specifically, we remove patients who do not
provide at least two measurements for any one of the four
biomarkers. The histograms in Fig. 1(a) summarize the available
biomarker data in the ADNI dataset.

Fig. 1 The ADNI dataset histogram and the calibrated causal
model plots. a Histogram of four biomarkers in the ADNI dataset.
Top left is amyloid-beta; top right is the tau; bottom left is the
normalized hippocampal volume; bottom right is the cognitive
subscale. X-axes are the corresponding magnitudes of each
biomarker, and y-axes are their frequencies. The subjects are
classified into “CN”, “LMCI”, and “AD”. b The calibrated causal model
on three groups of patient data. X-axes are fitted DPS of biomarkers,
and y-axes are the corresponding magnitudes of each biomarker.
The orange circles, green triangles, and blue hexagons are data from
“CN”, “LMCI”, and “AD” subjects correspondingly. The black solid lines
are the solutions of the causal model. c The calibrated causal model
on the dataset of LMCI and AD groups.
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Algorithm 1. Population model calibration algorithm to compute
the population parameters w(1) and DPS parameters (α, β). See
details in Methods section.

Input y ¼ fyijkgijk , t ¼ ftijgij .
Initialize α0, β0, and w0.

1: for l=1 to L do
2: for k∈ {A, T, N, C} do ⊳ Population parameter calibration

3: wl
k ¼ argminwk

P
ði;jÞ2I k

yijk � f k αli tij þ βli;w
l�1
k

� �� �2
:

4: σl
k ¼ 1

jI k�2I�4j
P

ði;jÞ2I k
yijk � f k αli tij þ βli ;w

l�1
k

� �� �2
:

5: end for
6:
7: for i=1 to I do ⊳ Update DPS parameters
8: ðαli; βliÞ ¼ argminαi ;βi

P
ðj;kÞ2I i

1
σlk

yijk � f k αli tij þ βli;w
l
k

� �� �2
:

9: end for
10: end for

Output wL as the population parameter w(1), αL, βL.

By using Algorithm 1, the initial value of αi is randomly chosen
in (0, 4) and the initial value of βi satisfies− 10 ≤ si(t) ≤ 20 on all the
measurement. Then we obtain the population model in terms of
the fitted DPS shown in Fig. 1(b). The population model (black
solid) is learned on three different disease stages, namely, CN
(orange circle), LMCI (green circle), and AD (blue hexagons). The
gray area is the confidence interval of the population model. More
specifically, we sample the population parameters, w(1), from the
posterior distribution (given by the simulation study) and run the
model with the same initial condition 1000 times. Then the 95%
confidence interval at every time point is plotted. The simulation

study and diagnostic plots corresponding to the population model
are shown in the Supplementary Materials. From this figure, we
can separate biomarkers into three stages according to the
population model. In particular, CN and AD patients correspond to
s < 0 and s > 0, respectively while LMCI patients locate around
s= 0. Moreover, the first three biomarkers (Aβ, τ, and N) start at
steady-states when s < 0 (CN), change gradually when s= 0 (LMCI),
and finally approach another steady-state (AD). Different from
other biomarkers, ADAS continues to grow which means that
cognitive symptoms get worse as AD progresses.
We also compare the population model with the sigmoid

function fitting (black solid in Fig. 2). First, the population model
provides relatively smooth transitions from one stage to another
while the sigmoid function fitting gives more abrupt changes for
Aβ at s ≈ 4. Second, the population model follows the biomarker
cascade theory which is that τ rises after Aβ starts decreasing, N
increases after τ, and C rises after N. However, the sigmoid
function fitting makes Aβ and τ change after s= 0, while N and C
change at s ≈−3 and s ≈−10.
Since the CN group might not follow the same disease

trajectory, we next derive a population model based on the LMCI
and AD groups only. In order to better identify the biomarker
dynamics among LMCI and AD group patients, we fix the
parameters of DPS, (α, β), that we obtained before and only
update the causal model parameters, w, by using Algorithm 1.
Figure 1(c) shows the population model based on LMCI and AD
groups.
The transitions for different biomarkers shown in Fig. 1(c) are

similar to Fig. 1(b). But Fig. 1(c) advances the onset of changes
since the LMCI and AD groups are prone to suffer from cognitive

Fig. 2 Subject biomarkers in ADNI data and the fitted sigmoid function. Top left is amyloid-beta; top right is the tau; bottom left is the
normalized hippocampal volume; bottom right is the cognitive subscale. X-axes are fitted DPS of biomarkers, and y-axes are the
corresponding magnitudes of each biomarker. The subjects are classified into “CN”, “LMCI”, and “AD” according to ADNI diagnostic groups,
where orange is “CN”, green is “LMCI”, and blue is “AD”. The black solid lines are fitted with sigmoid functions28.
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decline earlier. We summarize the parameters of the above-
mentioned causal models in Table 1, which corresponds to the
results given in Fig. 1(b) & (c).

