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Abstract

The aim of this paper is to provide a general mathematical framework for group equivariance
in the machine learning context. The framework builds on a synergy between persistent
homology and the theory of group actions. We define group equivariant non-expansive
operators (GENEOs), which are maps between function spaces associated with groups of
transformations. We study the topological and metric properties of the space of GENEOs to
evaluate their approximating power and set the basis for general strategies to initialise and
compose operators. We begin by defining suitable pseudo-metrics for the function spaces, the
equivariance groups, and the set of non-expansive operators. Basing on these pseudo-metrics,
we prove that the space of GENEOs is compact and convex, under the assumption that
the function spaces are compact and convex. These results provide fundamental guarantees
in a machine learning perspective. We show examples on the MNIST and fashion-MNIST
datasets. By considering isometry-equivariant non-expansive operators, we describe a simple
strategy to select and sample operators, and show how the selected and sampled operators
can be used to perform both classical metric learning and an effective initialisation of the
kernels of a convolutional neural network.
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1. Introduction

Deep learning-based algorithms reached human or superhuman performance in many real-
world tasks. Beyond the extreme effectiveness of deep learning, one of the main reasons for its
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success is that raw data are sufficient—if not even more suitable than hand-crafted features—
for these algorithms to learn a specific task. However, only few attempts have been made to
create formal theories allowing for the creation of a controllable and interpretable framework,
in which deep neural networks can be formally defined and studied. Furthermore, if learning
directly from raw data allows one to outclass human feature engineering, the architectures
of deep networks are growing more and more complex, and often are as task-specific as
hand-crafted features used to be.

We aim at providing a general mathematical framework, where any agent capable of
acting on a certain dataset (e.g. deep neural networks) can be formally described as a
collection of operators acting on the data. To motivate our model, we assume that data
cannot be studied directly, but only through the action of agents that measure and transform
them. Consequently, our model stems from a functional viewpoint. By interpreting data as
points of a function space, it is possible to learn and optimise operators defined on the data.
In other words, we are interested in the space of transformations of the data, rather than the
data themselves.

Albeit unformalised, this idea is not new in deep learning. For instance, one of the main
features of convolutional neural networks [1] is the election of convolution as the operator of
choice to act on the data. The convolutional kernels learned by optimising a loss function
are operators that map an image to a new one that, for instance, is more easily classifiable.
Moreover, convolutions are operators equivariant with respect to translations (at least in the
ideal continuous case). We believe that the restriction to a specific family of operators and
the equivariance with respect to interpretable transformations are key aspects of the success
of this architecture. In our theory, operators are thought of as instruments allowing an agent
to provide a measure of the world, as the kernels learned by a convolutional neural network
allow a classifier to spot essential features to recognise objects belonging to the same category.
Equivariance with respect to the action of a group (or a set) of transformations corresponds
to the introduction of symmetries in the function space where data are represented. This
allows us to both gain control on the nature of the learned operators, as well as drastically
reduce the dimensionality of the space of operators to be explored during learning. Such a
goal is in line with the recent interest for invariant representations in machine learning (cf.,
e.g., [2]).

We make use of topological data analysis to describe spaces of group equivariant non-
expansive operators (GENEOs). GENEOs are maps between function spaces associated with
groups of transformations. We study the topological and metric properties of the space of
GENEOs to evaluate their approximating power and set the basis for general strategies to
initialise, compose operators and eventually connect them hierarchically to form operator
networks. Our first contribution is to define suitable pseudo-metrics for the function spaces,
the equivariance groups, and the set of non-expansive operators. Basing on these pseudo-
metrics, we prove that the space of GENEOs is compact and convex, under the assumption
that the function spaces are compact and convex. These results provide fundamental and
provable guarantees for the goodness of this operator-based approach in a machine learning
perspective: Compactness, for instance, guarantees that any operator belonging to a certain
space can be approximated by a finite number of operators sampled in the same space.
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Our study of the space of GENEOs takes advantage of recent results in topological data
analysis, in particular in the theory of persistent homology [3]. Our approach also generalises
standard group equivariance to set equivariance, which seems much more suitable for the
representation of intelligent agents.

To conclude, we validate our model with examples on the MNIST, fashion-MNIST and
CIFAR10 datasets. These applications are aimed at proving the effectiveness on discrete
examples, of the metrics defined and the theorems proved in the continuous case. By
considering isometry equivariant non-expansive operators (IENEOs), we describe two simple
algorithms allowing the selection and sampling of IENEOs based on few labelled samples
taken from the dataset. We show how selected and sampled operators can be used to perform
both classical metric learning and effective initialisation of the kernels of a convolutional
neural network.

Our main contribution is a general framework to previous works on group equivariance in
deep learning context [4, 5]. We believe that the formal foundation of our model is suitable to
start a new theory of deep-learning engineering, and that novel research lines will stem from
the synergy of machine learning and topology. This synergy is object of study by more and
more researchers, focusing both on the treatment of data via TDA before applying classical
machine learning [6, 7], and the analysis of the topology of convolutional neural networks [8].
However, our approach differs from the previous ones in that it focuses on a new theoretical
setting, based on the introduction of new topologies and metrics.

The paper is structured as follows. In Section 2 the epistemological foundations of our
model are discussed. The mathematical background in topological persistence is provided
in Section 3. Section 4 details the mathematical model for data, transformations, and
GENEOs. Section 5 proves the compactness and convexity of the space of GENEOs, under
suitable hypotheses. New results in persistent homology to define computable metrics in the
space of GENEOs and in the space of data are presented in Section 6, along with the extension
of the theory from group to set equivariance. Finally, in Section 7, we describe two algorithms
to select and sample operators in the discrete case, and show examples on the MNIST
and fashion-MNIST datasets. A Python package allowing to reproduce the computational
experiments described in Section 7 is available in gitlab.com/mattia.bergomi/geneos.

2. Epistemological setting

Our mathematical model is justified by an epistemological background which revolves
around the following assumptions:

1. Data are represented as functions defined on topological spaces, since only data that are
stable with respect to a certain criterion (e.g., with respect to some kind of measurement)
can be considered for applications, and stability requires a topological structure.

2. Data cannot be studied in a direct and absolute way. They are only knowable through
acts of transformation made by an agent. From the point of view of data analysis, only
the pair (data, agent) matters. In general terms, agents are not endowed with purposes
or goals: they are just ways and methods to transform data. Acts of measurement are
a particular class of acts of transformation.

3
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3. Agents are described by the way they transform data while respecting some kind of
invariance. In other words, any agent can be seen as a group equivariant operator
acting on a function space.

4. Data similarity depends on the output of the considered agent.

In other words, in our framework we assume that the analysis of data is replaced by the
analysis of the pair (data, agent). Since an agent can be seen as a group equivariant operator,
from the mathematical viewpoint our purpose consists in presenting a good topological
theory of suitable operators of this kind, representing agents. For more details, we refer the
interested reader to [9].

3. Mathematical background

Our mathematical model builds on functional analysis and Topological Data Analysis
(TDA). TDA is an emerging field of research which studies topological approaches to explore
and make sense of complex, high-dimensional data, such as artificial and biological networks
[10, 11]. The basic idea is that topology can help to recognize patterns within data, and
therefore to turn data into useful knowledge. One of the main concepts in TDA is Persistent
Homology (PH), a mathematical tool that captures topological information at multiple scales.
Our mathematical model proposes an integration between the theory of group actions and
persistent homology.

In summary, persistent homology allows to represent the topological and geometrical
features of a topological space X (e.g. an image, a 3-dimensional mesh) as it is seen by
a continuous, real-valued function ϕ defined on the space. The homology functor (see for
instance [12]) is used to encode the information of the pair (X,ϕ) in the form of persistence
diagrams. In other words, we can associate each continuous function ϕ : X → R with a
persistence diagram Dϕ, that is represented by a discrete collection of points in the real plane.
Beyond the technicalities that are needed to define the concept of persistence diagram, two
important points are to be stressed. First, persistence diagrams can be quickly computed.
Second, an easily computable distance δmatch between persistence diagrams is available
and gives a lower bound for the max-norm distance between functions: δmatch(Dϕ1 , Dϕ2) ≤
‖ϕ1 − ϕ2‖∞. It follows that the bottleneck distance δmatch between persistence diagrams
can be used as an efficient proxy for the max-norm distance between real-valued functions.
Since our approach is deeply rooted in the comparison of real-valued functions, persistence
diagrams are a key tool in our model. The definition of persistence diagram and of the
bottleneck distance δmatch are intuitively depicted in fig. 1 and rapidly formalised in what
follows. We refer the reader to [13, 14, 15] for further details.

