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Discrete-time survival analysis in the critically ill: a deep
learning approach using heterogeneous data
Hans-Christian Thorsen-Meyer1,2, Davide Placido 1, Benjamin Skov Kaas-Hansen 1,3,4, Anna P. Nielsen1, Theis Lange4,
Annelaura B. Nielsen1, Palle Toft5,6, Jens Schierbeck5,6, Thomas Strøm5,6,7, Piotr J. Chmura 1, Marc Heimann8, Kirstine Belling1,
Anders Perner2 and Søren Brunak 1✉

Prediction of survival for patients in intensive care units (ICUs) has been subject to intense research. However, no models exist that
embrace the multiverse of data in ICUs. It is an open question whether deep learning methods using automated data integration
with minimal pre-processing of mixed data domains such as free text, medical history and high-frequency data can provide
discrete-time survival estimates for individual ICU patients. We trained a deep learning model on data from patients admitted to
ten ICUs in the Capital Region of Denmark and the Region of Southern Denmark between 2011 and 2018. Inspired by natural
language processing we mapped the electronic patient record data to an embedded representation and fed the data to a
recurrent neural network with a multi-label output layer representing the chance of survival at different follow-up times. We
evaluated the performance using the time-dependent concordance index. In addition, we quantified and visualized the drivers of
survival predictions using the SHAP methodology. We included 37,355 admissions of 29,417 patients in our study. Our deep
learning models outperformed traditional Cox proportional-hazard models with concordance index in the ranges 0.72–0.73,
0.71–0.72, 0.71, and 0.69–0.70, for models applied at baseline 0, 24, 48, and 72 h, respectively. Deep learning models based on a
combination of entity embeddings and survival modelling is a feasible approach to obtain individualized survival estimates in
data-rich settings such as the ICU. The interpretable nature of the models enables us to understand the impact of the different
data domains.
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INTRODUCTION
High quality tools for survival prediction would be valuable in the
intensive care unit (ICU) where decisions must be taken swiftly
based on massive amounts of information. Over the last 40 years,
a lot of effort has gone into developing prognostic scores for the
ICU setting to facilitate bedside assessment of disease severity and
mortality risk1–4. However, most of the models applied in clinical
settings are traditionally based on simple regression methods
using a few routinely measured variables. Most models also suffer
from poor calibration thus limiting the clinical use for patient-level
predictions1,5,6. Simplistic in nature, many models only provide
once-off static scores failing to leverage and integrate prior
disease history and the many longitudinal data produced in the
ICU. Although algorithmic bias is a genuine issue that must be
handled7, better machine learning-based prognostication could
aid clinicians and help overcome the potential bias in clinical
judgment8.
Indeed, the ICU setting generates vast amounts of data in the

form of high-frequency (e.g., ventilators, telemetric apparatus,
infusion pumps) and low-frequency (e.g., manual observations,
biochemical samples) data. Improving prognostic models
requires the use of advanced methods that natively handle
this multiverse of ICU data characterized by time series, static
values, and free text from clinical notes. The data input is crucial
to a model’s performance and usefulness, but so is the

operationalisation of the outcome. Previously, most severity
scores have used static outcomes such as the risk of in-ICU, 30-
day, or 90-day mortality9. Such outcomes turn a continuous
outcome into whether the patient is likely to pass away before
or after an arbitrarily defined threshold, yielding neat but
problematic binary classification problems10. Another limitation
to this strategy is the changing nature of the cohort throughout
the follow-up period. As time passes, patients pass away and
the prediction problem at hand morphs in a way that escapes
simplistic classification models. Modelling the survival profile
directly, on the other hand, arguably resolves these short-
comings. The full survival profile is often of greater clinical
interest than arbitrary thresholds. Further, the changing nature
of the cohort is built into the discrete-time survival model, and
by applying model explanation techniques we may quantify
and visualize the drivers of the predictions at short-, mid- and
long-term.
In this paper we present and validate a model that natively

