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An interpretable RL framework for pre-deployment modeling
in ICU hypotension management
Kristine Zhang1, Henry Wang1, Jianzhun Du1, Brian Chu1, Aldo Robles Arévalo 2, Ryan Kindle3, Leo Anthony Celi4✉ and
Finale Doshi-Velez 1✉

Computational methods from reinforcement learning have shown promise in inferring treatment strategies for hypotension
management and other clinical decision-making challenges. Unfortunately, the resulting models are often difficult for clinicians to
interpret, making clinical inspection and validation of these computationally derived strategies challenging in advance of
deployment. In this work, we develop a general framework for identifying succinct sets of clinical contexts in which clinicians make
very different treatment choices, tracing the effects of those choices, and inferring a set of recommendations for those specific
contexts. By focusing on these few key decision points, our framework produces succinct, interpretable treatment strategies that
can each be easily visualized and verified by clinical experts. This interrogation process allows clinicians to leverage the model’s
use of historical data in tandem with their own expertise to determine which recommendations are worth investigating further
e.g. at the bedside. We demonstrate the value of this approach via application to hypotension management in the ICU, an area
with critical implications for patient outcomes that lacks data-driven individualized treatment strategies; that said, our framework
has broad implications on how to use computational methods to assist with decision-making challenges on a wide range of
clinical domains.
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INTRODUCTION
Recently, researchers have turned to applying computational
methods to analyze historical data for appropriate treatment
choices. Reinforcement Learning (RL) is a subset of machine
learning in which an agent learns, through observed data,
sequences of actions that will maximize some desired outcome.
RL methods are particularly well-suited to applications in which
outcomes are sparse or delayed, such as patient mortality hours
or days after treatments are initiated. The excitement about the
potential for RL to assist with healthcare decision-making has lead
to applications in managing conditions such as hypotension,
cancer, or diabetes1–5.
Unfortunately, the computationally learned strategies are

usually not human-interpretable6–8. This limitation inhibits the
ability for clinical experts to inspect and validate a computation-
ally proposed policy prior to deployment. And clinical validation is
critical: Prior work has shown that traditional reinforcement
learning models tend to be overly optimistic about the benefit
of previously untested or under-tested treatments9 and conflate
clinically distinct conditions together; furthermore, statistical
approaches to validation have severe limitations when it comes
to identifying potential shortcomings10. Recent work has also
emphasized the importance of models that provide insight rather
than simple prediction11.
In this work, we develop a general computational framework to

derive easily inspectable treatment policies from historical data.
Our core insight is to focus on identifying decision regions—similar
clinical contexts with respect to patient and disease markers in
which clinicians make different treatment decisions—and then
using RL to recommend the best option at each “fork in the road.”
Not only does this ensure that the RL only suggests options
amongst those commonly chosen by clinicians, it results in a small

number of easy-to-examine recommendations that can be
inspected and validated prior to deployment. (We note that
independently of their use for computationally assisted decision-
making, these decision regions may also be of intrinsic interest to
clinicians curious about situations in which many of their
colleagues may be likely to make a different choice than them.)
We demonstrate our framework in the context of managing

hypotensive patients in the ICU. Here, sub-optimal choices around
fluid and vasopressor administration have been found to
dramatically impact the mortality rates of septic patients;
furthermore, treatment strategies recommended by standard
guidelines are not always consistent with clinician behavior and
there is an increasing interest for personalized treatments12. For
instance, Marik et al. found that the Surviving Sepsis Campaign
guidelines recommend a higher level of fluid administration on
the first ICU day than is used in practice, and which is associated
with increased mortality levels13. Bai et al. recommend earlier and
more aggressive use of norepinephrine; in contrast, Waechter
et al. investigate a lack of understanding of the interaction
between fluid and vasopressor treatments, and instead argue that
aggressive fluid treatment should be prioritized early rather than
vasopressors14,15. Given the variety of conflicting evidence and
guidelines, there exists a need for more consistent treatment
strategies that align with both clinician understanding and data
on patient outcomes.
To address this need, a recent set of works have applied RL to

identify strategies for managing hypotension in the ICU1,16,17, but
none have outputs that can be easily checked by clinical experts.
In contrast, we provide a strategy that can be interrogated for
when recommendations do—and do not—make sense, enabling
adjustments prior to any deployment at the bedside. While the
policies produced by our approach show promise on various
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statistical measures of patient outcome, we do not focus on
developing a specific treatment policy for bedside use. Instead, we
envision these interpretable recommendations being used to
elucidate the effects of different treatment options for clinician
understanding. This is conducive to further researching and
changing the treatment strategy in clinical context where the
optimal decision is ambiguous.