Sensitivity analysis
The quasi-Monte Carlo method is applied to compute sensitivity
indices. For more details about Sobol sensitivity analysis, please
refer to29,30. By taking C(0) as the output, Fig. 3(a) list the top nine
most sensitive parameters for the first-order effects and total order
sensitivity index. We see that the weight with greater first-order
impact (Sm > 0.4) is associated with Aβ(⋅).
The right figure in 3(a) shows the second-order interaction

between two parameters. We see that the parameters associated
with A2β are always positively related to other terms. While Aβ with
parameter wA1 is almost positively related with other terms, the Aβ
term with parameter wT3 are negatively related with other
parameters except A2

β. But compared to their first-order sensitivity
contribution, the second-order ones contribute slightly.
Figure 3(b, c) shows the dynamics of sensitivities with respect to

DPS. From the figures, we can see the first-order sensitivity value of
wA1 drops down over DPS which implies that the effect of Abeta on
cognitive decline switches from linear to nonlinear in later-stage
disease. At the same time, the first-order sensitivity values of some
other parameters increase gradually, with a notable increase of wC3

and wC5. The second-order sensitivities between different para-
meters eventually converge to zero thus the interactions among
different parameters become less as the biomarkers reach
equilibrium. Based on the results shown in Fig. 3(a), we select

wA1,wA2,wT4,wT5,wN4,wN5,wC3, and wC5 as the most sensitive
parameters for personalization by setting the threshold, Tol, as
0.01 in Algorithm 2.

Personalized model and biomarker prediction

Algorithm 2. Personalized model calibration algorithm. The
personalized parameters are initialized by the population model.
The personalized models are applied for subjects who meet the
requirement denoted as i∈Ω.

Input longitudinal biomarker data {yijk} at {tij} with i∈Ω;
Input the DPS parameter values (αi, βi) for each subject i∈Ω;
Input the population parameter values w(1) (w for simplicity);
Input sensitivity threshold, TOL.

1: for m=1 to 21 do ⊳ First order sensitivity.
2: SmðzÞ ¼ Varwm Ew�m ðzjwmÞ½ �

VarðzÞ :
3: if Sm(z)≥ TOL then
4: set wm as a personalized parameter and denote as

wð2Þ
m else

5: keep wm as a population parameter.
6: end if
7: end for
8:
9: for i=1 to ∣Ω∣ do ⊳ Personalized model calibration.

10: for k∈ {A, T, N, C} do
11: Denote the personalized parameters in k-th equation as

wk
ð2Þ .

12: ⊳ Select parameters to calibrate.

13: wk
ð2Þ ¼ argminwk

ð2Þ
PM�1

j¼1
ŷijk � f k αi tij þ βi;wk

ð2Þ� �� �2
:

14: PAik ¼ ŷiMk�f k αi tðiMÞþβi ;wk
ð2Þð Þ

ŷiMk
´ 100%:

15: ⊳ Compute prediction accuracy.
16: end for
17: end for

Output PAik for i∈Ω and k∈ {A, T, N, C}.

Next, we build personalized models and provide biomarker
prediction for subjects whose data satisfies the following two
criteria: (1) There are at least four measurements for each
biomarker; (2) Each biomarker measurement changes monotoni-
cally with respect to DPS. Based on the first-order sensitivity
analysis results shown in Fig. 3(a), we chose the eight most
sensitive parameters as personalized parameters by choosing
TOL= 0.01 in Algorithm 2. For each subject, we denote the
biomarker data as ŷðsiÞ ¼ ½ÂβðsiÞτ̂ðsiÞN̂ðsiÞĈðsiÞ�T (i= 1,⋯ ,M), fit
the sensitive personalized parameters of the population model
w(1) by using the first M− 1 data points, and test the prediction
accuracy on the last data point by ŷðsMÞ�yðsMÞ