handles inputs from heterogeneous data sources, structured
and unstructured alike, to produce longitudinal survival profiles,
using a large cohort of Danish ICU patients. A key aim of this
work was to render the model actionable, by displaying how
different data domains affected survival at different phases of
follow-up.
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RESULTS
Population characteristics
30,763 patients had 39,295 ICU admissions in the Capital Region of
Denmark and the Southern Region of Denmark between the 6th
of September 2011 and the 19th of April 2018. Of these, 37,355
admissions (95.1%) of 29,417 patients (95.6%) were eligible for
inclusion in the study (Fig. 1). We excluded 1940 admissions
because the age of the patient was <16 years (1776 admissions,
4.5%) or the duration of the admission was <1 h (164 admissions,
0.4%). From this cohort, we allocated 20% (7519 admissions in
5900 patients) to the hold-out test set. The baseline characteristics
of the patients are summarized in Table 1. For patients with more
than one ICU admission, the data from the first admission was
used in Table 1. Overall, the median age was 67 years and the ICU
and 90-day mortality were 13.5% (3960/29,417) and 30.6% (9007/
29,417), respectively.

Model performance
The model was based on discrete-time survival analysis, and in the
following the performance of the model at each timepoint (1, 7,
14, 30, 90, and 365 days) is reported. Table 2 shows Harrell’s
concordance index (C-index, a measure of discriminative ability)
for the four ML models with different baselines, compared to
conventional Cox models. For the Cox models only one C-index is
shown per row because, due to proportional hazards, the
C-indices are constant across prediction windows. For the models
with baselines at 0, 24, 48, and 72 h after admission, the C-indices
were between 0.69 and 0.73. For the Cox models, the C-indices
were all 0.66. In Fig. 2, the Kaplan–Meier estimate for the internal
validation (hold-out test set) cohort is presented with the
predicted survival from our ML model and a Cox proportional-
hazard model. Both models estimated the true survival very well at
the cohort level. Overall, the models were reasonably calibrated
(Fig. 3). The model with the 0-hour baseline (i.e., at ICU admission)
exhibited the best calibration as its predictions lied close to the
diagonal. For all of the four different baselines, predictions in the
mid-range tended to be too pessimistic (predicted survival worse
than observed).

Explainable prediction model
Figure 4 illustrates the relative impact of the different input
domains across the time windows and baselines on the

predictions. For the “door-step” model (baseline= 0 h), which
was only trained using information available before the ICU
admission, the biochemistry domain had the largest impact; the
medication also appeared informative. When the data captured in
the ICU was subsequently introduced for models with a baseline >
0 h, this new information seemed to dilute the “signal” from the
patient’s medical history. For all models and all prediction
windows, the age at admission was one of the most important
features.

39,295 electronic patient records available

 1,940 records excluded
           1,776 aged < 16 years
           164 admissions < 1hour

37,355 records included in analysis

29,836 in train set      7,519 in test set

Fig. 1 Illustration of the cohort selection procedure. The raw
dataset contained electronic patient record data from 39,295 ICU
admissions. 1940 records were excluded because the patients were
too young (<16 years) or the admissions were too short (<1 h). The
remaining 37,355 records were split into a training set (80%;
n= 29,836 admissions) and a test set (20%; n= 7519 admissions).

Table 1. Baseline characteristics of ICU patients in the training and
hold-out test sets.

Training data set
(n= 23,517)

Hold-out test
set (n= 5900)

Patient demographics

Age, years 67 [53–76] 66 [53–75]

Sex

Female 10,047 (42.7%) 2541 (43.1%)

Male 13,470 (57.3%) 3359 (56.9%)

Co-morbidities

Chronic heart failure 3768 (16.0%) 924 (15.7%)

Cirrhosis 894 (3.8%) 235 (4.0%)

AIDS 32 (0.1%) 8 (0.1%)

Metastatic cancer 1220 (5.2%) 279 (4.7%)

Haematological cancer 870 (3.7%) 263 (4.5%)

Cancer therapy 938 (4.0%) 236 (4.0%)

Admission category

Medical 13,065 (55.6%) 3331 (56.5%)