3.1. Persistent Homology

In PH, data are modelled as objects in a metric space. The first step is to filter the data
so to obtain a family of nested topological spaces that captures the topological information
at multiple scales. A common way to obtain a filtration is by sublevel sets of a continuous
function, hence the name sublevelset persistence. Let ϕ be a real-valued continuous function
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7.2. FROM HOMOLOGY TO PERSISTENT HOMOLOGY 103
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Figure 7.8: An example of persistence barcode and persistence diagram. Noisy
classes are represented as short bars in the barcodes and as points near the diagonal
in the diagram representation. The critical points of the height function are denoted
by red circles. According to their labels, the pairing is given by (c1,Œ), (c2, c4),
(c3, c5) and (c6,Œ).

filtration induced by the sub-level sets of a tame functions f . Moreover, the lifespan
of the homology classes represented by a cornerpoint corresponds to its distance
from the diagonal. Thus, noisy and persistent homological classes are represented
by cornerpoints lying near to or far from the diagonal, respectively.

Bottleneck distance

Persistence diagrams are simpler than the shape they represents and describe its
topological and geometrical properties, as they are highlighted by the homological
critical values of the function used to build the filtration. The bottleneck distance
allows to compare such diagrams.

Definition 7.2.7. Let X be a triangulable topological space and f, g : X æ R two
tame functions. The bottleneck distance between Dk(f) and Dk(g) is

dB (Dk(f), Dk(g)) = inf
“

sup
pœDk(f)

Îp ≠ “(p)ÎŒ ,

where “ : Dk(f) æ Dk(g) is a bijection and Îp ≠ “(p)ÎŒ = maxpœDk(f) |p ≠ “(p)|.

In Figure 7.9 a bijection between two k-persistence diagrams is depicted. Corner
points belonging to the two diagrams are depicted in orange and yellow, respectively.
Observe how the inclusions of the points of � allows the comparison of multisets of
points whose underlying set has di�erent cardinality (see Section 3.1 for a definition
of multiset) by associating one of the purple points to one of the points lying on the
diagonal.

An important property of persistence diagrams is their stability. A small pertur-
bation of the tame function f produces small variations in the persistence diagram
with respect to the bottleneck distance.

104 CHAPTER 7. TOPOLOGICAL PERSISTENCE

Figure 7.9: A matching between two k-persistence diagrams. The bijections between
elements of the diagrams is denoted using left-right arrows.

Theorem 7.2.1. Let X be a triangulable topological space and f, g : X æ R two
tame functions. For every integer k, the inequality

dB (Dk(f), Dk(g)) 6 Îf ≠ gÎŒ ,

where Îf ≠ gÎŒ = supx |f(x) ≠ g(x)|, holds.

7.2.3 An algorithm for computing persistence
Persistence is computed through an algorithm mirroring the one we described
in Algorithm 7.1. Let K be a triangulation of X, and f̃ : K æ X a monotone
function such that f̃ (·) 6 f̃ (‡) if · is a face of ‡. Consider an ordering of the
simplices of K, such that each simplex is preceded by its faces and f̃ is non-decreasing.

This ordering allows to store the simplicial complex in a boundary matrix B,
whose entries are defined as

B (i, j) =
; 1 if ‡i < ‡j

0 otherwise . (7.2.1)

The algorithm receives in input a boundary matrix B and reduces it to a new
0≠1 matrix R via elementary column operations. Let J = { 1, . . . , n } be the indices
of the columns of B and

lowR : J æ N
j ‘æ l,

where l is the lower row index of the last 1 entry of the jth column. If a column has
only 0 entries lowR (j) is undefined. A matrix R is reduced if for every couple of

Persistent homology

A. Filtered topological space. B. Persistence diagram C. Matching

φ

Figure 1: In persistent homology we consider pairs composed by a topological space and a continuous function
defined on the topological space of interest. The (homological) critical values of the function induce naturally
a sublevel set filtration of the topological space. In panel A, a topological sphere is filtered by considering the
critical values of the height function. We obtain a filtration by considering the sequence of nested sublevel
sets ordered according to the natural order on the critical values. The evolution throughout the filtration of
the number of generators of the kth homology groups (i.e. the number of k-dimensional holes) is represented
as a persistence diagram in Panel B. 0-dimensional holes, or connected components are represented as green
cornerpoints. The void generated when considering the last sublevel set, corresponding to the entire space,
generates the cornerline depicted in blue. A distance between two persistence diagrams can be computed as
an optimal matching of cornerpoint. The matching process is depicted in Panel C. Note how non-matchable
cornerpoints can be associated to their projection on the diagonal.

on a topological space X. Persistent homology represents the changes of the homology groups
of the sub-level set Xt = ϕ−1((−∞, t]) varying t in R. We can see the parameter t as an
increasing time, whose changes produce the birth and the death of k-dimensional holes in
the sub-level set Xt. We observe that the number of independent 0-dimensional holes of Xt

equals the number of connected components of Xt minus one, 1-dimensional holes refer to
tunnels and 2-dimensional holes to voids.

Definition 3.1. If u, v ∈ R and u < v, we can consider the inclusion i of Xu into Xv.
If Ȟ denotes the Čech homology functor, such an inclusion induces a homomorphism
ik : Ȟk(Xu)→ Ȟk(Xv) between the homology groups of Xu and Xv in degree k. The group
PHϕ

k (u, v) := ik(Ȟk(Xu)) is called the kth persistent homology group with respect to the
function ϕ : X → R, computed at the point (u, v). The rank rk(ϕ)(u, v) of PHϕ

k (u, v) is said
the kth persistent Betti numbers function (PBN) with respect to the function ϕ : X → R,
computed at the point (u, v).

Persistent Betti numbers functions can be completely described by multisets called
persistence diagrams. The kth persistence diagram is the multiset of all the pairs pj = (bj, dj),
where bj and dj are the times of birth and death of the jth k-dimensional hole, respectively.
When a hole never dies, we set its time to death equal to ∞. The multiplicity m(pj) says
how many holes share both the time of birth bj and the time of death dj. For technical
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reasons, the points (t, t) on the diagonal are added to each persistence diagram, each one
with infinite multiplicity.

Each persistence diagram D can contain an infinite number of points. For every q ∈ ∆∗ :=
{(x, y) ∈ R2 : x < y}∪{(x,∞) : x ∈ R}, the equality m(q) = 0 means that q does not belong
to the persistence diagram D. We define on ∆̄∗ := {(x, y) ∈ R2 : x ≤ y} ∪ {(x,∞) : x ∈ R}
a pseudo-metric as follows

d∗((x, y), (x′, y′)) := min

{
max{|x− x′|, |y − y′|},max

{
y − x

2
,
y′ − x′

2

}}
(1)

by agreeing that ∞− y = ∞, y −∞ = −∞ for y 6= ∞, ∞−∞ = 0, ∞
2

= ∞, | ± ∞| =
∞, min{∞, c} = c, max{∞, c} =∞.

The pseudo-metric d∗ between two points p and p′ takes the smaller value between the
cost of moving p to p′ and the cost of moving p′ and p onto ∆ := {(x, y) ∈ R2 : x = y}.
Obviously, d∗(p, p′) = 0 for every p, p′ ∈ ∆. If p ∈ ∆+ := {(x, y) ∈ R2 : x < y} and p′ ∈ ∆,
then d∗(p, p′) equals the distance, induced by the max-norm, between p and ∆. Points at
infinity have a finite distance only to the other points at infinity, and their distance equals
the Euclidean distance between abscissas.

We can compare persistence diagrams by means of the bottleneck distance (also called
matching distance) δmatch.

Definition 3.2. Let D, D′ be two persistence diagrams. We define the bottleneck distance
δmatch between D and D′ by setting

δmatch (D,D′) := inf
σ

sup
p∈D

d∗ (p, σ (p)) , (2)

where σ varies in the set of all bijections from the multiset D to the multiset D′.

For further informations about persistence diagrams and the bottleneck distance, we
refer the reader to [15, 16]. Each persistent Betti numbers function is associated with
exactly one persistence diagram, and (if we use Čech homology) every persistence diagram
is associated with exactly one persistent Betti numbers function. Then the metric δmatch

induces a pseudo-metric dmatch on the sets of the persistent Betti numbers functions [17].

4. Mathematical model

In our mathematical model, data are represented as function spaces, that is, as sets of
real-valued functions on some topological space (Subsection 4.1). Function spaces come with
invariance groups representing the transformations on data which are admissible for some
agent (Subsection 4.2). The groups of transformations are specific to different agents, and
can be either learned or part of prior knowledge. The operators on data are then defined as
group equivariant non-expansive operators (GENEOs) (Subsection 4.3).
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4.1. Data representation

Let us consider a set X 6= ∅ and a topological subspace Φ of the set of all bounded
functions ϕ from X to R, denoted by RXb and endowed with the topology induced by the
distance

DΦ(ϕ1, ϕ2) := ‖ϕ1 − ϕ2‖∞ . (3)

If Φ is compact, then it is also bounded, i.e., there exists a non-negative real value L,
such that ‖ϕ‖∞ ≤ L for every ϕ ∈ Φ. We can think of X as the space where one makes
measurements, and of Φ as the set of admissible measurements, called set of admissible
functions. In other words, Φ is the set of functions from X to R that can be produced by
measuring instruments. For example, an image can be represented as a function ϕ from the
real plane X to the real numbers.