RESULTS
We demonstrate our general computational approach for
identifying easily inspected treatment strategies on the question
of managing hypotension in the ICU. Our approach was trained
and tested using the publicly available Medical Information Mart
for Intensive Care version III (MIMIC-III)18. After extracting ICU stays
involving hypotension symptoms, we obtained a total of 15,653
unique ICU stays. Each ICU stay was encoded as a discrete time
series with 1-hour intervals, from the first hour to the 72nd hour
since ICU admission. Out of this dataset, 75% of the ICU stays were
used for training, and we held out 25% as a test cohort for
evaluating learned recommendation performance.
We considered a total of 123 patient condition variables

including patient measurements, vital signs, and past treatments
received. The list of variables is detailed in the Methods (Data
Preprocessing). Because the decision points we identify depend
strongly on the feature space used to compare patients, we
performed several iterations of the algorithm while incorporating
feedback from clinicians. Importantly, the transparency of our
approach allowed for feedback to add additional features and
focus on patients with mean arterial pressure (MAP) lower than
65mmHg.
For the purpose of this demonstration, the treatment options

are discretized into four unique actions that physicians can take:
“no treatment,” “fluids only,” “vasopressors only,” or “fluids and
vasopressors both given.” The resulting policy is intended to help
clinicians determine which treatment category is best, as there
are no existing guidelines beyond the recommendation of initial
fluid resuscitation at the time of hypotension presentation. While
this discretization is obviously a simplification for the sake of
demonstration—we consider neither dosages nor specific drugs
—it does capture the core decision; for example, once the choice
is made to administer a vasopressor, the dose may be titrated
and the choice of drug may be relatively clear based on the
patient’s condition.

From these data, we first identify clusters of highly similar
patient conditions where patients receive different treatments. We
define these areas of high treatment variability as decision
regions. Note that we focus only on patients with hypotension,
a.k.a. states where patients’ MAP is less than 65mmHg, to focus
policy learning on patients who are in the most critical conditions
and who are likely to need treatment. We next build a Markov
decision process (MDP) that allows decisions only when patients
enter decision regions and follows consensus clinical practices for
the rest of the times.
Through this process, we are able to filter the 102,844 time

points in the data into just 19 decision regions where multiple
unique actions were taken for more than 10 patients, allowing us
to efficiently propose interpretable treatment recommendations
with simple reinforcement learning models for contexts where
clinicians disagree. Figure 1 depicts the high-level process of
measuring patient similarity, identifying decision regions, building
an MDP, and learning policies that can be interpreted and
validated prior to deployment.
Three different ways of encoding the goal of managing

hypotension were designed to demonstrate that our framework
produces treatment strategies that are not only succinct enough
to inspect individually, but succinct enough that one can use our
framework to surface how different ways of expressing hypoten-
sion management goals affect treatment choices. The Methods
(Modeling Framework) section provides details on the MDP and
reward function formulations. We then performed policy learning
to identify treatments that maximize expected returns on the MDP
for each reward function. Instead of using deep RL methods to
learn policies in a high-dimensional space, simple policy iteration
suffices since the number of decision regions is small and
tractable. The Methods (Policy Learning) section describes the
algorithm in detail. This choice of simple algorithm ensures our
policy training always converges to an optimum and allows us to
easily explain how each policy was determined.

Treatment policy recommendations are statistically promising
Table 1 shows that statistical off-policy evaluation (OPE) estimates
of the quality of the learned policies (estimated from the historical
data) is higher than current practice for every reward function,
suggesting potential for improvement. Moreover, the effective
sample size (ESS), a measure of confidence that approximates to
how much of the data was used to produce the estimate, is over

Fig. 1 The decision point pipeline. a We optimize a similarity metric to reflect physicians' perceptions of patient similarity. b We identify
decision regions (DR), or areas where similar patients frequently receive different treatments. c We summarize patient trajectories in terms of
decision regions. d We use this Markov Decision Process to learn an optimal treatment policy for each decision region.

K. Zhang et al.

2

npj Digital Medicine (2022)   173 Published in partnership with Seoul National University Bundang Hospital

1
2
3
4
5
6
7
8
9
0
()
:,;



half the size of the dataset. In contrast, other recent attempts to
use the same data to identify hypotension treatment recommen-
dations have had ESSs in a few hundred patient trajectories or
less19. Our higher ESS is a direct result of developing an approach
that only attempts to provide recommendations when there
appear to be multiple reasonable treatment options for similar
patient conditions.
Specifically, we use a widely used OPE method known as

weighted importance sampling (WIS)20,21. The resulting returns
were compared against the average returns obtained by the
clinicians’ observed actions. We bootstrapped samples from the
holdout test patient trajectories five times and calculated the
average rewards. To evaluate the historical treatment strategies
of clinicians, we estimate the behavior policy as the empirical
proportion of each action taken per decision region. We then
average the return over all patient trajectories in the dataset. In
addition, we conduct a separate analysis around different policies
effects on patients’ lactate levels. The results are positive
indications that the recommended actions do potentially improve
patients conditions. In addition, we found that these results
improved during the final interaction with clinician feedback.
Techniques for comparing policy performance are further
detailed in Methods (Policy Evaluation).
While WIS is a relatively simple OPE estimator, all OPE

estimators have major statistical limitations10; promising values
are no guarantee that the recommended treatment strategy is
effective or even safe. However, the fact that there is some
quantitative evidence—in the form of both the value estimate and
the ESS—to suggest that these recommended treatment strate-
gies may improve upon current practice provides the motivation
to do a thorough human inspection.