Scheduled surgery 3134 (13.3%) 746 (12.6%)

Unscheduled surgery 7318 (31.1%) 1823 (30.9%)

Type of surgery

Transplantation: Liver, kidney,
pancreas

100 (0.4%) 39 (0.7%)

Transplantation: Kidney and
pancreas, other

1 (0.0%) 0 (0.0%)

Cardiac surgery 324 (1.4%) 101 (1.7%)

Trauma 801 (3.4%) 205 (3.5%)

Neurosurgery 559 (2.4%) 136 (2.3%)

In-hospital location before ICU admission

Emergency room 6882 (29.3%) 1640 (27.8%)

Other ICU 1953 (8.3%) 528 (8.9%)

Hospital ward, recovery unit, or
operating room

14,682 (62.4%) 3732 (63.3%)

Length of hospital stay before
ICU, days

1.0 [0.0–3.0] 1.0 [0.0–3.0]

Length of ICU stay, days 1.5 [0.8–4.1] 1.6 [0.8–4.0]

Number of admissions

1 admission 19,272 (81.9%) 4830 (81.9%)

2 admissions 3081 (13.1%) 742 (12.6%)

3 admissions 755 (3.2%) 216 (3.7%)

≥ 4 admissions 409 (1.7%) 112 (1.9%)

Mortality

ICU mortality 3154 (13.4%) 806 (13.7%)

In-hospital mortality 5715 (24.3%) 1458 (24.7%)

90-day mortality 7198 (30.6%) 1809 (30.7%)

Data are n (%) or median (inter-quartile range). For patients with multiple
admissions the data provided below are from the first admission.
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DISCUSSION
In this study, we have presented an explainable deep learning
model enabling integration of heterogeneous data sources
such as medical history, free-text nursing documentation, and
vital signs without the need for extensive pre-processing and
feature engineering. The model provides individualized,

discrete-time survival estimates for ICU patients. The survival
model has time-varying hazards, and therefore overcomes the
proportional-hazards assumption which, in combination with its
interpretable nature, provides the opportunity to investigate
how the impact of features affects early versus longer term
mortality.

Table 2. Comparison of the discriminative ability for machine learning (ML) based versus conventional Cox proportional-hazard models with
baseline 0, 24, 48, and 72 h, respectively, after ICU admission.

Prediction window (days)

Method Baseline 1 7 14 30 90 365

ML 0 0.72 (0.71–0.72) 0.73 (0.72–0.74) 0.73 (0.72–0.73) 0.73 (0.72–0.73) 0.73 (0.72–0.73) 0.73 (0.72–0.73)

ML 24 0.71 (0.71–0.72) 0.71 (0.71–0.72) 0.71 (0.70–0.72) 0.71 (0.71–0.72) 0.72 (0.71–0.72) 0.72 (0.71–0.73)

ML 48 0.71 (0.70–0.72) 0.71 (0.70–0.72) 0.71 (0.70–0.72) 0.71 (0.70–0.72) 0.71 (0.70–0.72) 0.71 (0.70–0.72)

ML 72 0.70 (0.69–0.71) 0.69 (0.68–0.70) 0.69 (0.68–0.70) 0.69 (0.68–0.70) 0.69 (0.68–0.70) 0.70 (0.69–0.70)

Cox 0 0.66 (0.66–0.66)

Cox 24 0.66 (0.66–0.66)

Cox 48 0.66 (0.66–0.66)

Cox 72 0.66 (0.66–0.66)

The concordance index is shown for each prediction window with 95% CIs in parentheses.