To quantify the distance between two points x1, x2 ∈ X, we compare the values taken
at x1 and x2 by the admissible functions in Φ. Therefore, we endow X with the extended
pseudo-metric1 DX defined by setting

DX(x1, x2) = sup
ϕ∈Φ
|ϕ(x1)− ϕ(x2)| (4)

for every x1, x2 ∈ X (see Appendix A).
The assumption behind the definition of DX is that two points can be distinguished only

if they assume different values for some admissible function. As an example, if Φ contains
only constant functions, no discrimination can be made between points in X and hence
DX(x1, x2) vanishes for every x1, x2 ∈ X.

The pseudo-metric space (X,DX) can be considered as a topological space by choosing
as a base BDX the collection of all the sets

BX(x, ε) = {x′ ∈ X : DX(x, x′) < ε} (5)

where ε > 0 and x ∈ X (see [18]).
The reason to endow the measurement space X with a topology, rather than considering

just a set, follows from the need of formalizing the assumption that data are stable. To
formalize stability we have to use a topology (or a pseudo-metric inducing a topology).

It is interesting to stress the link between the topology τDX associated with DX and the
initial topology2 τin on X with respect to Φ, when we take the Euclidean topology TE on R.

Theorem 4.1. The topology τDX on X induced by the pseudo-metric DX is finer than the
initial topology τin on X with respect to Φ. If Φ is totally bounded, then the topology τDX
coincides with τin.

1We recall that a pseudo-metric is just a distance d without the property that d(a, b) = 0 implies a = b.
An extended pseudo-metric is a pseudo-metric that may take the value ∞. If Φ is bounded, then DX is a
pseudo-metric.

2We recall that τin is the coarsest topology on X such that each function ϕ ∈ Φ is continuous. Explicitly,
the open sets in τin are the sets that can be obtained as unions of finite intersections of sets ϕ−1(U), where
ϕ ∈ Φ and U ∈ TE . In other words, a base Bin of τin is given by the collection of all sets that can be
represented as

⋂
i∈I ϕ

−1
i (Ui), where I is a finite set of indexes and ϕi ∈ Φ, Ui ∈ TE for every i ∈ I [18].
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(The proof is in Appendix C.)

Since τin is the coarsest topology on X such that ϕ ∈ Φ is continuous, Theorem 4.1
guarantees that the assumption that the functions are continuous is not restrictive in prac-
tice, for example while dealing with images, which often contain discontinuities. Indeed,
our functions are not required to be continuous with respect to other topologies (e.g., the
Euclidean topology τE on X = R2).

In general X is not compact with respect to the topology τDX , even if Φ is compact. For
example, if X is the open interval ]0, 1[ and Φ contains only the identity from ]0, 1[ to ]0, 1[,
the topology induced by DX is simply the Euclidean topology and hence X is not compact.
However, the next result holds.

Theorem 4.2. If Φ is compact and X is complete then X is also compact.

(The proof is in Appendix C.)

4.1.1. A remark on the use of pseudo-metrics

The reader could think better to change the pseudo-metric DX into a metric D′ by
quotienting out X by the equivalence relation x1Rx2 ⇐⇒ DX(x1, x2) = 0 and defining
D′([x1], [x2]) = DX(x1, x2) for any [x1], [x2] ∈ X/R. The reason we do not do this is that
several different sets of admissible measurements can be considered on the same set X. For
two different sets Φ1, Φ2 of admissible functions, we obtain two different quotient spaces
X/R1, X/R2. If we forget about the original space X, we lose the possibility of linking the
equivalence classes in X/R1 with the ones in X/R2. On the contrary, we prefer to preserve
the identity of points in X, studying how they link to each other when we change the set Φ.
This observation leads us to work with pseudo-metrics instead of metrics.

Before proceeding, we observe that the map π taking each point x ∈ X to the equivalence
class [x] ∈ X/R is continuous with respect to DX and D′, and surjective. Moreover, π takes
each ball with respect to DX to a ball with respect to D′, while the inverse image under π of
each ball with respect to D′ is a ball with respect to DX . It follows that if a subset S ⊆ X
is compact (sequentially compact) for DX then π(S) is compact (sequentially compact) for
D′, and that if a subset S ⊆ X/R is compact (sequentially compact) for D′ then π−1(S) is
compact (sequentially compact) for DX . Finally, given a sequence (xi) in X, we observe that
(xi) converges to x̄ in X if and only if the sequence ([xi]) converges to [x̄] in X/R. These
facts imply that the development of our theory in terms of pseudo-metrics is not far from
the analysis in terms of metrics.

4.2. Transformations on data

In our model, we assume that data are transformed through maps from X to X which are
Φ-preserving homeomorphisms with respect to the pseudo-metric DX . Let Homeo(X) denote
the set of homeomorphisms from X to X with respect to DX , and HomeoΦ(X) denote the

8



set of Φ-preserving homeomorphisms, namely the homeomorphisms g ∈ Homeo(X) such that
ϕ ◦ g ∈ Φ and ϕ ◦ g−1 ∈ Φ for every ϕ ∈ Φ.

The following Proposition 4.3 implies that HomeoΦ(X) is exactly the set of all bijections
g : X → X such that ϕ ◦ g ∈ Φ and ϕ ◦ g−1 ∈ Φ for every ϕ ∈ Φ.

Proposition 4.3. If g is a bijection from X to X such that ϕ ◦ g ∈ Φ and ϕ ◦ g−1 ∈ Φ for
every ϕ ∈ Φ, then g is an isometry3 (and hence a homeomorphism) with respect to DX .

(The proof is in Appendix C.)

Remark 4.4. In general, Homeo(X) 6= HomeoΦ(X). As an example, take X = [0, 1] and
Φ = {Id}. In this case DX(x1, x2) = |x1−x2| and HomeoΦ = {Id}, while Homeo is the set of
all homeomorphisms from the interval [0, 1] to itself with respect to the Euclidean distance.

Remark 4.5. For each g ∈ HomeoΦ(X), we consider the bijective map Rg : Φ −→ Φ defined
by setting Rg(ϕ) = ϕ ◦ g for every ϕ ∈ Φ. We claim that Rg preserves the pseudo-distance
DΦ defined by Equality (3). Indeed, if ϕ, ϕ′ ∈ Φ and g ∈ G then

DΦ(ϕ ◦ g, ϕ′ ◦ g) = sup
x∈X
|(ϕ ◦ g)(x)− (ϕ′ ◦ g)(x)|

= sup
x∈X
|ϕ(g(x))− ϕ′(g(x))| (6)

= sup
y∈X
|ϕ(y)− ϕ′(y)| = DΦ(ϕ, ϕ′),

because g is a bijection. Since Rg is a bijection preserving DΦ, then Rg is an isometry with
respect to DΦ.

In the rest of this paper we will assume that Φ is compact with respect to the topology
induced by DΦ, and that X is complete (and hence compact) with respect to the topology
induced by DX .

Let us now consider a subgroup G of the group HomeoΦ(X). G represents the set of
transformations on data for which we require equivariance to be respected.

We can define the pseudo-distance DG on G:

DG(g1, g2) := sup
ϕ∈Φ

DΦ(ϕ ◦ g1, ϕ ◦ g2) (7)

from G×G to R (see Appendix A).

3The definition of isometry between pseudo-metric spaces can be considered as a special case of isometry
between metric spaces. Let (X1, d1) and (X2, d2) be two pseudo-metric spaces. It is easy to check that if
f : X1 −→ X2 is a function verifying the equality d1(x, y) = d2(f(x), f(y)) for every x, y ∈ X1, then f is
continuous with respect to the topologies induced by d1 and d2. If f verifies the previous equality and is
bijective, we say that it is an isometry between the considered pseudo-metric spaces. If f is an isometry, we
can trivially observe that f−1 is also an isometry, and that f is a homeomorphism.
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The rationale in the definition of DG is that in our model every comparison must be
based on the max-norm distance between admissible acts of measurement. As a consequence,
we define the distance between two homeomorphisms by the difference of their actions on
the set Φ of possible measurements.

Remark 4.6. DG can be expressed as:

DG(g1, g2) = sup
x∈X

DX(g1(x), g2(x)) = sup
x∈X

sup
ϕ∈Φ
|ϕ(g1(x))− ϕ(g2(x))|. (8)

We can now state the following theorems:

Theorem 4.7. G is a topological group with respect to the pseudo-metric topology and the
action of G on Φ through right composition is continuous.

(The proof is in Appendix C.)

Theorem 4.8. If G is complete then it is also compact with respect to DG.

(The proof is in Appendix C.)

From now on we will suppose that G is complete (and hence compact) with respect to
the topology induced by DG.

4.2.1. The natural pseudo-distance dG
We define the natural pseudo-distance dG on the space Φ [3]. The natural pseudo-distance

dG represents the ground truth in our model. It is based on comparing functions, and
vanishes for pairs of functions that are equivalent with respect to the action of our group of
homeomorphisms G, which expresses the equivalences between data.

Definition 4.9. The pseudo-distance dG : Φ× Φ→ R is defined by setting

dG(ϕ1, ϕ2) = inf
g∈G

DΦ(ϕ1, ϕ2 ◦ g). (9)

It is called the natural pseudo-distance associated with the group G acting on Φ.