Recommendations are easily inspectable prior to deployment
Figure 2 shows the inferred treatment policy for each of the three
ways of codifying the hypotension management goal (known as
reward function). In each case, the resulting MDP was solved using
standard value iteration to identify a treatment policy with the

highest expected rewards. Being able to use simple, robust
optimization methods is an advantage our method enjoys over
having to use deep RL methods to learn treatment policies in a
high-dimensional spaces. Unlike treatment policies derived via
deep RL, where it is not possible to display even a single proposed
treatment policy, here we can show policies learned from all three
reward functions as well as the clinician’s current practice for
reference all in one figure for inspection and critique.
For the inspection of the treatment strategies below, we also

provide the visualizations in Figs. 3, 4. The first summarizes the
mean values of key clinical measures in each decision region; the
others show the expected change in each of these measures
under each treatment and the expected transitions between
decision regions after each treatment.
We specifically focus on decision regions with high mortality

rate (≥10%) and patient counts (≥10 patients each for at least two
different treatments). By examining these plots in conjunction
with the recommendations in Fig. 2, clinicians can map MDP states
to their practical experiences. They can also reason about whether
the generated policy is safe and justifiable. Again, the succinctness
of these visualizations enables expert interrogation of each
suggestion in each decision region. Such detailed clinical feedback
is critical for understanding what types of patients a decision
region represents and verifying whether the policy recommenda-
tion is reasonable prior to any deployment. Discrepancies
between clinician opinions and the learned policies can then be
further investigated. This interrogation of learned RL policies is
enabled by our framework and would not be possible with a
black-box policy.

Inspection of the recommendations yields useful insights
We now perform the interrogation of our computationally learned
treatment policies. Importantly, we do not claim that our learned
policies are correct. Rather, our core contribution is that the
policies can be inspected and validated. Below, we describe
instances where this ability to inspect the policies allowed us to
identify situations in which the recommended treatment strate-
gies made clinical sense—and where they did not.
Firstly, we note the fact that policies based on different reward

functions are slightly different but largely similar, especially with
regards to the decision regions where treatment is recommended,
demonstrates the recommendations are most robust to choices of
exactly how the hypotension management goal is formalized to
the RL algorithm.
More specifically, many of the recommendations make sense.

The learned policies and current practice both are less likely to
recommend treatments for lower-numbered decision regions
which correspond to patient states with higher average MAP.
This makes sense as patients in those conditions are relatively
stable. In general, the treatments learned by RL models are
slightly more conservative than the current clinicians’ policy.
While “vasopressor only” or “vasopressor and fluids” are the most
popular action in 10 of 19 decision regions, our learned policies
tend to recommend these relatively aggressive actions in only 7

Table 1. Off-policy evaluation results of different policies across 5
bootstrap sample runs on the test set.

Policy WIS Score ESS

Current Practice −0.67 ± 0.04 1000 ± 1

MAP-based Rewards −0.44 ± 0.03 771 ± 6

Mortality-probability Rewards −0.48 ± 0.03 785 ± 9

Final Survival-based Rewards −0.30 ± 0.02 705 ± 8

MAP stands for Mean Arterial Pressure. More positive weighted importance
sampling (WIS) score indicates better performance. Higher effective
sample size (ESS) generally indicates a more reliable estimate. We see a
boosted increase on WIS score (0.37 increase for final survival-based policy
compared with 0.15 from earlier iteration), a positive sign that iterations
using our framework indeed improve the policies.

Fig. 2 Probability assigned to each action under policies. It is obtained using three different reward functions, compared to the current
practices from clinicians.
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or 8 decision regions. This is clinically plausible given recent
studies have found fluids may be overused and potentially
worsen outcomes in the ICU22. This trend also reflects the “less is
more” mentality regarding treatments in the ICU that has gained
traction over the last decade23.
In particular, we highlight a couple decision regions where our

learned policy diverges from the clinicians’ observed policy. In
decision region 2, the MAP level suggests only borderline
hypotension and both the “mortality probability” and “outcome-
based” policies suggest action 0 (no treatment); however, the
“increase MAP” policy agrees with the physicians’ tendency to
choose action 3 (just vasopressor) or action 4 (fluid and
vasopressor). From the feature matrix in Fig. 3, most patient
metrics including lactate, urine, FiO2, and systolic blood pressure
do not appear concerning. It appears that clinicians may be
reacting mostly to the borderline hypotension and attempting to
increase MAP via vasopressor use, but our algorithm suggests that
a more conservative approach may be reasonable given the
normality of the patients’ statistics aside from MAP.
Decision regions 6 and 7 are both cases in which clinicians tend