1 7 14 30 90 365 1 7 14 30 90 365
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Fig. 2 Comparison of survival predictions by our deep learning model and a Cox proportional-hazard model. The broken lines around the
KM curves represents 95% confidence intervals. Each baseline (0, 24, 48, and 72 h) has its own curve, in a separate panel. The predictions for
both models are close to the Kaplan-Meier estimate for the full hold-out test set.
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Using ML for prognostication in ICU patients is an active area of
research11. To our knowledge, our models are the first to leverage
the combined power of entity embeddings (allowing integration
of heterogeneous data), a recurrent neural network architecture
(appropriate for dynamic predictions with time-series data) and
time-to-event outcome operationalisation (a prudent approach
preferred over more simplistic binary classification models). Entity
encoding is uncommon in healthcare-related studies although
applications start to emerge, in general patient12 and ICU13,14

populations.
A study from 2019 by Nielsen et al. found that ML models based

solely on previous disease history performed as well as mortality
scores in clinical use. This model used medical history, but in a less
principled way than ours, and used a simple multilayer perceptron
as the prediction engine15. Second, the study by Thorsen-Meyer
et al. from 2020 (serving somewhat as a precursor for this study)
used an LSTM to predict the 90-day mortality in ICU patients and
found very satisfactory performance in a relevant external
validation set16. Third, a recent study by Pattalung et al. from

2021 used American data (MIMIC III, MIMIC IV, eICU) to develop a
prediction model methodologically and scope-wise quite similar
to that of Thorsen-Meyer et al.17.
The common denominator of these, and to the best of our

knowledge all other published studies in the realms of ML-based
prognostication in ICU patients, is their reliance on structured
input data and binary classification-styled outcome. In prediction
modelling perhaps the most prominent benefit of structured input
data is the ability to take a model trained in one dataset and apply
it in another, for validation or as part of clinical decision support.
They do suffer from at least three potential problems: creating
and, not least, maintaining structured data are complex and costly;
their quality might decline due to data drift and changing coding
practices (but using the same coding scheme); and the structured
data in target contexts (in which the model would be deployed)
may use different vocabularies, requiring some way to bridge
these vocabularies and somewhat undermining the benefits of
structured data in the first place. Entity embeddings can help
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Fig. 3 Calibration plots. Observed survival rates estimated by the Kaplan–Meier survival estimates method is plotted against predicted
survival rates for baseline equal to 0 (i.e., “door-step”), 24, 48, and 72 h. Each prediction window (1, 7, 14, 30, 90, and 365 days have its own
curve). The diagonal represents perfect calibration.
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overcome these challenges although they come with their own, as
discussed below.
We used a novel technique for using “all kinds of data” as

inputs, by first turning structured and unstructured data into

tokens, which are then embedded into a dense representation
and used as input in the survival model. This technique has several
advantages. First, the need for feature engineering and data pre-
processing is substantially reduced. Second, the model learns

1 7 14 30 90 365
0

24
48

72

age
los
biochem

istry
diagnoses
operations
exam

inations
m

onitors
chart
m

edication

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Domain

Re
la

tiv
e 

co
nt

rib
ut

io
n

age
los
biochem

istry
diagnoses
operations
exam

inations
m

onitors
chart
m

edication

age
los
biochem

istry
diagnoses
operations
exam

inations
m

onitors
chart
m

edication

age
los
biochem

istry
diagnoses
operations
exam

inations
m

onitors
chart
m

edication

age
los
biochem

istry
diagnoses
operations
exam

inations
m

onitors
chart
m

edication

age
los
biochem

istry
diagnoses
operations
exam

inations
m

onitors
chart
m

edication

Fig. 4 The impact of input domains on survival predictions. Each dot represents the relative contribution from a data domain to a given
prediction for one patient. LOS = Hospital length of stay before ICU admission. Each column and row correspond to a specific prediction
window (1, 7, 14, 30, 90, and 365 days) and baseline (0, 24, 48, and 72 h), respectively. In the figure the centre lines denote medians, bounds of
boxes represent 25th (Q1) and 75th percentiles (Q3). Whiskers denote nonoutlier data range defined by Q1− 1.5 interquartile and Q3 + 1.5
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important trends by itself and very different data types (such as
free text, static structured data, and high-frequency, waveform-like
data from e.g., monitors) can natively be used as inputs together.
Third, we use a loss function based on a log-likelihood function
built to handle right-censoring. This allows for follow-up times
substantially longer than the norm in studies of survival in ICU
patients and compensates somewhat for the inability to
extrapolate. Fourth, due to the representation of the input data,
the model can embed input data from diverse EHR systems,
regardless of the underlying data model. In this way, the model
can learn, for example, that 100 millimetres of mercury is the
equivalent to 13.3 kilopascals.
The study also has limitations. First, splitting follow-up time is