ŷðsMÞ ´ 100%. A detailed
procedure is outlined in Algorithm 2.
Figure 4 shows the biomarker trajectories of the personalized

model by training (blue) and testing (red) data for one subject
(pseudo ID= 18). We also compare the personalized model with
the sigmoid function fitting, the personalized model provides a
better prediction accuracy. In fact, the prediction accuracies given
by the personalized model are 97.3% (Aβ), 95.9% (τ), 98.4% (N), and
95.1% (C), respectively while the ones given by the sigmoid
function fitting are 95.5% (Aβ), 90.8% (τ), 95.7% (N), and 63.4% (C),
respectively. Since the sigmoid function fitting predicts by using
the longitudinal information of the current biomarker only, it
provides a less accurate cognitive score.
Furthermore, we build personalized models for the CN and

LMCI groups (there are not enough data points in the AD group)
with different numbers of longitudinal data points and summarize
the predictive results in Tables 2–3. The tables indicate that our
personalized models can provide high predictive accuracy
compared to the sigmoid function fitting. Moreover, the accuracy

Table 1. Population parameters w(1) of the calibrated causal models
based on the ADNI dataset.

Biomarkers Parameters Included subjects

CN, LMCI, AD LMCI, AD

Aβ wA0 0 0

wA1 0.917 0.745

wA2 –0.873 –0.749

τ wT0 0 0

wT1 0.788 0.689

wT2 –0.246 –0.679

wT3 0.002 0.000

wT4 3.066 0.185

wT5 –3.650 –0.101

N wN0 0 0

wN1 1.627 0.899

wN2 –1.253 –0.927

wN3 0.018 0.554

wN4 2.342 1.792

wN5 –4.015 –2.127

C wC0 0 0

wC1 0.159 0.134

wC2 0.202 –0.067

wC3 0.010 0.004

wC4 0.019 0.007

wC5 –0.176 –0.008

Initial conditions y0 6.35e–6 1.41e–4

Superscripts of parameters are omitted from the table. See details in
Methods section.
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Fig. 3 The Sobol sensitivity analysis plots with respect to cognitive decline. a First-order, second-order, and total-order Sobol sensitivities of
C(0). Left: the red rectangles are assigned first-order sensitivities of model parameters, and the blue rectangles are their total-order sensitivities.
The length of the rectangles represents the attribution of sensitivities to outputs; Right: each square represents the second-order sensitivity
correlations of two model parameters. The lighter the color, the stronger the positive correlation while the darker the color, the stronger the
negative correlation. b The dynamics of first-order Sobol sensitivities with respect to DPS. Each curve corresponds to the first-order sensitivity
values with an output C(s). Only first-order sensitivity values greater than 0.01 are plotted. c The dynamics of second-order Sobol sensitivities for
two parameters with respect to DPS. Only the maximum absolute second-order sensitivity values greater than 0.01 are plotted.
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of predicting biomarker dynamics increases as the number of
biomarkers data points increases.

DISCUSSION
Different from the existing pathophysiological AD network which
is based on a priori assumptions about biomarker trajectories, this
work develops a data-driven causal modeling approach informed
by AD clinical biomarker data and demonstrates both population
and personalized models. The proposed population model traces
the general biomarker dynamics for all patient data without any
specific assumptions regarding the form of the model and enables
personalized AD risk prediction via incorporating historical clinical
data such as CSF protein and imaging biomarkers as well as
cognitive scores. By introducing a DPS for each subject, we
calibrate and scale AD biomarker progression across the ADNI
population and derive population parameters. We also compare
the proposed data-driven modeling approach to an empirical
fitting approach with a sigmoid function fitting and conclude that
the proposed causal model is able to better capture disease
progression with a smoother transition over time. Moreover, this
causal model allows us to explore the underlying cascade
relationship among biomarkers, while the empirical sigmoid
function approach considers each biomarker as an independent
term. The population model not only provides a means to classify
different stages of AD progression for each biomarker, but also
lays the foundation for personalized modeling.
Before constructing the personalized model, we performed a

sensitivity analysis for the population parameters. From a clinical
standpoint, the sensitivity analysis provides insights on AD
progression in terms of which parameters play the greatest role