to choose between vasopressors only or vasopressors and fluids,
but they are more likely to use vasopressors only in decision
region 7. Here, the recommended policy tends to be more
aggressive than the clinicians and recommends using both
vasopressors and fluids. Patients in region 6 have already received

high recent fluid and vasopressor dosages, and have high FiO2
levels, so clinicians may hesitate to give fluids to avoid fluids
entering their lungs. Similarly, patients in state 7 have already
received high vasopressor dosages, so clinicians may hesitate to
continue giving vasopressors. The recommended treatment policy
of both fluids and vasopressors suggests the computer does not
consider the high previous dosages to be as prohibitive as
clinicians do, which prompts further investigation of similar cases.
Decision regions 17 and 18, which contain patients with the

most severe hypotension, also prompt further investigation. In
these cases, both the "increase MAP” and "reduce mortality”
learned policies recommend taking no action, though physicians
are split between different options. With such low MAP and high
lactate, doctors may not see a way of saving the patient, and the
algorithm learns that there is little benefit in giving treatments.
Both the algorithm’s and clinicians’ policies may be attributed to
the severity of these cases–any treatment, including no treatment,
likely leads to a poor outcome. Clearly, the question of whether to
treat in the most futile conditions is worth more discussion. At the
same time, it signifies the importance and necessity of a clinical
tool like ours that can be thoroughly interrogated while making a
treatment decision.
Specific examples of the effect of recommended action can

be found in Fig. 5. Several different patients are shown where the
recommended action differs from the action taken by the

Fig. 4 Change in patient state after different treatments. a The probability of patients moving from one decision region to other decision
regions when given different treatments. This example figure shows how patients transition out of decision region 9. b The expected average
feature value for patients in each decision region after different treatments were given. This example figure reflects MAP level change.

Fig. 3 The feature means for points in each decision region. Means are sorted by descending order of Mean Arterial Pressure (MAP) value.
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clinician. Patient type 1 shows an example where the recom-
mended action is to take no action, but the clinician prescribed
some treatment. The expected mortality from the recommended
action is lower than the clinician action. The action taken by the

clinician is reactionary to a drop in mean arterial pressure. The
patient does not have an elevated serum lactate and may have
tolerated a certain degree of hypotension. Unnecessary fluid bolus
has a cost with respect to clinical outcomes downstream. Patient

Fig. 5 Examples of patient trajectories. For three specific patient cases where the recommended action differs from the clinician actions, we
track the changes over time in their clinical metrics.
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type 2 is an example where the algorithm recommends a
treatment different from the clinician treatment that results in a
lower expected mortality. The scenario was likely in the setting of
intubation where hypotension is not uncommon as a result of the
requisite sedation. The clinician opted to only use vasopressor to
counteract the hypotension from sedation. Given the elevated
serum lactate, the patient might have benefitted as well from the
administration of fluid in addition to the vasopressor. Patient type
3 shows an example where the expected mortality for either the
recommended and clinician action is high. This scenario was
likewise in the setting of intubation, but this time, the clinician
elected to treat the hypotension with both fluids and vasopressor.
The main difference between this case and the previous one is the
serum lactate; it was normal at the time of the hypotension.

DISCUSSION
We leverage our general framework for interpretable RL to derive
recommendations for managing hypotension in the ICU from
historical data. The resulting treatment guidelines not only have
promising statistical performance, but can also be inspected by
experts to identify specific recommendations for further study. In
this way, our approach enables much more in-depth analysis
leveraging historical data: we produce a collection of easily
inspectable treatment suggestions in contexts where there is no
clinician consensus that can be inspected and validated prior to
any deployment at the bedside. We have also demonstrated the
value of increased transparency through improved policies by
iterating over clinician feedback. In contrast, many existing black-
box RL systems provide specific treatment suggestions for
individual patients, but are difficult for clinicians to understand
and learn from at a high level.
In this way, we take important steps toward addressing a

critical gap in the safe and effective adoption of reinforcement
learning algorithms at the bedside. The ability to interrogate the
model as we demonstrated in this paper will help clinicians
understand: (1) how a specific episode of hypotension given a
certain set of features was treated historically and (2) identify the
intervention that typically resulted in the best outcome. Rather
than relying on a black-box model to make decisions in real
time, clinicians can use the interpretable model suggestions
beforehand to identify the most contentious patient contexts
and re-examine or modify their treatment strategies. Describing
the model suggestions in terms of a small number of decision
regions allows clinicians to focus on and visualize the most
complex patient contexts, and also identify possible weaknesses
in the model, such as clustering clinically distinct patients
together. A secondary use case would be to alert clinicians when
the algorithm detects a patient entering a decision region. The
clinician would then have the option to compare their intended
treatment against their colleagues’ past choices and/or the
model’s recommendation.
More broadly, our method may be used to identify safe and