arguably less optimal than a parametric survival model (e.g., a
Weibull regression18) and precludes predicting beyond the follow-
up time (365 days in this study). However, its non-parametric
nature avoids distributional assumptions made by other methods,
including those extending Cox regression19. Second, the log-
likelihood assumes non-informative censoring (i.e., independent
of the risk of the outcome20), which we find realistic given the
population-wide coverage of the data and essentially no dropout
except at the end of follow-up and due to migration. Were this
assumption invalid, an informative censoring process could be
built into the model, e.g., with a competing risks approach21.
Finally, we did not validate the model in an external data set, nor
did we assess the perspectives of clinicians, relatives, or the
patients themselves. We forewent external validation for two
principal reasons. First, the genuine clinical utility of any prediction
model hinges entirely on its performance in the target population
and, in our case, appropriate external validation data were
unavailable as they would need to be in Danish (due to the
model’s using entity embeddings) and collected prospectively,
preferably in the context of a clinical trial. One could (re)train the
models in e.g., MIMIC or eICU data to gauge if the method (not the
models per se) transports to other data sources, but that was
beyond the scope of this study. Second, such a prospective clinical
trial should preferably only be initiated after the model has been
scrutinized by peers to ascertain it be pertinent and reasonable.
In conclusion, we present an explainable deep learning model

which can provide personalized survival time analysis for ICU
patients. The model incorporates all available data with a modest
need for pre-processing and without any requirements for
cleaning.

METHODS
Data and variables
In this study, we retrospectively collected electronic patient record
(EPR) data from patients admitted to one of 10 mixed medical and
surgical ICUs in the Capital Region of Denmark and the Region of
Southern Denmark covering the period 6th of September 2011
through 19th of April 2018. Data were excluded for patients
younger than 16 years of age and patients without available
outcome data due to missing national identification number (NIN;
all Danish citizens receive a NIN at birth or immigration). The data
set was augmented by information from the Danish National
Patient Registry (DNPR) and the Danish Civil Registration Registry
(Danish: Det Centrale Personregister, CPR). The clinical information
from the EPRs comprised different modalities. Biochemical data
were extracted from two clinical laboratory information systems:
BCC (Region of Southern Denmark) and Labka II (Capital Region of
Denmark). The DNPR is a nation-wide registry containing
information about encounters with the Danish hospital service.
It includes information about admissions, examinations, diagnoses
and treatments, all encoded in the Health Care Classification
System (Danish: Sundhedsvæsenets Klassifikations System, SKS)22.
In the DNPR disease and surgery codes observe the Danish

adaption of the 10th revision of the International Classification of
Diseases (ICD-10) and of the Nordic Medico-Statistical Committee
Classification of Surgical Procedures (NOMESCO) used in Denmark
since 1994 and 1996, respectively23. CPR contains information on
all individuals who have been living in Denmark and registered in
a Danish municipality after the 2nd of April 196824. ICU clinical
data were extracted from Critical Information System® (CIS,
developed by Daintel, Copenhagen, Denmark, now acquired by
Cambio Healthcare Systems). CIS is an EPR system customized for
ICUs to store demographic and high-frequency data collected
from equipment such as monitors, ventilators, and infusion
pumps.