in disease progression, and when during the disease course they
are most relevant. From a computational standpoint, the
sensitivity analysis aids the subsequent personalized parameter
selection . Based on the sensitivity analysis, we see that change in
cognition is driven primarily by first-order effects and is time-
dependent. Initially, the greatest effects are by amyloid, repre-
sented by wA1, and to a lesser extent tau and neuronal
vulnerability to tau, represented by wN4 and wN5, respectively.
The amyloid parameter wA1 is most sensitive when the disease
starts (DPS= 0) and the sensitivity diminishes as DPS increases. On
the other hand, the sensitivity of parameters related to N and C,
namely wC3 and wC5, increase significantly as the disease
progresses. Thus, the sensitivity analysis suggests that at the early
stage of AD cognitive decline is driven by Aβ levels and sensitivity
decreases linearly as the disease progresses. Whereas at the later
stages, cognitive decline is driven mainly by downstream effects
including the level of neuronal degeneration, represented by wC3,
and the interaction of cognition and neuronal degeneration,
represented by wC5. These results are consistent with prior
observational studies based on ADNI and other longitudinal
cohorts, which suggest that cognitive decline is driven primarily
by high amyloid levels at earlier disease stages and by
neurodegeneration at later stages31.
Sensitivity analysis also provides key insights in terms of

personalized parameter selection. The paucity of longitudinal
biomarker data and the relatively larger number of model
parameters can easily lead to overfitting for personalized models.
Based on the sensitivity analysis results, we chose the eight most
sensitive population parameters as personalized parameters and
set the rest of the parameters at the mean population parameter
values. In this case, calibration of personalized parameters based

Fig. 4 The personalized model for one LMCI subject with pseudo ID= 18. The green dashed lines are fitted by sigmoid functions, and black
solid lines are the solutions of the personalized model. The blue markers are training data points while the red markers are for testing.
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on sparse longitudinal biomarker data for each patient avoids the
overfitting issue and provides a high-precision personalized
prediction for each subject, as outlined in Results section.
Limitations of this work include sampling bias. Because the

ADNI dataset is a research cohort from academic clinics, only one-
third of ADNI subjects agreed to provide CSF biomarkers. Thus we
need to replicate these findings using data from more general
practice settings in the future. Despite these limitations, this
model advances our understanding of the complexity of AD
biomarker pathophysiology over that of current biomarker models
which have primarily been independent and ad hoc in nature,
with inherent assumptions regarding the shape of individual
biomarker trajectories. Our current approach is integrative and
based on the cascade mechanism, yet without assumptions
regarding the exact mathematical form of the individual
biomarker models or the resulting shape of the biomarker
trajectories. In the future, we intend to extend the current
approach to the spatiotemporal domain by utilizing longitudinal

imaging data to determine mechanisms driving the spread of
pathology in time and space.

METHODS
We propose a pathophysiology and data-driven modeling approach to
construct a causal model of AD clinical biomarkers. We construct a causal
model from the serial clinical biomarker measures across 819 subjects from
the ADNI-1 datasets with mild AD (N= 192), late mild cognitive impairment
(LMCI, N= 398), and normal cognition (N= 229) (more details are shown in
Table 4). We use PseudoIDs instead of RIDs to link across all clinical biomarker
data belonging to a patient. The CSF proteins measured in ADNI are the
following A-Beta 42 and Phosphorolated tau 181 (p-tau 181)32,33. These
measures were obtained through serial spinal taps on subjects over
approximately two-year intervals. Of note, A-Beta in the CSF goes down,
and total and phosphorylated tau go up as the disease progresses.
Hippocampal volume, a measure of neurodegeneration, was measured
through volumetric analysis of serial MRI images obtained at approximately
one-year intervals. It goes down as the disease progresses. Finally, cognitive
decline was measured through a pencil-and-paper neuropsychological test,

Table 2. The prediction accuracy summary for CN subjects using different numbers of longitudinal biomarker datapoints (n).