interpretable recommendations on many clinical problems
beyond hypotension management in critical care. Though we
have shown our approach’s applicability for this use case, we
present a method, rather than a specific model, that can
summarize reinforcement learning models for better clinician
understanding. RL is a useful tool when one wishes to utilize large
amounts of historical data to enhance the clinician’s prediction of
potential long-term effects, perceived short-term gains (e.g.
immediate physiologic improvement) from specific actions, and
treatment interactions that are not typically investigated in clinical
trials. That said, in the midst of treating patients, clinicians may not
and should not be willing to blindly rely on automated
recommendations in complex contexts without inspecting the
historical data that supports a given choice. In contrast to previous
RL approaches that are black-box, our model’s recommendations

are highly interpretable and enable expert-guided policy improve-
ment. Because our recommendations are so succinct, following
expert validation and further prospective testing, they can be
summarized into guidelines that require no computer at the
bedside. Thus, we have a natural pathway from inspection,
adaptation, prospective validation, and integration into practice.
With regard to the specific question of hypotension manage-

ment, our approach is an important step forward but has its
limitations. Due to our focus on presenting the framework that
outputs explainable recommendations, we generated recommen-
dations of fluid or vasopressor without doses because that is
what was supported by the data available. With regard to the
outcome: while 30-day mortality is an easily measurable outcome,
there are many factors contributing to that outcome beyond how
the patient’s hypotension was managed. Finally, our methods take
several measures to avoid confounding as detailed in Methods
(Modeling Framework), but it is still quite possible that certain
decision regions do have unmeasured confounders.
Relatedly, one inherent challenge in using data retrospectively

to evaluate models is the lack of clarity into the original
physicians’ decision processes. Our analysis allowed us to inspect
specific cases where physicians’ observed actions differed from
our algorithm’s recommendation. Aiming to understand the
clinical reasoning behind the original actions, we identified
50 such patients and reviewed clinician progress notes around
the times of disagreement. These notes stated general plans of
action such as “wean vasopressor as tolerated,” “optimize
preload,” or “trend serum lactate,” but did not include any
rationale for specific actions. Because the underlying data does
not capture the physicians’ reasoning, it is difficult to identify the
cause of model divergences. Instead, a retrospective study relies
on other clinicians to examine these specific cases and propose
potential explanations.
To these limitations, we emphasize that our goal was not to

provide the unequivocal solution to hypotension management in
the ICU, but rather provide a demonstration of a method that,
through its inspectability, enables a conversation about what
recommendations are worth further investigation and those that
are likely caused by confounders or errors in data capture—
something impossible with current RL methods.
More broadly, our framework does involve multiple computa-

tional steps that must be tuned depending on the dataset,
including iteratively updating the clusters to select the best set of
hyperparameters. We tested robustness to one key set of
parameters—the rewards—in this work, and validated other
parameters via iterative tuning and clinical expertise. If one were
to apply our framework to a new clinical domain, all of this tuning
would need to be done to ensure valid results; an interesting
direction for future computational work could include systematic
methods for automating this turning or reducing the number of
moving parts.
We introduced a framework for investigating contexts in which

clinicians choose different treatments for similar patients,
identifying the better options in these cases, and succinctly
presenting this analysis back to clinical experts. In the application
of hypotension management in the ICU, we presented 4 different
treatment options across patient states as defined by vital signs,
laboratory test results, and treatment history - no treatment,
fluids only, vasopressors only and fluids plus vasopressors - and
their associated clinical outcomes. The concise treatment
suggestions produced by our model had some quantitative
evidence for improving care, but more importantly, they enabled
visualizations that clinicians may use to verify whether gains
could truly be expected.
As we have done, we can continue updating our framework to

integrate new data and input from human experts into the
pipeline (i.e., human in the loop) for iterative policy improvement
and customized treatment plans for patients in the future.
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Furthermore, the overall approach can be validated by testing
the framework on new datasets and determining whether the
resulting suggestions are clinically sound. Reinforcement learn-
ing models have shown great promise thus far for medical
applications; our framework aims to help clinicians fully leverage
their value using clinician-tested and interpretable treatment
recommendations.

METHODS
Dataset
We used data from the Medical Information Mart for Intensive
Care (MIMIC-III) dataset18. The dataset contains charted observa-
tions and laboratory measurements for patients who were treated
in the intensive care units at Beth Israel Deaconess Medical Center.
MIMIC-III is available at http://mimic.physionet.org/. We used data
from the MIMIC-III MetaVision database, which includes stays from
2008 and onwards. Our inclusion criteria were that it was the first
ICU stay for that patient and the stay had at least 3 MAP
measurements below 65 mmHg, indicating hypotension. The
filtering resulted in a total of 15,653 unique ICU stays.