Data domains and pre-processing
Data were divided into seven data domains based on their origin:
medical history, surgical history, examination history (e.g., X-ray
examinations), high-frequency data from ICU equipment, nursing
chart (information entered manually in the EPR system, including
free text), medications, and lab values. In addition, we added as
features age and length of hospital stay (LOS) before ICU
admission yielding a total of nine input domains (Fig. 5a). Medical
history was represented as ICD-10 codes at block level, while
surgical history and examinations were fed to the model as the full
NOMESCO and SKS codes, respectively (Fig. 5b). Regarding the
data from ICU equipment, chart information, medication, and lab
values, we included all variables that appeared at least once in all
departments, resulting in 64, 206, 1448, and 738 variables,
respectively.
The high-frequency and other numerical data potentially

collected more than once per hour data were aggregated to
hourly summary statistics (minima, maxima, medians, and
standard deviations) to make them compatible with data from
the other domains, and to make the data fit in memory during
calculations. In this way, each high-frequency data input gave rise
to four features, for example InvSysBP_max, InvSysBP_median,
InvSysBP_min and InvSysBP_std for the input variable invasive
systolic blood pressure (Fig. 5c). Product names and names of
biochemical analyses were replaced with ATC and NPU codes,
respectively (Fig. 5b)25,26.

Model components
The model had three key components, each of which we detail in
the following: entity embedding of input features, long short-term
memory (LSTM) sub-model, and the survival analysis output
(Fig. 5d).

Entity embedding and concatenation
To feed heterogeneous data into the model, we used entity
embeddings27 (inspired by word embeddings in natural language
processing12,13,28) based on so-called tokens, each representing
data from an event in a patient’s timeline. These embeddings have
been introduced into the machine learning field because they
generally perform better than one-hot data encodings. They
represent categorical variables in a compact and continuous way
that can add informative relations between feature values.
Specifically, the entity embedding serves as a way to map
categorical data (the tokens) to a continuous form, in this case a
d-dimensional embedding vector (i.e., a coordinate in a
d-dimensional Euclidian space). The tokens came about in three
different ways, depending on their origin (Fig. 5b, c). First, for
numerical data, the tokens were created by combining the
variable name with the percentile of the numerical value. Second,
textual data were split into words each of which became one
token. Third, for codified inputs (e.g., medical history) the codes
became the tokens.

H.-C. Thorsen-Meyer et al.

6

npj Digital Medicine (2022)   142 Published in partnership with Seoul National University Bundang Hospital



Within each domain, the collection of unique tokens constituted
that domain’s so-called vocabulary whose size is the number of
unique tokens therein. Generally, embeddings serve to represent
the original data in fewer dimensions to elicit latent information
and relationships not necessarily discernible in the original data.
Thus, finding the right embedding size is a trade-off: we seek an
embedding that captures all the information we need in as few
dimensions as possible. If the embedding becomes too small,
however, the data are squeezed too much so pertinent, latent
information is lost, hurting the overall model performance.
Because there is no obvious way to specify the best embedding

size a priori, we estimated this with a hyperparameter αd (the
embedding coefficient) determining heuristically, together with
the vocabulary size V, the embedding size as D= 6αdV1/412. So, for
example with an embedding coefficient of 1, the embedding size
would be 6 × 1 × 10,0001/4= 60 for a vocabulary of size 10,000
(166-fold reduction is dimensionality) and 6 × 1 × 10001/4 ≈ 34 for
one of size 1000 (30-fold reduction).
Event temporality was operationalised as discretized time-

stamps: prior events were labelled as occurring <1, 2–7, 8–30,
31–90, 91–365, or >365 days before baseline whereas events after
baseline were timestamped on an hourly basis (Fig. 5a). In this
way, for example, within each domain embedding vectors of
tokens observed <1 day before baseline were concatenated, so

were the embedding vectors of tokens observed in the first hour
of ICU admission, and so forth. This data representation
condensed the parameter space to optimize model robustness
and allow the model to learn abstract, high-level relationships
between data points with no manual feature engineering. The
entity embedding weights were trained jointly with the rest of
the model.

LSTM sub-model
To allow complex interactions and temporal patterns to be
considered, we used an LSTM network as a sub-model to connect
the embedded input features to the outcome survival predictions.
LSTM networks are a specialized type of recurrent neural networks
that continuously update their parameters as data accrue and
extract temporal patterns from the input data29. This defining quality
makes them suitable for time-series prediction tasks. The power of
LSTM networks comes at a cost as they have many parameters.
Training LSTM models requires large data sets and a somewhat
specialized computing setup to obtain reasonable run-time.