PseudoIDs (n) DPS Diff Model Accuracy

CSF Abeta42 CSF tTau HIPPv ADAS13

1 (4) 0.13 ODE 98.3% 93.6% 99.4% 92.6%

Sigmoid 74.0% 79.8% 70.5% 84.8%

2 (4) 3.00 ODE 99.8% 93.2% 98.7% 93.0%

Sigmoid 93.9% 61.5% 90.7% 80.4%

3 (5) 0.52 ODE 86.6% 98.8% 95.9% 85.3%

Sigmoid 90.3% 82.6% 71.1% 56.9%

4 (5) 0.59 ODE 98.8% 96.1% 88.3% 96.6%

Sigmoid 76.8% 76.9% 86.1% 66.7%

5 (5) 0.39 ODE 97.8% 90.0% 99.7% 94.8%

Sigmoid 84.3% 79.5% 79.9% 81.9%

6 (4) 0.46 ODE 96.3% 93.6% 90.9% 92.7%

Sigmoid 75.4% 91.1% 91.2% 84.0%

7 (4) 0.55 ODE 99.8% 88.2% 98.7% 90.3%

Sigmoid 96.5% 86.0% 92.0% 72.3%

8 (4) 0.63 ODE 95.9% 98.9% 92.0% 92.6%

Sigmoid 85.8% 86.8% 91.7% 96.6%

9 (4) 0.71 ODE 99.6% 96.1% 97.1% 87.5%

Sigmoid 89.4% 80.3% 79.2% 69.5%

10 (5) 1.04 ODE 83.4% 81.2% 98.7% 85.5%

Sigmoid 88.3% 78.4% 74.4% 80.1%

11 (6) 1.04 ODE 98.2% 99.8% 86.5% 85.1%

Sigmoid 75.7% 76.3% 67.6% 72.6 %

12 (4) 0.40 ODE 94.6% 91.3% 96.5% 91.7%

Sigmoid 89.7% 81.5% 88.9% 75.1%

13 (6) 0.88 ODE 97.0% 92.8% 96.1% 98.8%

Sigmoid 97.4% 85.4% 85.3% 84.3%

14 (4) 0.75 ODE 98.4% 99.1% 99.1% 87.1%

Sigmoid 90.9% 79.7% 88.6% 79.8%

15 (4) 0.55 ODE 99.6% 96.8% 90.9% 81.5%

Sigmoid 93.8% 95.1% 81.5% 59.2%

Average 0.78 ± 0.64 ODE 96.3% ± 4.9% 94.0% ± 5.0% 95.2% ± 4.4% 90.3% ± 4.8%

Sigmoid 86.8% ± 7.6% 81.4% ± 7.4% 82.6% ± 8.2% 76.3% ± 10.1%

The last four columns list the prediction accuracy of both the personalized model and the sigmoid function fitting for each biomarker. The last four rows
summarize the mean and the standard deviation of prediction accuracy.
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the thirteen-item Alzheimer s Disease Cognitive Assessment Scale (ADAS13).
This measures function in several cognitive domains affected by AD,
including memory, language, and praxis and is the de facto primary outcome
measure in AD clinical trials. It goes up as the disease progresses.
After constructing and calibrating the population model with data

across all ADNI subjects, we then personalize the parameters of the model
using each patient’s longitudinal data to provide a personalized prediction
of biomarker trajectories. The overall modeling approach is outlined in
Fig. 5, and each step is elaborated in the following subsections.

The data-driven causal model learning via ADNI dataset
Four AD biomarkers are key factors in AD diagnosis and monitoring of AD
progression, and include amyloid-beta Aβ, tau τ, neuronal degeneration N,
and cognitive decline C. Amyloid-beta is the main component of amyloid
plaques and is considered to be an early event of the pathological
cascade of AD. Amyloid production leads to downstream Tau phosphor-
ylation causing the formation of neurofibrillary tangles and neuropil
threads. Tau is a microtubule-associated protein, which is very common in

neurons of the central nervous system. Both amyloid-beta and tau
phosphorylation contribute to neuronal degeneration and cognitive
decline.
To describe the cascade relationship among the above-mentioned four

biomarkers of AD progression, we consider a canonical system of ODEs to
describe their relations. The amyloid-dependent cascade is initiated by
amyloid-beta pathology Aβ, and mediated via tau τ. Neuron degeneration
N starts with the rise of tau τ, and in turn, leads to the initiation of cognitive
decline C. According to the above description, we consider the causal
model as the system of ODEs:

dAβ
dt ¼ Pm

ℓ¼0
w1;ℓϕℓðAβÞ; dτdt ¼

P
jj�m

w2;ψðAβ; τÞ;
dN
dt ¼

P
jj�m

w3;ψðτ;NÞ; dCdt ¼
P
jj�m

w4;ψðN;CÞ;

8>><
>>:

(1)

where ℓ= (ℓ1, ℓ2), ∣ℓ∣= ∣ℓ1∣+ ∣ℓ2∣, and m is the degree of the model. We
choose the polynomial basis function in the initialized ODE model, namely,

ϕℓðxÞ ¼ xℓ; ψðx; yÞ ¼ xℓ1yℓ2 : (2)

Table 3. The prediction accuracy summary for LMCI subjects using different longitudinal data points (shown in the first column).