If G = {Id : x 7→ x}, then dG equals the sup-norm distance DΦ on Φ. If G1 and G2 are
subgroups of HomeoΦ(X) and G1 ⊆ G2, then the definition of dG implies that

dHomeoΦ(X)(ϕ1, ϕ2) ≤ dG2(ϕ1, ϕ2) ≤ dG1(ϕ1, ϕ2) ≤ DΦ(ϕ1, ϕ2) (10)

for every ϕ1, ϕ2 ∈ Φ.

Though dG represents the ground truth for data similarity in our model, unfortunately
it is difficult to compute. This is also a consequence of the fact that we can easily find
subgroups G of Homeo(X) that cannot be approximated with arbitrary precision by smaller
finite subgroups of G (e.g., when G is the group of rigid motions of X = R3).

In the following sections, we show how dG can be approximated with arbitrary precision
by means of a dual approach based on group equivariant non-expansive operators (GENEOs)
and persistent homology.
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4.2.2. A remark on the use of homeomorphisms

The reader could criticize the choice of grounding our approach on the concept of
homeomorphism. After all, most of the objects that are considered for purposes of shape
comparison “are not homeomorphic”. Therefore, the definition of natural pseudo-distance
could seem not to be sufficiently flexible, since it does not allow to compare non-homeomorphic
objects. Though, it is important to note that the space X we use in our model does not
represent the objects, but the space where one takes measurements about the objects. As
such, X is unique. For example, two images are considered as functions from the real plane X
to the real numbers, independently of the topological properties of the 3D objects represented
in the images. If we make two CAT scans, the topological space X is always given by an
helix turning many times around a body, and no requirement is made about the topology of
such a body. In other words, the topological space X is determined only by the measuring
instrument and not by the single object instances.

4.3. Group Equivariant Non-Expansive Operators

Under the assumptions made in the previous sections, the pair (Φ,G) is called a perception
pair.

Let us now assume that two perception pairs (Φ,G), (Ψ,H) are given together with a
fixed homomorphism T : G→ H. Each function F : Φ→ Ψ such that F (ϕ◦g) = F (ϕ)◦T (g)
for every ϕ ∈ Φ, g ∈ G is said to be a perception map from (Φ,G) to (Ψ,H) associated with
the homomorphism T . More briefly, we will also say that F is a group equivariant operator.
If T is equal to the identity homomorphism I : G −→ G, we can say that F is a G-map.
We observe that the functions in Φ and the functions in Ψ are defined on spaces that are
generally different from each other.

Remark 4.10. Each perception pair (Φ,G) can be seen as a category, whose objects are the
functions in Φ and the morphisms between two functions ϕ1, ϕ2 ∈ Φ are the elements g ∈ G
such that ϕ2 = ϕ1 ◦ g. As usual, if ϕ2 = ϕ1 ◦ g and ϕ′2 = ϕ′1 ◦ g we wish to distinguish
g as a morphism between ϕ1 and ϕ2 from g as a morphism between ϕ′1 and ϕ′2, so we
make different copies g(ϕ1,ϕ2), g(ϕ′1,ϕ

′
2) of the homeomorphism g by labelling it. As natural,

g′(ϕ2,ϕ3) ◦ g(ϕ1,ϕ2) = (g ◦ g′)(ϕ1,ϕ3). A precise formalization of this procedure can be done in
terms of slice categories. For more details we refer the reader to Appendix B.

When two perception pairs (Φ,G), (Ψ,H) are considered as categories and a homo-
morphism T : G → H is fixed, each perception map F from (Φ,G) to (Ψ,H) is naturally
associated with a functor between the two categories, taking each function ϕ ∈ Φ to F (ϕ) ∈ Ψ
and each morphism g(ϕ1,ϕ2) ∈ G to the morphism T (g)(F (ϕ1),F (ϕ2)) ∈ H.

Definition 4.11. Assume that (Φ,G),(Ψ,H) are two perception pairs and that a homomor-
phism T : G→ H has been fixed. If F is a perception map from (Φ,G) to (Ψ,H) with respect
to T and F is non-expansive (i.e., DΨ (F (ϕ1), F (ϕ2)) ≤ DΦ (ϕ1, ϕ2) for every ϕ1, ϕ2 ∈ Φ),
then F is called a Group Equivariant Non-Expansive Operator (GENEO) associated with
T : G→ H.

Example 4.12. As a reference for the reader, we give the following basic example of
GENEO. Let Φ be the set containing all 1-Lipschitz functions from X = S2 = {(x, y, z) ∈
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R3 : x2 +y2 +z2 = 1} to [0, 1], and G be the group of all rotations of S2 around the z-axis. Let
Ψ be the set containing all 1-Lipschitz functions from Y = S1 = {(x, y) ∈ R2 : x2 +y2 = 1} to
[0, 1], and H be the group of all rotations of S1. We observe that (Φ,G) and (Ψ,H) are two
perception pairs. Now, let us consider the map F : Φ→ Ψ taking each function ϕ ∈ Φ to the

function ψ ∈ Ψ defined by setting ψ(θ) := 1
π

∫ π/2
−π/2 ϕ(θ, α) dα (with θ, α polar coordinates),

and the homomorphism T taking the rotation of S2 of α radians around the z-axis positively
oriented to the counter-clock rotation of α radians of S1. We can easily check that F is a
perception map and a GENEO from (Φ,G) to (Ψ,H), associated with the homomorphism T .
In this example F and T are surjective, but an example where F and T are not surjective
can be easily found, e.g. by restricting Φ to the singleton Φ̄ containing only the null function
and G to the trivial group Ḡ containing only the identical homomorphism.

We can study how GENEOs act on the natural pseudo-distances:

Proposition 4.13. If F is a GENEO from (Φ,G) to (Ψ,H) associated with T : G → H,
then it is a contraction with respect to the natural pseudo-distances dG, dH .

(The proof is in Appendix C.)

4.3.1. Pseudo-metrics on GENEO ((Φ,G), (Ψ,H))

Let us denote by GENEO ((Φ,G), (Ψ,H)) the set of all GENEOs between two perception
pairs (Φ,G), (Ψ,H) associated with T : G→ H. We can endow this set with the following
pseudo-distances DGENEO, DGENEO,H.

Definition 4.14. If F1, F2 ∈ GENEO ((Φ,G), (Ψ,H)), we set

DGENEO (F1, F2) := sup
ϕ∈Φ

DΨ (F1(ϕ), F2(ϕ))

DGENEO,H (F1, F2) := sup
ϕ∈Φ

dH (F1(ϕ), F2(ϕ)) . (11)

The next result can be easily proved by applying the inequality dH ≤ DΨ (see Theorem 6.1)
and recalling that the supremum of a family of bounded pseudo-metrics is still a pseudo-metric.

Proposition 4.15. DGENEO and DGENEO,H are pseudo-metrics on GENEO ((Φ,G), (Ψ,H)).
Moreover, DGENEO,H ≤ DGENEO.

It would be easy to check that as a matter of fact DGENEO is a metric.
This simple statement holds:

Proposition 4.16. For every F ∈ GENEO ((Φ,G), (Ψ,H)) and every ϕ ∈ Φ: ‖F (ϕ)‖∞ ≤
‖ϕ‖∞ + ‖F (0)‖∞, where 0 denotes the function taking the value 0 everywhere.

(The proof is in Appendix C.)
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5. On the compactness and convexity of the space of GENEOs

In this section we show that, if the function spaces are compact and convex, then the
space of GENEOs is compact and convex too. This property has important consequences
from the computational point of view, since it guarantees that the space of GENEOs can be
approximated by a finite set and that new GENEOs can be obtained by convex combination
of preexisting GENEOs.

Several results in this section and in Section 6 mimic the corresponding results in [3],
where the particular case (Φ,G) = (Ψ,H), T = Id : G → H is considered. Note that
considering different function spaces and different groups of equivariance is fundamental, as
it allows one to compose operators hierarchically, in the same fashion as computational units
are linked in an artificial neural network.

For the sake of conciseness, in the following we will set Fall := GENEO ((Φ,G), (Ψ,H)).
We recall that we are assuming Φ and Ψ compact with respect to DΦ and DΨ, respectively.

5.1. The space of GENEOs is compact with respect to DGENEO

Theorem 5.1. Fall is compact with respect to DGENEO.

(The proof is in Appendix C.)

5.2. The set of GENEOs is convex

Let F1, F2, . . . , Fn be GENEOs from (Φ,G) to (Ψ,H) associated with the homomorphism
T . Let (a1, a2, . . . , an) ∈ Rn with

∑n
i=1 |ai| ≤ 1. Consider the function

FΣ(ϕ) :=
n∑
i=1

aiFi(ϕ) (12)

from Φ to the set C0(Y,R) of the continuous functions from Y to R, where Y is the
domain of the functions in Ψ.

Proposition 5.2. If FΣ(Φ) ⊆ Ψ , then FΣ is a GENEO from (Φ,G) to (Ψ,H) with respect
to T .

(The proof is in Appendix C.)

Theorem 5.3. If Ψ is convex, then the set of GENEOs from (Φ,G) to (Ψ,H) with respect
to T is convex.