Data Preprocessing
Preprocessing was performed as described in Futoma et al.19.
Each ICU stay was considered a single trajectory. Trajectories
were discretized into hourly bins starting at t= 1 h into ICU
admission and truncated either at discharge or at t= 72 h, as
most acute hypotensive cases tend to appear early in ICU
admission. We applied the “last observation carried forward”
(LOCF) method for imputation - If no measurements or multiple
measurements were taken in a given hour, the most valid recent
measurement was used. Because many lab measurements
happen once in several hours, this method provided us
conservative estimate for missing values without introducing
additional noises. It is also uncommon for lab values to be
measured multiple times within an hour and many vitals are
measured only once per hour for MIMIC-III so we rarely lost
measurements inside the hour19.
The initial state space consisted of 123 clinical features

including patient measurements, vital signs, and records of past
treatment actions. In addition to those features, we also created
indicator variables to denote how recently the measurements
were taken—in the past hour, in the past 8 hours, or any time
during the ICU stay. We also included past treatment features
including the amount of either fluids or vasopressors administered
to each patient at each time step. The complete list of features
considered can be found in Table 2; note these dimensions
contain some redundancy with indicators and quantitative
measure for the same variables.
In policy learning we primarily consider the four general actions

corresponding to “no treatment” (83% of the time steps in the
cohort), “fluids only” (3%), “vasopressors only” (12%), or “fluids and
vasopressors both given” (2%). The learned policy is intended to
help clinicians decide whether to give each type of treatment at
all, as there are existing guidelines for the quantity to give once a
choice has been made.
To analyze treatment impact on outcome, we define a

patient’s mortality to be true if they died in the hospital within
30 days of ICU admission, which accounts for 11% of the patients
in the dataset.
For optimization, we consider three different reward functions,

or ways to quantify outcomes: (1) Outcome-based: the patient is
only given a reward once they reach one of two mortality states at
the end of the trajectory. The reward is 1 for reaching “alive” and 0
for reaching “dead”, 30 days after ICU admission. (2) Mortality-
probability: at each timestamp, the reward is calculated based on
the current cluster the patient is in and the treatment given.

The reward is the negative empirical probability of mortality for
the cluster-treatment combination. There is 0 reward for leaving a
mortality cluster. (3) Mean Arterial Pressure-based: at each
timestamp, the reward is calculated based on the average MAP
of the next cluster the patient enters. Lower MAP corresponds to
lower reward, with the reward calculated as a linear interpolation
from −1 to 0. For mortality states, the reward of “alive” is 0 and the
reward of “dead” is −1.
While this first reward corresponds most closely to what we

may care about, it is also distant (occurring a long time after
the treatment action), and there may be many other reasons for
the mortality outcome. The probability of mortality reward
function makes the distant outcome more immediate, and the
MAP-based reward function helps focus on elements that the
treatments most directly affect.

Table 2. List of clinical features considered from the MIMIC-III dataset.

Category Features

Static/Demographic Admission Times

Admission Times (normalized)

Age

Gender

If Surgical ICU

If Ethnically White

If Emergency Admission

If Urgent Admission

Hours since Hospital Admission to ICU Admission

Labs Measurements Bicarbonate

Bun

Creatinine

Fio2 (fraction inspired oxygen)

Glucose

HCT (hematocrit)

Lactate

Magnesium

Platelets

Potassium

Sodium

White Blood Cell Count

Alt: liver marker

Ast: liver marker

Bilirubin: liver marker

Hemoglobin

pco2:partial pressure of carbon dioxide

po2:partial pressure of oxygen

CO2

Weight

Vitals Heart Rate

Pulse Oximetry

Temperature

Urine Output

Respiration Rate

Diastolic Blood Pressure

Mean Arterial Pressure

Systolic Blood Pressure
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Modeling framework
Formally, a Markov Decision Process (MDP) is a tuple
hX ;A; T ;R; γi. The state space X can be discrete or continuous
(2 Rd). We shall assume a discrete action space A. The functions
Tðx0jx; aÞ and R(x, a) denote the state transition function and
reward function, respectively; the discount factor γ ∈ (0, 1] trades
between immediate and longer-term outcomes.
A policy π : ðX ;AÞ ! ½0; 1� defines the probability an action

given a state. We define πb as the behavior policy under which the
observed data was generated, in this case the current clinicians’
policy, and πe as the evaluation policy learned through RL models.
The objective is to learn a policy that maximizes the expected
return, or sum of discounted rewards Vπ ¼ E

P
tγ

trtjat � π
� �

.
We split the set of patient trajectories into train and test sets.