PseudoIDs (n) DPS Diff Model Accuracy

CSF Abeta42 CSF tTau HIPPv ADAS13

16 (5) 0.70 ODE 99.0% 87.8% 99.1% 88.2%

Sigmoid 91.2% 87.4% 74.5% 70.1%

17 (6) 0.51 ODE 97.8% 86.2% 92.2% 90.7%

Sigmoid 94.1% 83.3% 81.6% 88.7%

18 (5) 0.50 ODE 97.3% 95.9% 98.4% 95.1%

Sigmoid 95.5% 90.8% 95.7% 63.4%

19 (4) 0.55 ODE 88.9% 96.3% 82.8% 96.6%

Sigmoid 79.1% 87.7% 94.3% 85.1%

20 (5) 0.30 ODE 96.8% 96.7% 97.0% 84.9%

Sigmoid 80.3% 89.1% 80.1% 82.1%

21 (6) 0.75 ODE 95.3% 85.8% 98.3% 84.4%

Sigmoid 86.3% 72.9% 90.5% 79.8%

22 (4) 0.82 ODE 97.0% 95.7% 89.8% 84.6%

Sigmoid 72.5% 68.5% 96.6% 81.6%

23 (4) 0.43 ODE 99.2% 91.0% 94.2% 86.0%

Sigmoid 88.8% 61.3% 80.8% 62.1%

24 (6) 0.49 ODE 98.2% 98.9% 99.9% 96.9%

Sigmoid 83.5% 89.9% 88.8% 81.1%

25 (6) 0.70 ODE 97.0% 94.4% 93.3% 89.3%

Sigmoid 93.2% 80.2% 74.1% 70.7%

26 (4) 0.98 ODE 97.7% 93.5% 96.7% 93.8%

Sigmoid 85.2% 89.1% 91.8% 81.3%

27 (4) 0.38 ODE 96.4% 97.4% 94.4% 96.3%

Sigmoid 97.9% 79.5% 92.1% 72.6%

28 (5) 0.52 ODE 97.0% 90.6% 87.7% 96.6%

Sigmoid 85.1% 78.4% 84.6% 83.1%

29 (4) 0.50 ODE 94.2% 91.4% 91.3% 95.0%

Sigmoid 76.3% 82.7% 75.1% 72.1%

30 (4) 0.57 ODE 94.7% 90.0% 93.6% 83..1%

Sigmoid 73.1% 80.6% 86.3% 85.8%

Average 0.58 ± 0.17 ODE 97.1% ± 1.5% 92.3% ± 4.1% 94.8% ± 3.6% 89.8% ± 5.4%

Sigmoid 85.5% ± 7.8% 81.4% ± 8.2% 85.8% ± 7.5% 77.3% ± 7.9%

The last four columns list the prediction accuracy of both the personalized model and the sigmoid function fitting for each biomarker. The last four rows
summarize the mean and the standard deviation of prediction accuracy.
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We then learn the causal model parameters in (1) by using ADNI data.
More specifically, we use CSF amyloid-beta 1-42 (Aβ), CSF total tau (τ), the
ratio of hippocampal volume to whole-brain volume on MRI (N), and the
Alzheimer’s Disease Assessment Scale-cognitive (C) to calibrate Aβ, τ, N, and
C, respectively in the causal model. In order to denoise longitudinal data
for different subjects, we applied a sigmoid interpolation for each
biomarker. Moreover, because AD has a different time of onset and rate
of progression for different subjects, we employ DPS28 to unify the time
scale across subjects in the causal model.

Disease progression scores
For different subjects in ADNI, the onset of disease and rate of progression
are different within and among subject classes of CN, LMCI and AD. To fit
the causal model for all subjects in the ADNI-1 study, we standardize the
longitudinal measurement among patients by employing the DPS28. In
particular, we define DPS si(t) as a linear function of the patient’s age t for
each patient:

siðtÞ ¼ αi � t þ βi ; (3)

where i= 1, 2,⋯ , I is the patient index, αi is the rate of AD progression, and
βi is the age of AD onset.

Table 4. The characteristics of the ADNI-1 dataset in data-driven
modeling.