(The proof is in Appendix C.)
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5.3. GENEOs as agents in our model

In our model the agents are represented by GENEOs. Indeed, each agent can be seen as a
black box that receives and transforms data. If a nonempty subset F of GENEO ((Φ,G), (Ψ,H))
is fixed, a simple pseudo-distance DF,Φ(ϕ1, ϕ2) to compare two admissible functions ϕ1, ϕ2 ∈ Φ
can be defined by setting DF,Φ(ϕ1, ϕ2) := supF∈F ‖F (ϕ1) − F (ϕ2)‖∞. This definition ex-
presses our assumption that the comparison of data strongly depends on the choice of the
agents. However, we note that the computation of DF,Φ(ϕ1, ϕ2) for every pair (ϕ1, ϕ2) of
admissible functions is computationally expensive. In the next section, we will see how
persistent homology allows us to replace DF,Φ with a pseudo-metric D

F,k
match that is quicker to

compute, while still being stable and strongly invariant.

6. A strongly group-invariant pseudo-metric induced by Persistent Homology

In this section, we show how Persistent Homology supports the definition of a strongly
group invariant pseudo-metric on Φ, for which we prove some theoretical results.

We begin by recalling the stability of the classical pseudo-distance dmatch between persistent
Betti numbers functions (BPNs) (cf. Definition 3.2) with respect to the pseudo-metrics DΦ

and dHomeo(X). We assume the finiteness of PBNs 4. Then, the stability of dmatch with respect
to DΦ easily follows from the stability theorem of the interleaving distance and the isometry
theorem (cf. [19]).

Theorem 6.1. If k is a natural number, G1 ⊆ G2 ⊆ HomeoΦ(X) and ϕ1, ϕ2 ∈ Φ, then

dmatch(rk(ϕ1), rk(ϕ2)) ≤ dHomeo(X)(ϕ1, ϕ2) ≤ dG2(ϕ1, ϕ2) ≤ dG1(ϕ1, ϕ2) ≤ DΦ(ϕ1, ϕ2). (13)

The proof of the first inequality dmatch(rk(ϕ1), rk(ϕ2)) ≤ dHomeo(X)(ϕ1, ϕ2) in Theorem 6.1
is based on the stability of dmatch with respect to DΦ and can be found in [17]. The other
inequalities follow from the definition of the natural pseudo-distance.

6.1. Strongly group invariant comparison of filtering functions via persistent homology

Let us consider a subset F 6= ∅ of Fall. For every fixed k, we can consider the following
pseudo-metric D

F,k
match on Φ:

D
F,k
match(ϕ1, ϕ2) := sup

F∈F
dmatch(rk(F (ϕ1)), rk(F (ϕ2))) (14)

4Though in our setting, the space X is assumed to be compact, PBNs are not necessarily finite. For
example, let us consider the set X = {0} ∪ { 1n , with n ∈ N} and Φ = {Id : X −→ X}. Even if X is compact,
every sublevel set Xu = {x ∈ X : x ≤ u} with u > 0 has infinite connected components, and hence the 0th
persistent Betti numbers function takes infinite value at every point (u, v) with 0 < u < v.

We add the assumption on the finiteness of PBNs (i.e., the assumption that the persistent Betti numbers
function of every ϕ ∈ Φ takes a finite value at each point (u, v) ∈ ∆+) to get stability and discard pathological
cases (for example the case that the set Φ of admissible functions is the set of all maps from X to R).

Since the PBNs of the pseudo-metric space (X,DX) coincide with the persistent Betti numbers functions
of its Kolmogorov quotient X̄, the finiteness of the persistent Betti numbers functions can be obtained when
X̄ is finitely triangulable (cf. [17]).

14



for every ϕ1ϕ2 ∈ Φ, where rk(ϕ) denotes the kth persistent Betti numbers function with
respect to the function ϕ : X → R.

In this work, we will say that a pseudo-metric d̂ on Φ is strongly G-invariant if it
is invariant under the action of G with respect to each variable, that is, if d̂(ϕ1, ϕ2) =
d̂(ϕ1 ◦ g, ϕ2) = d̂(ϕ1, ϕ2 ◦ g) = d̂(ϕ1 ◦ g, ϕ2 ◦ g) for every ϕ1, ϕ2 ∈ Φ and every g ∈ G.

Remark 6.2. It is easily seen that the natural pseudo-distance dG is strongly G-invariant.

Proposition 6.3. D
F,k
match is a strongly G-invariant pseudo-metric on Φ.

(The proof is in Appendix C.)

6.2. Some theoretical results on the pseudo-metric D
F,k
match

At first we want to show that the pseudo-metric D
F,k
match is stable with respect to both the

natural pseudo-distance dG associated with the group G and the distance DΦ.

Remark 6.4. Let X and Y be two homeomorphic spaces and let h : Y → X be a homeomor-
phism. Then the persistent homology group with respect to the function ϕ : X → R and
the persistent homology group with respect to the function ϕ ◦ h : Y → R are isomorphic at
each point (u, v) in the domain. Therefore we can say that the persistent homology groups
and the persistent Betti numbers functions are invariant under the action of Homeo(X).

Theorem 6.5. If F is a non-empty subset of Fall, then

D
F,k
match ≤ dG ≤ DΦ. (15)

(The proof is in Appendix C.)

The definitions of the natural pseudo-distance dG and the pseudo-distance D
F,k
match come

from different theoretical concepts. The former is based on a variation approach involving
the set of all homeomorphisms in G, while the latter refers only to a comparison of persistent
homologies depending on a family of group equivariant non-expansive operators. Given those
comments, the next result may appear unexpected.

Theorem 6.6. Let us assume that Φ = Ψ, every function in Φ is non-negative, the k-th
Betti number of X does not vanish, and Φ contains each constant function c for which a

function ϕ ∈ Φ exists such that 0 ≤ c ≤ ‖ϕ‖∞. Then D
Fall,k
match = dG.

(The proof is in Appendix C.)

We observe that if Φ is bounded, the assumption that every function in Φ is non-negative
is not quite restrictive. Indeed, we can obtain it by adding a suitable constant value to every
admissible function.
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6.3. Pseudo-metrics induced by persistent homology

Persistent homology can be seen as a topological method to build new and easily com-
putable pseudo-metrics for the sets Φ, G and Fall. These new pseudo-metrics ∆Φ, ∆G,
∆GENEO can be used as proxies for dG (and hence DΦ), DG, DGENEO, respectively:

• If ϕ1, ϕ2 ∈ Φ, we can set ∆Φ(ϕ1, ϕ2) := dmatch(rk(ϕ1), rk(ϕ2)). The stability theorem
for persistence diagrams (Theorem 6.1) can be reformulated as the inequalities ∆Φ ≤
dG ≤ DΦ.

• If g1, g2 ∈ G, we can set ∆G(g1, g2) := supϕ∈Φ dmatch(rk(ϕ ◦ g1), rk(ϕ ◦ g2)). From
Theorem 6.1 the inequality ∆G ≤ DG follows.

• If F1, F2 ∈ Fall, we can set ∆GENEO (F1, F2) := supϕ∈Φ dmatch(rk(F1(ϕ)), rk(F2(ϕ))).
From Theorem 6.1 the inequalities ∆GENEO ≤ DGENEO,H ≤ DGENEO follow.

In particular, ∆Φ and a discretized version of the pseudo-metric ∆GENEO will be used in
the experiments described in Section 7. We underline that the use of persistent homology
is a key tool in our approach: it allows for a fast comparison between functions and
between GENEOs. Without persistent homology, this comparison would be much more
computationally expensive.

6.4. Approximating D
F,k
match

The next result will be of use for the approximation of DF,k
match.

Proposition 6.7. Let F,F′ ⊆ Fall. If the Hausdorff distance

HD(F,F′) := max

{
sup
F∈F

inf
F ′∈F′

DGENEO,H(F, F ′), sup
F ′∈F′

inf
F∈F

DGENEO,H(F, F ′)

}
is not larger than ε, then ∣∣∣DF,k

match(ϕ1, ϕ2)−D
F′,k
match(ϕ1, ϕ2)

∣∣∣ ≤ 2ε (16)

for every ϕ1, ϕ2 ∈ Φ.

(The proof is in Appendix C.)

Since the compactness of the space Fall guarantees we can cover F by a finite set of balls in
Fall of radius ε, centered at points of a finite set F′ ⊆ F, the following proposition states that
the approximation of DF,k

match(ϕ1, ϕ2) can be reduced to the computation of DF′,k
match(ϕ1, ϕ2),

i.e. the maximum of a finite set of bottleneck distances between persistence diagrams, which
are well-known to be computable by means of efficient algorithms.

Proposition 6.8. Let F be a non-empty subset of Fall. For every ε > 0, a finite subset F∗

of F exists, such that
|DF∗,k

match(ϕ1, ϕ2)−D
F,k
match(ϕ1, ϕ2)| ≤ ε (17)

for every ϕ1, ϕ2 ∈ Φ.
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Image preprocessing

Reshape (128, 128)

Gaussian blur (3, 3) kernel

Standardisation

Selection Sampling

Random initialisation

Computation of selection 
score: how an operator 
behaves on pairs signals 

belonging to the same class.