We used a 75/25 split resulting in 11,739 trajectories in the train
set and 3914 trajectories in the test set. We then select records
where patients’ mean arterial pressure is below 65mmHg as those
are likely moments where patients are in the critical conditions.
This resulted in 102,844 transition tuples for the train set and
34,549 transition tuples for the test set.
To generate an MDP from these transitions, we first identified a

set of decision regions, or patient conditions under which clinician
disagreement is most common. The innovation of our method is
that we do not consider every time-step to be a potential decision
point. Rather, we only consider those points with high behavior
policy variability, that is, states whose similar neighbors are
administered different treatments.
Figure 1 outlines the pipeline used to condense initial patient

states into decision regions. We first apply kernel learning to learn
the similarity among patients in a latent space. We then identify
areas where similar patients frequently receive different treat-
ments, a.k.a. Decision Regions (DR). Next, we summarize the
trajectories in terms of decision regions. We finally use this Markov
Decision Process to learn an optimal policy over the decision
regions. Each of these steps are detailed below.
To identify decision points, we train a Random Forest classifier

to identify the top 20 patient features with the highest importance
score for predicting treatment actions. Figure 6 shows these 20
variables. We then combine those classifier-identified features
with features that clinicians believe are important, such as
indicator of whether CO2 is within 21–29 mEq/L. Afterwards, we
train a kernel-based classifier to predict clinician actions,
simultaneously learning a weighted Gaussian kernel as a distance

metric between states.

kðx; x0Þ ¼ expð�kðw � x � w � x0Þk22Þ (1)

Here, kðx; x0Þ is the estimated similarity between states, w can be
interpreted as an importance weighting over state dimensions,
and⊙ represents an element-wise multiplication between vectors.
We learn the kernel weights w by backpropagating through the
kernel space to optimize the cross-entropy loss of predicting
clinician actions. We use a Random Fourier Feature24 representa-
tion of the kernel for additional computational scalability. States
whose close neighbors (according to the kernel) disagree on the
choice of action are considered decision points. States with kernel
similarity threshold of 0.95 and greater are considered as
neighbors, and an action with at least 20 neighboring patients
taking is considered choosable.
After identifying whether each state is a decision point, we

proceed to cluster the decision points into decision regions. We
utilize a top-down hierarchical clustering approach where all
decision points start in the same cluster and clusters are iteratively
split. Distances between decision points are calculated using the
standardized state features (dimensions of x). For each inter-
mediate cluster, the difference of mean values for each feature
across actions is computed. If the differences in means exceed 1,
this implies the region is not homogeneous and we further split
the clusters. This ensures finding decision regions where the
optimal action is truly unclear. Secondly, we examine if a given
cluster creates loops—defined as trajectories that leave a cluster
and return to the same cluster within the next three time steps—
as these (artificial) loops can make the agent believe that it can
“freeze time” and avoid any final consequence. If loop percentage
is over 20%, we further split the cluster. This clustering serves as
the starting point for us to define our summarized MDP. Each
decision region is now an state in our summarized MDP.
The clusters form the states of our summarized MDP. It remains

to specify how we treat actions and define the transitions
between the decision regions. Our first step is to condense
contiguous times when a patient is in a specific decision region as
one visit to that decision region. The action for a single decision
region is defined as the combination of any treatments given
during the recorded time period. For example, a patient who
receives no treatment throughout their time in a decision region
will be designated “no treatment”, whereas a patient who receives
fluids and then vasopressors while staying in the same decision
region will be designated “fluid and vaso”.

Fig. 6 Feature importance of clinical variables. Bar charts showing feature importance, derived from random forest classifiers, in
descending order.
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Next, we remove any time steps in the patient trajectory that
are not decision clusters (that is, non-decision point states). In the
final tuple of a trajectory, we include a transition to the mortality
state of the patient to track their outcome. In mathematical terms,
we convert each patient transition tuple fðx; a; x0ÞgL into a shorter
trajectory fðx; a; x0Þgℓ, where all x; x0 2 C are decision clusters and
a 2 A are summarized actions. This gives us a new dataset with a
total N transition tuples fðx; a; x0Þg. Now, we estimate a behavior
policy πb and transition function Tðx0jx; aÞ by iterating over the
new dataset, as formalized in Equation (2) and (3). Intuitively, the
behavior policy is estimated as the proportion of times an action
was taken from a given decision cluster, and the transition
function is estimated as the proportion of times a given decision
cluster-action pair led to another decision cluster. This MDP
summarization process reduces both the size of the state space
under consideration and the length of patient trajectories.

πbða�jx�Þ ¼
PN

i¼1 Iðxi ¼ x�; ai ¼ a�ÞPN
i¼1 Iðxi ¼ x�Þ

(2)

Tðx0�jx�; a�Þ ¼
PN

i¼1 Iðxi ¼ x�; ai ¼ a�; x0 ¼ x0�ÞPN
i¼1 Iðxi ¼ x�; ai ¼ a�Þ

(3)

When identifying decision regions we have two main hyper-
parameters: δ, the minimum similarity from a point x to its
neighbors, and n, the minimum number of neighbors who must
share the same action. Any action taken by at least n neighbors
within similarity δ are considered allowable actions. Decision
points are defined as states with multiple allowable actions in their
neighborhoods. To choose the optimal hyperparameters, we
perform a grid search over a set of candidate values on a
validation dataset. For each pair of δ, n, we evaluate the overall
AUC score from action classification for a sampled subset of
points. The labels are determined by the empirical distribution of
observed actions in each neighborhood. Through gridsearch, we
finally choose the similarity threshold δ= 0.95 and n= 20, which
achieves the highest AUC score.
To check for sensitivity to reward formulation, we solved our