CN LMCI AD

N 229 398 192

Age 75.72 ± 4.86 74.52 ± 7.22 75.29 ± 7.41

M/F 119/110 257/141 101/91

MMSE 28.82 ± 1.78 25.54 ± 4.16 21.52 ± 4.59

ADAS-13 10.29 ± 6.44 21.71 ± 10.99 32.49 ± 10.42

CSF Ab42
(pg/ml)

201.74 ± 55.15 159.37 ± 51.53 139.79 ± 35.87

CSF Total Tau
(pg/ml)

72.69 ± 31.69 104.65 ± 58.28 122.01 ± 58.30

CSF Ptau
(pg/ml)

29.57 ± 16.10 38.96 ± 21.09 43.91 ± 20.97

Hipp
Volume (ml)

7045.38 ± 971.27 6163.12 ± 1179.50 5488.95 ± 1132.57

Fig. 5 A flowchart of the pathophysiology and data-driven modeling approach. Given the initialized ODE model, a causal model is
obtained by fitting the ADNI dataset and DPS model through sparse learning; secondly, the ADNI dataset is used to calibrate the population
parameters in the causal model and obtain the population model; thirdly, a sensitivity analysis is applied to analyze the sensitivity of each
population parameters and determine the sensitive personalized parameters, and a simulate study is conducted to validate the population
model. Then, the personalized model is obtained by calibrating the sensitive personalized parameters with the use of personalized data. A
prediction is made by the personalized model in the end.

H. Zheng et al.

9

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)   137 



The sigmoid function fitting
We fit each biomarker data in ADNI to a sigmoid function. Specifically, each
biomarker is parameterized by four parameters θk ¼ ½ak ; bk ; ck ; dk �T :
gk s;θkð Þ ¼ akð1þ e�bk s�ckð ÞÞ�1 þ dk ; (4)

where ak is a magnitude scale of the function, bk is a slope coefficient, and
ck and dk determine function positions. Here we take g1(s)= Aβ(s), g2(s)=
τ(s), g3(s)= N(s), g4(s)= C(s) and denote g ¼ ðg1; g2; g3; g4ÞT .
Next, we apply the sparse learning to reveal the causal model in (1)

which is re-written as

dx
ds

¼
X
jℓj�m

ϕℓðxÞwℓ; where x ¼ ðAβ; τ;N; CÞT 2 R4:

By taking uniform grid points fsigMi¼1 on s∈ [−10, 20], we denote

Di ¼ ½ϕℓ1 ðgðsiÞÞ; � � � ;ϕℓn ðgðsiÞÞ� and bi ¼
dðgðsiÞÞ

ds
;

where ℓ1,⋯ , ℓn are in the set of ∣ℓ∣ ≤m. By expanding

D ¼
D1

..

.

DM

0
BB@

1
CCAand b ¼

b1

..

.

bM

0
BB@

1
CCA;

we learn the causal model via the following Lasso regression, namely,

min
w

kDw � bk22 þ λkwk1; (5)

where ∥w∥1 enforces the sparsity.
Here we keep the polynomial degrees among all the variables in the

causal model be consistent and choose m= 4 with λ= 10−7 in (5). By
performing Lasso, we find the result is consistent with the causal model
when m= 2 but different from the one with m= 1, which indicates the
optimal choice of the causal model is m= 2. Then the general causal
model of ODEs describing the progression of AD biomarkers is
summarized below (All rights to the in-silico model belong to the authors
and it cannot be used for any commercial purpose without permission):

dAβ
ds ¼ wA0 þ wA1Aβ þ wA2A2β;
dτ
ds ¼ wT0 þ wT1τ þ wT2τ

2 þ wT3Aβ þ wT4A2β þ wT5Aβτ;
dN
ds ¼ wN0 þ wN1N þ wN2N2 þ wN3τ þ wN4τ

2 þ wN5τN;
dC
ds ¼ wC0 þ wC1C þ wC2C2 þ wC3N þ wC4N2 þ wC5NC;

8>>>>><
>>>>>:

(6)

with an initial condition Aβ(−10)= y0 and τ(−10)= N(−10)= C(−10)= 0,
where y0 is also a parameter that we consider as a small positive value to
initiate the cascade.