Selection by thresholding

Computation of pairwise 
sampling distance between 

operators: how two operators 
behave on the signals 

belonging to the same class 

Computation of the inter-class 
contrastive score for each 

selected operator

Figure 2: Experimental pipeline. In the preprocessing step images are reshaped, smoothed and standardised.
Subsequently, operators are initialised randomly. Thereafter, they are selected according to their output
when evaluated on objects belonging to a chosen class. The final sampling step allows us to exclude operators
that appear to be too similar, and thus redundant.

(The proof is in Appendix C.)

Remark 6.9. Theorem 5.1 and the inequalities ∆GENEO ≤ DGENEO,H ≤ DGENEO stated in
Subsection 6.3 immediately imply that Fall is compact also with respect to the topologies
induced by ∆GENEO and DGENEO,H.

6.5. Beyond group equivariance

We observe that while the definition of the natural pseudo-distance dG requires that G
has the structure of a group, the definition of DF,k

match does not need this assumption. In other
words, our approach based on GENEOs can be used also when we wish to have equivariance
with respect to a set instead of a group of homeomorphisms. This property is promising for
extending the application of our theory to the cases in which the agent is equivariant with
respect to each element of a finite set of homeomorphisms that is not closed with respect to
composition and computation of the inverse.

7. Validation on discrete function spaces

In summary, we introduced above a theoretical framework allowing to describe an agent
acting on data as a collection of suitable operators. We do that by representing data as
points of a space of continuous functions with compact support. The density of such space
makes the quest for suitable operators for the approximation of a given agent computationally
complicated. For this reason, we chose to consider GENEOs: enforcing equivariance with
respect to the action of a group causes the dimensionality of the search-space to collapse.
Furthermore, in Section 4, we showed how GENEO spaces can be equipped with suitable
metrics and respect properties that are essential in a machine learning context. The results
concerning compactness and convexity make it possible to safely explore the space of GENEOs
when operating on a labelled dataset. One of the main issue to be addressed when working
in the proposed setting is the computability of metrics between operators. In Section 6 we
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show how metrics between GENEOs can be lower approximated via persistent homology.
These results should be enough to guarantee approximability, efficacy and computability of
GENEOs, when utilised to solve supervised tasks.

Our mathematical model and theorems are based on the assumption that data can be
treated as points in a space of continuous functions. In this section, we test the validity of
such results on classification of real-world datasets proceeding as follows. First we describe
an algorithm allowing to select and sample GENEOs in order to learn the metric induced on
a dataset by a labelling function. After that, we define the class of GENEOs we will use
to study the MNIST, fashion-MNIST and CIFAR10 datasets. Selection and sampling are
then used to approximate an agent able to express the underlying metric of these datasets
by observing only 20 or 40 examples per class. Thereafter, we show how the metric learned
through selection and sampling is still expressive when used to represent distances among
validation samples transformed according to the equivariances of the GENEOs of choice.
Finally, we use selected and sampled GENEOs to inject knowledge in an artificial neural
network.

7.1. Operators selection and sampling on labelled datasets

We start from the assumption that data labelled with the same symbol share common
features with respect to the agent we want to approximate. Thus, we suggest an algorithm for
metric learning based on the metrics introduced on the space of GENEOs in Section 6. Briefly,
we start by selecting randomly a certain number of GENEOs. Afterwards, we compare them
by taking advantage of the fact that their representation as persistence diagrams is invariant
with respect to the action of G. These selected operators see those features that are common
among the samples associated to the same label. Finally, always profiting from the property
of the matching distance to be lower bound of the metric defined on the space of operators,
we sample the operators in order to obtain a minimal set of non-redundant operators.

In symbols, let Φ = {ϕ1, . . . , ϕn} be a dataset equipped with a labelling function l : Φ→
I ∈ N. We assume that the dataset can be written as the disjoint union Φ = ti∈IΦi where Φi

contains samples labelled by i. Let F be the space of operators that will act on the samples.
We begin by randomly sampling N candidate operators in F, let us denote them as the
set C = {Fk}k∈{1,...,N}. We then select those operators that consider as similar the objects
belonging to the same class. Let us consider the samples in Φl, for each of the candidate
operators F ∈ C, we define the label-dependent value

sl (F ) = max
ϕli,ϕ

l
j

dmatch

(
r1

(
F
(
ϕli
))
, r1

(
F
(
ϕlj
)))

.

A candidate operator F is selected if sl (F ) is smaller than a fixed threshold ε for every l.
Let us denote by S the set of selected operators. In practice, we will show how few examples
per class are enough to select operators able to grasp salient topological-geometrical features
from the example samples, and can be consequently used to compute reasonable distances
between new validation samples.

The selection criterion does not guarantee that the operators are maximally diverse, when
evaluated within and in-between classes. The important advantage of working on metric
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Isometry equivariant non-expansive operators on MNIST
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Figure 3: Selected IENEOs on the MNIST dataset. By considering the metrics defined on the space of
GENEOs, we select operators able to recognise MNIST digits belonging to the same class. Albeit the operator
space is constrained by the symmetries induced by the equivariance with respect to the group of planar
isometries, we observe that the selected operators are expressive and have a clear topological interpretation.
Among other functions, these operators are specialised in border detection and voids (cycles in topological
terms) filling, similarly to the classical Vietoris-Rips construction [20]. Finally, the cutter operator–depicted
in the last column–disconnects the image approximately according to its distance transform [21].

spaces is that we can now sample the elements of S to avoid storing operators that would
focus on the same or similar characteristic. To this end, given a class l, we define the distance
between two operators Fp and Fq (cf. Subsection 6.3)

∆l
GENEO (Fp, Fq) := max

ϕli

dmatch

(
rk
(
Fp
(
ϕli
))
, rk
(
Fq
(
ϕli
)))

.

For every label l, we sort the pairs (Fp, Fq) in ascending order of ∆l
GENEO, and assign to

each pair of operators its index in the sorted list of distances. We then define the interclass
contrastive score of the pair (Fp, Fq) as the sum of its indices over all classes. Finally, we
remove from S redundant operators, i.e. we select only one operators for pairs whose score is
below a fixed threshold t.

Finally, two objects ϕ1 and ϕ2 can be compared by computing the strongly G-invariant
pseudo-metric DS

match(ϕ1, ϕ2), defined in Section 6.

7.2. Isometry equivariant non-expansive operators

One of the main strength of convolutional neural networks is the natural equivariance of
the convolution operator with respect to the group of planar translations. However, oftentimes
when working with images or volumes, invariance with respect to other transformations such
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as rotations or reflexions can be important. In what follows we define a parametric family of
non-expansive operators which are equivariant with respect to Euclidean plane isometries.

Given σ > 0 and τ ∈ R, we consider the 1-dimensional Gaussian function with width σ
and centre τ

gτ (t) := e−
(t−τ)2

2σ2 ,

where gτ : R→ R. For a positive integer k, we take the set S of the 2k-tuples (a1, τ1, . . . , ak, τk) ∈
R2k for which

∑k
i=1 a

2
i =

∑k
i=1 τ

2
i = 1. S is a submanifold of R2k.

For each p = (a1, τ1, . . . , ak, τk) ∈ S, we then consider the function Gp : R2 → R defined
as

Gp(x, y) :=
k∑
i=1

aigτi

(√
x2 + y2

)
.

If we denote by Fp the convolutional operator mapping each continuous function with
compact support ϕ : R2 → R to the continuous and with compactly supported function
ψ : R2 → R defined as

ψ(x, y) :=

∫
R2

ϕ(α, β) · Gp(x− α, y − β)

‖Gp‖L1

dα dβ.

Then, the operator Fp is a group equivariant non-expansive operator with respect to the group
I of Euclidean plane isometries. We call Fp a IENEO (Isometry Equivariant Non-Expansive
Operator).

The IENEO Fp is parametric with respect to the 2k-tuple p = (a1, τ1, . . . , ak, τk) ∈ S.
Therefore, we define a parametric family of IENEOs F = {Fp}p∈S.

7.3. Applications

We are now ready to utilise the selection and sampling strategy to find operators able
to recognise samples belonging to the same class in a discrete dataset. We propose three
different applications of our model. First we select and sample operators on two-classes
subsets of the MNIST, fashion-MNIST and CIFAR10 datasets, we evaluate the validity of
the learned metric by computing pairwise distances of validation samples according to the
selected and sampled operators. Let us denote these operators by S. Second, we evaluate on
the MNIST dataset the capacity of the operators in S to discriminate validation examples
that have been transformed with random planar isometries. Finally, we use S to initialise
the filters of a convolutional layer and a dense architecture to classify the samples belonging
to the classes the IENEOs where selected and sampled on.