Survival analysis
Many approaches to survival analysis—both classic and deep
learning-based—assume proportional hazards, an assumption
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Fig. 5 A schematic illustration of data processing and model architecture, inspired by natural language processing with input data cast
into tokens. a The nine input data domains and the discretisation of time into windows (represented by rectangles) with greater granularity
after ICU admission than before. b Tokenisation of six domains; for example, a three-word note in the chart yields three distinct tokens and 1
gram Meropenem (with ATC code J01DH01) administered intravenously is the 50-percentile in our data and so yields the J01DH01_IV@50
token. c This panel uses fictive recordings to exemplify the aggregation of high-sample-rate and high-frequency data to hourly summary
statistics (maxima, minima, medians, and standard deviations) with their corresponding percentiles in parentheses; as such, one resultant
token would be InvSysBP_max@37. d To make the model handle this data representation, the first layer consists of a separate embedding
space for each input domain, which is updated during training of the model. age and length of hospital stays before ICU admission (Hospital LOS)
are added deeper in the model as numerical values. The output nodes constitute a dense (linear) layer, in which each node yields the
predicted probability of surviving the corresponding window (e.g., output node 1 ~ probability of surviving the first day and output node 2 ~
probability of surviving from days 2 through 6).
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seldom evaluated and often violated. To overcome this assump-
tion, we chose a non-parametric discrete-time model in which
follow-up time is divided into time windows, each with its own
hazard, where the model learns survival in all windows jointly. This
multilabel approach allowed the model to share information
between the output nodes to fully exploit the data30. We applied a
tailored loss function to handle right-censored patients, i.e.,
patients who do not experience the event in the observation
period, either because they leave the cohort (due to e.g.,
emigration) or the follow-up period ends (after 365 days in this
study); because death is inevitable, the observation period is
shorter than the risk period for survivors, and so they are right-
censored20,31. Indeed, time-to-event analyses are appropriate
exactly when the risk period extends beyond the observation
period.
The loss function was based on the log-likelihood32: the

probability of dying in a given time window was the probability
of surviving up to and actually dying in that time window.
Censored patients contributed with the probability of surviving
only as far as they were retained. We used the operationalisation
of Gensheimer et al.33 and here build some intuition around the
log-likelihood for a given patient, eq. (13) in Gensheimer et al.,

ℓ ¼
Xn

i¼1

log 1þ surv ið Þ
s � surv ið Þ

pred � 1
� �� �

þ log 1� surv ið Þ
f � surv ið Þ

pred

� �h i

(1)

where n is the number of windows, and survs and survf are
indicator functions designating whether the patient survived or
died during the i’th window (See Supplementary Fig. 1). Patients
who were right-censored in the second half of a time window
were considered to survive in that time window; otherwise, they
were considered to have survived the preceding time window.
Because survðiÞpred ¼ 1� hazardðiÞpred is the prediction of the i’th
output node, the two terms inside the sum above can each take
one of two values for a given output node,

log 1þ surv ið Þ
s � surv ið Þ

pred � 1
� �� �

¼ log surv ið Þ
pred

� �

0
when patient survived i0th window otherwise

(

(2)

log 1� surv ið Þ
f � surv ið Þ

pred

� �

¼ log hazard ið Þ
pred

� �

0
when event in i0th window otherwise

(
(3)

That is, if a patient died in a time window, the log-likelihood was
the logarithm of the predicted hazard (risk of dying) of that
window, and if not, the logarithm of the predicted chance of
surviving that window.
The loss function for a given window was the negative of the

sum of all patients’ log-likelihoods for that window. The seemingly
strange behaviour of zero loss in windows after the patient died or
was censored, regardless of the predicted survival probability,
ensures that losses were only back-propagated for patients who
actually contributed to the window in question.