Population model calibration
First, we calibrate the learned causal model by using the ADNI dataset and
rewrite (6) as the following population model

dAβ
ds ¼ P2

ℓ¼0
wð1Þ

A;ℓA
ℓ
β;

dτ
ds ¼

P
jℓj�2

wð1Þ
T ;ℓA

ℓ1
β τℓ2 ;

dN
ds ¼

P
jℓj�2

wð1Þ
N;ℓτ

ℓ1
ρ Nℓ2 ; dCds ¼

P
jℓj�2

wð1Þ
C;ℓN

ℓ1Cℓ2 ;

8>>><
>>>:

(7)

where w ¼ fwð1Þ
A;ℓ;w

ð1Þ
T ;ℓ;w

ð1Þ
N;ℓ;w

ð1Þ
C;ℓg denote the population parameters. We

also denote f1(s)= Aβ(s), f2(s)= τ(s), f3(s)= N(s), and f4(s)= C(s) with the
initial conditions f1(−10)= y0, f2(−10)= f3(−10)= f4(−10)= 0. Then the
population parameters are calibrated based on the ADNI dataset by
minimizing the sum of squared differences between the data and the
solution of the causal model, namely

min
wk

X
ði;jÞ2I k

yijk � f k αi tij þ βi ;wk
� �� �2

; ði; j; kÞ 2 I (8)

where yijk is the k-th biomarker data for i-th patient at j-th visit and I k is the
set of (i, j) for k-th biomarker.
Since the biomarkers for each patient will generally increases or

decreases monotonically, we consider fitting DPS as a least square linear
regression problem, namely,

min
αi ;βi

X
ðj;kÞ2I i

1
σk

yijk � f k αi tij þ βi ;wk
� �� �2

; (9)

where I i is set of (j, k) for i-th patient and σk is the sum of squared error
with respect to biomarker k, namely,

σk ¼ 1
jI k � 2I � 4j

X
ði;jÞ2I k

yijk � f k αi tij þ βi ;wk
� �� �2

: (10)

The detailed procedure to fit the parameters is shown in Algorithm 1.
The optimization solver employs the Levenberg-Marquardt method34,
which can avoid getting stuck in a local minimum.

Sensitivity analysis
We assume that the parameters in the population model,
wð1Þ ¼ ½wð1Þ

A0 ; w
ð1Þ
A1 ; � � � ; wð1Þ

m ; � � � ; wð1Þ
C4 ; w

ð1Þ
C5 � 2 R21, are independent and

identically distributed inputs, where m is the index of inputs. For sensitivity
analysis, we omit the superscript of the parameters later for simplicity. The
range of each input is 90–110% of their values shown in Table 1.
Then we perform Sobol sensitivity analysis, which is also called

variance-based sensitivity analysis and is developed from the analysis
of variance. As a global sensitivity analysis method, it analyzes the
effects of each input by decomposing the variance of the output of the
population model into fractions attributed to the inputs. In this paper,
we perform both the first-order and second-order sensitivity analyses
to the parameters. In particular, the first-order sensitivity index
measures the attribution to the variance of the output considering
only one input, which is calculated by:

SmðyÞ ¼ Varwm Ew�m ðyjwmÞ½ �
VarðyÞ ; (11)

where w�m ¼ wA1; � � � ; wm�1; wmþ1; � � � ; wC5½ � includes all inputs
except wm. Next, the second order sensitivity with respect to m and
n is measured by sum of attributing the variance of the output
considering their first order effects and the second-order interaction
between inputs m and n:

Sðm;nÞðyÞ ¼ SmðyÞ þ SnðyÞ þ
Varðwm ;wnÞ Ew�m;n ðyjwm;wnÞ

� �
VarðyÞ : (12)

Then we measure the total-order sensitivity index, which is calculated by
attributing the variance of the output considering both the first-order
effect, second-order effect, and other higher-order ones.

ST ;mðyÞ ¼ 1� Varw�m Ewm ðyjw�mÞ½ �
VarðyÞ : (13)

When the sensitivity value is positive, the corresponding parameter
is positively correlated with the model output. If the value is negative,
they are negatively correlated. The absolute value of parameter
sensitivities represents the degree of influence on the model output.
If the sensitivity value is closer to 0, changing this parameter will have
less influence on the model output. Based on the sensitivity values and
the number of biomarker measurements, we determine the persona-
lized parameters to fit the longitudinal data points for each patient and
keep the remaining parameters the same as the population parameter
values. This can avoid overfitting when providing the personalized
prediction for each subject.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Access to the ADNI dataset is publicly available via http://adni.loni.usc.edu35.

CODE AVAILABILITY
The sensitivity analysis code is available at http://salib.readthedocs.io/en/latest/. The
simulation study code is available at https://www.pymc.io/welcome. The non-linear
optimizer can be found in https://github.com/jjhartmann/Levenberg-Marquardt.
Codes for Algorithms 1 and 2 are included in the Supplementary Information.
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