7.3.1. Image preprocessing

Images are preprocessed according to the pipeline described in the first column of Figure 2.
Every image I is first reshaped to size (128, 128), then blurred with a 3×3 Gaussian kernel and

finally standardised as Is = I−mean(I)
std(I)

. The same preprocessing is applied in all experiments
and to all datasets.
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Metric learning via GENEO selection and sampling

A. MNIST samples B. Metric on validation examples varying filter     

     size. Here           px7 × 7

C. Metric learned with filters of size              px
11 × 11 D. Metric learned with filters of size              px
21 × 21

5 5 5

7 7 7

Figure 4: Metric learning via IENEOs selection and sampling. A. Samples from the classes 7 and 5 from the
MNIST dataset. Panels B, C and D show the hierarchical clustering obtained by using selected and sampled
IENEOs of different dimensions to measure the distance between validation samples belonging to the two
considered classes. For all filter sizes 500 operators were randomly initialised, then selected and sampled.
We observe how samples belonging to the two classes are clearly separated by filters of all the considered
dimensions.

7.3.2. Metric learning through selection and sampling

Metric learning is a natural application in the framework we describe. Indeed, operators
that have been selected on labelled examples should be able to grasp geometrical and
topological features that are shared among the examples belonging to the same class.
Afterwards, selected and sampled operators Fi ∈ S can be used to measure distances between
pairs of validation samples as

dS (ϕ, ϕ′) = max
F∈S

dmatch (r1 (F (ϕ)) , r1 (F (ϕ′))) . (18)

This choice implies that two samples ϕ and ϕ′ will have distance 0, and hence are
considered the same by the collection of selected operators (agent), only if every operator
in S sees them as identical. Note also that dS is invariant with respect to the action of the
group of planar isometries. This invariance is naturally inherited by the usage of dmatch.

21



A. Fashion-MNIST samples
 B. Metric learned with filters of size              px
21 × 21

0 - shirt 0 0

7 - shoe 7 7

C. CIFAR10 samples D. Metric learned with filters of size           px7 × 7

6 - frog 6 6

9 - truck 9 9

Figure 5: IENEO metric learning on fashion-MNIST and CIFAR10. After selecting and sampling 500
randomly initialised IENEOs on 20 examples per class, we evaluated the metric encoded by the selected
operators on a validation set consisting of 10 examples per class.

After computing the pairwise distance between validation examples, we use hierarchical
clustering [22] to visualise how samples have been organised by the metric as a dendrogram.

For every dataset Φ ∈ {MNIST, fashion-MNIST,CIFAR10}, we select a subset Φli,lj of
samples belonging to two classes. We start by randomly initialising a parametrised family
of IENEOs (of cardinality 500 or 750 in the experiments that follow). Afterwards, a small
number–typically 20 or 40–of samples per class are randomly chosen. These samples are then
used to select common within-class geometrical and topological features by selection and
sampling. The threshold for the selection algorithm is set to τ = 1.5 and the threshold t for
sampling is defined as the 75th percentile of all contrastive scores. These parameters are
fixed and used in all the following experiments.

We first studied the efficacy of selection and sampling on a binary classification task on
the MNIST dataset. After selecting samples belonging to two randomly selected classes
of MNIST, we chose 20 random samples per class to be used as examples in the selection
and sampling algorithm. Sampled and selected IENEOs are then used to compute the
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Metric learning on augmented MNIST validation samples
A. Metric learned with filters of size            px on selected and sampled IENEOs on classes (3,8) and (5,7), 

    respectively

7 × 7

B. Metric learned with filters of size                px11 × 11 B. Metric learned with filters of size                px21 × 21

Figure 6: The metric obtained by considering selected and sampled IENEOs can be used to cluster samples
transformed according to the group of equivariances (in this case planar isometries) of the family of operators
of choice. In panel A we compare the cluster of transformed validation samples obtained on two different
pairs of MNIST classes. The dendrogram on the right of panel A, panels B and C show how a variation
in the size and number of Gaussian components of the IENEO affects the clustering of validation samples
randomly transformed through planar isometries.

pairwise distances of 10 validation samples per class and generate the dendrogram in panel
B of Figure 4. We reproduced three times the same experiment by varying the size and
the number of 1-dimensional Gaussians used to initialise the IENEOs. In particular, we
considered sizes s ∈ {7, 11, 21}. The number of Gaussians was chosen according to the size as
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s
2

+ 1 and rounded to the nearest integer. The dendrograms resulting from this manipulation
are depicted in panels B, C, D in Figure 4.

Successively, we applied the same strategy and parameters to the fashion-MNIST and
CIFAR10 datasets, obtaining the results in Figure 5.

7.3.3. Validation on augmented samples

This application aims at testing the aforementioned equivariance of the distance dS
defined in Equation 18. To do this, we consider a set of operators selected and sampled on
non-transformed samples, while we transform the set of validation samples by applying a
random transformation among translations, rotations and reflections parametrised as follows:

1. rotations are selected randomly to be between 1 and 30 degrees;

2. translations can be in both the x and y-axis directions in a range between 1 and 2
pixels;

3. reflections are computed randomly with respect to one of the two axes.

The transformed samples along with the dendrograms obtained by considering the metric
induced by the selected and sampled operators are shown in Figure 6.

7.3.4. Knowledge injection

As a final application, we discuss the possibility of using selected and sampled operators S
as fixed feature extractor for a simple artificial neural network model. We do that by using the
elements of S to initialise non-trainable filters of a convolutional layer. On top of this layer,
we use two fully-connected layers, the first with ReLu [23] and the latter softmax activations,
two classify samples from pairs of classes of MNIST, fashion-MNIST and CIFAR10 datasets.
Then we compare the performance of the classifier operating with the IENEO-initialised
filters, with an identical architecture whose filters were initialised randomly with Glorot
initilisation [24]. The architecture of the model and the performance are shown in Figure 7.

8. Discussion and conclusions

The first contribution of this paper consists in giving a novel, formal and sound mathemati-
cal framework for machine learning, based on the study of metric and topological properties of
operator spaces acting on function spaces. This approach is dual to the classical one: instead
of focusing on data, our approach focuses on suitable operators defined on the functions that
represent the data. Of all possible type of operators, we study the space of non-expansive,
group equivariant operators (GENEOs). When building a machine learning system, choosing
to work on a space of operators equivariant with respect to specific transformations allows
us to inject in the system pre-existing knowledge. Indeed, the operators will be blind to
the action of the group on the data, hence reducing the dimensionality of the space to be
explored during optimisation. The choice of working with non-expansive operators is justified
both by the possibility of proving the compactness of the spaces of GENEOs (under the
assumption of compactness of the spaces of measurements), and by the fact that in practical
applications we are usually interested in operators that compress the information we have as
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Knowledge transfer on MNIST via selection and sampling

Input Convolution and max-pooling

(non-trainable) Fully-connected and ReLU Softmax

A. Convolutional neural network model

GENEO Random
CIFAR10 Fashion-MNIST MNIST CIFAR10 MNIST

B. Binary classification with GENOs vs random filter initialisation.
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Figure 7: IENEOs versus random: Comparison between the performance obtained by classifying two classes
of MNIST, fashion-MNIST and CIFAR10 with a dense classifier fed with convolutional filters obtained by
selecting and sampling IENEOs. (A) The convolutional neural network architecture used in this experiment.
The two first layers are a convolutional and maxpooling layer, respectively. The parameters of these layers
are fixed. Two fully-connected layers counting 64 and 2 units are trained to classify the two selected classes.
The first fully-connected layer uses a rectified linear unit (ReLU) and the second a softmax as activation
functions. (B) Loss value and accuracy for the validation set. In each row a different initialisation in terms
of number of IENEOs and examples used during seletion and sampling is used.25



an input. The rationale of our approach is based on the assumption that the main interest
in machine learning does not consist in the analysis and the approximation of data, but in
the analysis and the approximation of the observers looking at the data. A simple example
can make this idea clearer: if we consider images representing skin lesions, we are not mainly
interested in the images per se but rather in approximating the judgement given by the
physicians about such images.

Presenting our mathematical model, we first show how the space of GENEOs is suitable
for machine learning. By using pseudo-metrics, we define a topology on the space of GENEOs
which is induced by the one we define on the function space of data. We build the necessary
machinery to define maps between GENEOs whose groups of equivariance are different. This
definition is fundamental, because it allows one to compose operators hierarchically, in the
same fashion as computational units are linked in an artificial neural network. Thereafter, by
taking advantage of known and novel results in persistent homology, we prove compactness
and convexity of the space of GENEOs under suitable hypotheses. Moreover and importantly,
we show how the suggested framework can be used to study operators that are equivariant
with respect to set of transformations, rather than groups. In particular, we observe that
the pseudo-metric D

F,k
match defined in Subsection 6.1 can be used also in the case that the

operators in F are equivariant with respect to a set instead of a group of homeomorphisms.
This possibility appears to be promising for future research. It is important to stress the use
of persistent homology in our model: the metric comparison of GENEOs is a key point in
our approach and persistent homology allows for a fast comparison of functions, so allowing
for a fast comparison of GENEOs.

We give two algorithms that allow to select and sample from a space of operators given
a dataset labelled for a classification task. These procedures allow to first select a subset
of operators belonging to a certain GENEOs space, that give meaningful representation of
the data with respect to their labelling, always invariant under the transformations induced
by the action of G. Thenceforth, the sampling algorithm allows to eliminate redundant
operators. These two strategies are used to perform metric learning and kernel on MNIST
and fashion-MNIST. In addition, we show how convolutional filters initialised by selecting
and sampling on few samples effectively grasp useful knowledge, that can be utilised to
classify the remainder of the samples, for instance by a dense classifier.