Model development
ICU patients were split into a training set and a hold-out test set.
Patients born in the first 6 days of a month were assigned to the
test set, yielding about 80% for training and 20% for testing. We
used all admissions of the included patients. Using data from two
distinct geographical regions—each with their own hospitals and
patient populations—it may seem more prudent to split by region
instead of date of birth. This would, however, cause information to

leak between the sets because some patients were transferred
between regions, rendering disentanglement impossible and
thereby compromising the independence of the test set.
We used a five-fold cross validation scheme during training to

select hyperparameter values and model architecture34. Cross-
validation folds must be independent, so that e.g., a patient’s
medical history is not used for both training and validation, which
would undermine the independence of the validation set. Thus,
the cross-validation folds were created at the patient level,
allocating all admissions pertaining to a given patient to the same
fold30.
We used hyperopt35 to optimize the hyperparameter settings,

using a random search of the hyperparameter space constituting
both predefined and variable hyperparameter values. We sought
to optimize on these hyperparameters (discrete values in round
brackets and uniform distribution boundaries in squared):
recurrent layer design (LSTM, GRU), number of hidden units in
recurrent sub-model [128, 384], recurrent sub-model dropout rate
[0.1, 0.8], dropout rate [0.1, 0.8], L2 regularization parameter
[0.0001, 0.1], embedding coefficient [0.2, 2], padding percentile
[90%, 98%]. Increasing number of units in the LSTM sub-model
made it more flexible but also more prone to overfitting which, in
turn, was countered by dropout and regularization. For each
epoch, dropout randomly removed a proportion of units from the
network, and a larger regularization parameter put greater penalty
on more complex models (i.e., favours simpler ones). The padding
percentile was related to how many notes were used, since
including more notes required more padding, see Supplementary
Fig. 2.
Models were trained with the following different baselines; 0,

24, 48, and 72 h after ICU admission, respectively. Patients were
only included in the corresponding training or test data set if they
were alive at the baseline.

Explainable prediction model
To get a better understanding of the model’s predictions, and to
mitigate the issue of “black-box” predictions, we applied the
Shapley Additive exPlanations (SHAP) algorithm to obtain local,
post hoc explanations36,37. The SHAP methodology is a model-
agnostic approach, that allowed us to elicit the contribution of a
single feature contributes to the model’s overall predictions. The
method is based on Shapley values from cooperative game
theory38, expressing how much each feature, on its own and in
concert with all other features, contributes to the difference
between the actual prediction and the cohort-level mean
prediction.

Discrimination and calibration
The performance metrics were all computed in the hold-out test
set. To gauge the discriminatory performance, we used the time-
dependent concordance index (Ctd)39, a modified version of the
conventional C-index, which in turn is a natural extension of the
AUROC to survival analysis that takes censoring into account40.
The C-index of a model is the fraction of all pairwise survival time
predictions that are concordant. Two predictions are concordant if
the patient with the highest predicted risk score has the shortest
time-to-event. We used the original Ctd foregoing a proposed
modification to handle tied survival predictions41 because we
assumed the risk of ties to be too low to warrant the added
computational costs. To construct 95% confidence intervals (CI)
around the performance estimates, we applied bootstrapping
using 1000 samples with replacement of mortality prediction
probabilities.
We assessed calibration using visual and numerical evaluation

of the calibration plots for each window42 and based calibration
plots on predicted survival and the Kaplan–Meier (KM) estimates.
For each follow-up time and each baseline, we grouped patients
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by deciles of predicted survival probability and computed the
mean KM estimate within each group. The former was plotted on
the x-axis and the latter on the y-axis to construct the calibration
plot.
A traditional Cox regression model was fitted on the training

dataset with age, sex, and hospital LOS before ICU admission as
predictor variables. The performance of this Cox model on the
hold-out test set was reported for comparison.

Ethics
This study was approved by the Danish Patient Safety Authority
(3–3013–1723 and 3–3013–1731), the Danish Data Protection
Agency (DT SUND 2016–48, 2016–50, and 2017–57) and the
Danish Health Data Authority (FSEID 00003724 and FSEID
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