MDP using three different reward functions. (1) MAP-based
Rewards: at each timestamp, the reward is calculated based on
the average MAP of the next cluster the patient enters. Lower
MAP corresponds to lower reward, with the reward calculated as
a linear interpolation from −1 to 0. For mortality states, the
reward of “alive” is 0 and the reward of “dead” is −1. (2)
Mortality-probability Rewards: at each timestamp, the reward is
calculated based on the current cluster the patient is in and the
treatment given. The reward is the negative empirical probability
of mortality for the cluster-treatment combination. There is 0
reward for leaving a mortality cluster. (3) Outcome-based
Rewards : the patient is only given a reward once they reach
one of two mortality states at the end of the trajectory. The
reward is 1 for reaching “alive” and 0 for reaching “dead”, 30 days
after ICU admission.

Policy Learning
Given the summarized MDP above, we solved for its optimal
policy using value iteration, which computes the expected reward
associated with a state. Value iteration begins by initializing the
expected reward of each state to random values and proceeds by
iteratively updating the value function until it finds a policy that
maximizes long-term expected rewards. The value V of state s is
updated using Bellman’s equation:

VðxÞ  max
a2A

E½rjx; a� þ γ
X
x02X

Pðx0jx; aÞVðx0Þ
 !

(4)

Because we constructed three different reward functions, we
learned three corresponding policies. Because the rewards are
sparse, we used discount rate of γ= 0.98 to avoid neglecting
future rewards. We tried discounts of 0.95 and 0.9 in earlier
iterations and the optimal choices of treatments were consistent,
indicating our policies were robust to the choice.

Policy Evaluation
To quantitatively evaluate the optimal policy learned using the
designed MDP, we employ techniques from off-policy evaluation
(OPE). OPE can be used to estimate the value Vπe of an evaluation
policy πe given only historical trajectories D ¼ fτð1Þ; ¼ ; τðnÞg
collected with a behavior policy πb.
The most common approach to OPE is importance sampling (IS).

The vanilla IS estimator is given by V̂
πe
IS ðDÞ ¼ 1

n

Pn
i¼1 gðτðiÞÞρðiÞ

where the trajectory weight is a product of likelihood ratios ρðiÞ ¼QT ðiÞ

t¼1
πeðaðiÞt js

ðiÞ
t Þ

πbðaðiÞt js
ðiÞ
t Þ

and gðτÞ ¼
PT

i¼t γ
tRðst; atÞ as the discounted return

of a trajectory. Unlike the trajectories that are typically used in the
IS estimator, our decision region trajectories have varying lengths
T(i). Although the IS estimator is unbiased for Vπe , it usually has
large variance. To reduce variance, the weighted importance
sampling (WIS) estimator is more widely used as a biased but
consistent estimator. The WIS estimator normalizes the impor-
tance weights ρ of each trajectory within range 0 to 1. We might
prefer WIS to IS when there are few samples available, because the
lower variance of WIS is able to produce a larger reduction in
expected square error than the additional error incurred due to
the bias.

V̂
πe
WISðDÞ ¼

1Pn
i¼1 ρ

ðiÞ

Xn
i¼1

gðτðiÞÞρðiÞ (5)

We utilize the WIS estimator in our experiments and apply
standard weight clipping by capping weights at 95 percentile. We
construct evaluation rewards by combining MAP-based rewards
and Mortality-probability rewards - reward based on MAP value
during ICU stay and mortality-probability reward at ICU release.
Specifically, during the ICU stay we assign −1 to 0 reward to
patients based on the MAP readings for each step and at the end
of the trajectory, assign −1 if they reach “death” and 0 if they
reach “alive”. For each of our learned policy as well as current
practice policy (historical treatment records from clinicians), we
apply WIS over all trajectories and take the average WIS score as
the estimate of a policy’s value. For behavior policy, we use the
percentage of each action taken in historical treatments as the
probability estimate of taking the corresponding action and thus
calculate the behavior policy’s WIS score.
To provide additional quantitative support, we evaluate the

effects of different policies on the transition of patients’ lactate
level as a proxy for whether the treatments are effective. For
hypotensive patients, reduction in lactate level suggests treatment
efficacy. For each occurrence of lactate change, we record the
provided treatment given the hour before and determine whether
the treatment provided by clinicians are consistent with the
recommendations provided by our policies. We then apply WIS to
estimate the reduction in lactate were our recommended actions
were provided. While our policies were not specifically trained to
reduce lactate, we find our policies achieve similar performance in
reducing lactate as clinician policy. We achieve WIS estimated
reduction of 0.06 for behavior policy and 0.08 for evaluation policy
with MAP-based rewards and final survival-based rewards on the
test set, which is positive sign that the recommended actions are
improving the patients’ conditions.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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