Our forward-looking goal is the one of defining a novel artificial neural network model
based on functional modules. Modules would be more complex computational units than
the standard artificial neuron. The core of each module would be a GENEO, thus each
module would be defined a priori to be equivariant with respect to a set of transformations.
On one hand, this choice would allow us to dramatically reduce the dimensionality of the
manifold to be studied during optimisation. On the other hand, choosing the transformation
equivariances to be respected at each layer would allow us to inject knowledge in the networks
before training, and would assure that information is not acquired by relying on unwanted
noisy regularities in the training data. Module networks would learn optimal transformations
of the data to achieve a task, rather than operating on data themselves.

Module networks could be built by composing modules hierarchically and knowledge could
be injected in the model by engineering the proper set of equivariances. These transformations
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would be easily interpretable and could offer a rigorous way to compare learning dynamics of
different architectures during optimisation. In particular, we are investigating the possibility
to generalize capsule networks [25, 26] and modify the dynamic routing algorithm, by using
the metrics on the space of GENEOs to update the connectivity strength between modules.

We conclude by observing that several interesting problems and new lines of research
naturally arise in our mathematical model. First of all some sets of GENEOs appear to have
a structure of a Lie group and a Riemannian manifold: these structures seem worth study
and analysis. Secondly, new methods for building GENEOs should be developed, in order
to get good approximations of the spaces of GENEOs for given equivariance groups and
function spaces. We plan to devote further research to these issues.
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Appendix A Additional propositions

Proposition A.1. The function DX is an extended pseudo-metric on X.

Remark A.2. We recall that a pseudo-metric is just a distance d without the property: if
d(a, b) = 0, then a = b.

Proof. • DX is obviously symmetrical.

• The definition of DX immediately implies that DX(x, x) = 0 for any x ∈ X.

• The triangle inequality holds, since

DX(x1, x2) = sup
ϕ∈Φ
|ϕ(x1)− ϕ(x2)|

≤ sup
ϕ∈Φ

(|ϕ(x1)− ϕ(x3)|+ |ϕ(x3)− ϕ(x2)|)

≤ sup
ϕ∈Φ
|ϕ(x1)− ϕ(x3)|+ sup

ϕ∈Φ
|ϕ(x3)− ϕ(x2)|

= DX(x1, x3) +DX(x3, x2)

for any x1, x2, x3 ∈ X.

Proposition A.3. If Φ is totally bounded, then for any δ > 0 there exists a finite subset Φδ
of Φ such that ∣∣∣∣sup

ϕ∈Φ
|ϕ(x1)− ϕ(x2)| −max

ϕ∈Φδ
|ϕ(x1)− ϕ(x2)|

∣∣∣∣ < 2δ

for every x1, x2 ∈ X.

Proof. Let us fix x1, x2 ∈ X. Since Φ is totally bounded, we can find a finite subset Φδ =
{ϕ1, . . . , ϕn} such that for each ϕ ∈ Φ there exists ϕi ∈ Φδ, for which ‖ϕ − ϕi‖∞ < δ. It
follows that for any x ∈ X, |ϕ(x)− ϕi(x)| < δ. Because of the definition of supremum of a
subset of the set R+ of all positive real numbers, for any ε > 0 we can choose a ϕ̄ ∈ Φ such
that

sup
ϕ∈Φ
|ϕ(x1)− ϕ(x2)| − |ϕ̄(x1)− ϕ̄(x2)| ≤ ε.

Now, if we take an index i, for which ‖ϕ̄− ϕi‖∞ < δ, we have that:

|ϕ̄(x1)− ϕ̄(x2)| = |ϕ̄(x1)− ϕi(x1) + ϕi(x1)− ϕi(x2) + ϕi(x2)− ϕ̄(x2)|
≤ |ϕ̄(x1)− ϕi(x1)|+ |ϕi(x1)− ϕi(x2)|+ |ϕi(x2)− ϕ̄(x2)|
< |ϕi(x1)− ϕi(x2)|+ 2δ

≤ max
ϕj∈Φδ

|ϕj(x1)− ϕj(x2)|+ 2δ.
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Hence,

sup
ϕ∈Φ
|ϕ(x1)− ϕ(x2)| − ε < |ϕ̄(x1)− ϕ̄(x2)| < max

ϕj∈Φδ
|ϕj(x1)− ϕj(x2)|+ 2δ.

Finally, as ε goes to zero, we have that

sup
ϕ∈Φ
|ϕ(x1)− ϕ(x2)| < max

ϕj∈Φδ
|ϕj(x1)− ϕj(x2)|+ 2δ.

On the other hand, since Φδ ⊆ Φ:

sup
ϕ∈Φ
|ϕ(x1)− ϕ(x2)| > max

ϕj∈Φδ
|ϕj(x1)− ϕj(x2)| − 2δ.

Therefore we proved the statement.

Proposition A.4. The function DG is a pseudo-metric on G.

Proof. • The value DG(g1, g2) is finite for every g1, g2 ∈ G , because Φ is compact and
hence bounded. Indeed, a finite constant L exists such that ‖ϕ‖∞ ≤ L for every ϕ ∈ Φ.
Hence, ‖ϕ ◦ g1 − ϕ ◦ g2‖∞ ≤ ‖ϕ‖∞ + ‖ϕ‖∞ ≤ 2L for any ϕ ∈ Φ and any g1, g2 ∈ G,
since ϕ ◦ g1, ϕ ◦ g2 ∈ Φ. This implies that DG(g1, g2) ≤ 2L for every g1, g2 ∈ G.

• DG is obviously symmetrical.

• The definition of DG immediately implies that DG(g, g) = 0 for any g ∈ G.

• The triangle inequality holds, since

DG(g1, g2) = sup
ϕ∈Φ
‖ϕ ◦ g1 − ϕ ◦ g2‖∞

≤ sup
ϕ∈Φ

(‖ϕ ◦ g1 − ϕ ◦ g3‖∞ + ‖ϕ ◦ g3 − ϕ ◦ g2‖∞) (19)

≤ sup
ϕ∈Φ
‖ϕ ◦ g1 − ϕ ◦ g3‖∞ + sup

ϕ∈Φ
‖ϕ ◦ g3 − ϕ ◦ g2‖∞

= DG(g1, g3) +DG(g3, g2)

for any g1, g2, g3 ∈ G.

Appendix B Our approach in terms of slice categories

In this section, we will apply the concept of slice category to our framework in order
to formalize the concept of perception pairs, which are considered as subcategories of a

larger category denoted by PMet�(R, de), as we explain further. Moreover we explore the

link between GENEOs and functors between categories of this kind.
Let PMet be the category whose objects are pseudo-metric spaces and morphisms are

the continuous functions between them. Let us fix the space (R, de), that is the real line
equipped with the usual Euclidean metric, and consider the slice category over (R, de).

Now we recall the definition of slice category:
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Definition B.1. The slice category C�c of a category C over an object c ∈ C has

• objects that are all arrows f ∈ C such that cod(f) = c,

• morphisms that are all triples gf,f ′ := (f, g, f ′) where f : X −→ c and f ′ : X ′ −→ c

are two objects of C�c, g : X −→ X ′ is a morphism of C such that f = f ′ ◦ g;
dom(gf,f ′) = f and cod(gf,f ′) = f ′.

The slice category is a special case of a comma category.

Remark B.2. There is a forgetful functor Uc : C�c −→ C which maps each object f : X −→ c
to its domain X and each morphism gf,f ′ between f : X −→ c and f ′ : X ′ −→ c to the
morphism g : X −→ X ′.

We are going to associate a perception pair (Φ,G) with a subcategory C(Φ,G) of
PMet�(R, de) defined as follows:

• the objects of C(Φ,G) are the elements of Φ;

• the arrows of C(Φ,G) are the triples (f, g, f ◦ g) , where f ∈ Φ and g ∈ G.

We observe that the action of G on Φ ensures us that the arrow (f, g, f ◦ g) is well-defined
for any f ∈ Φ and any g ∈ G.

Now we can define a “functorial” version of the concept of GENEO.

Definition B.3. Let us consider two categories C(Φ,G) and C(Ψ, H). A functor F from
C(Φ,G) to C(Ψ, H) is a C-GENEO if:

• DΨ(F (ϕ), F (ϕ′)) ≤ DΦ(ϕ, ϕ′) for any ϕ, ϕ′ ∈ Φ;

• for any pair of morphisms m, m′ ∈ hom(C(Φ,G)) such that UR(m) = UR(m′) we have
that UR(F (m)) = UR(F (m′)).

GENEOs and C-GENEOs share the non-expansivity condition. The proposition below
shows that the second conditions respectively required in the definitions of GENEO and
C-GENEO correspond to each other in a suitable sense. We omit its trivial proof.

Proposition B.4. Let F be a functor from C(Φ,G) to C(Ψ, H). The following conditions
are equivalent:

• there exists a group homomorphism T : G −→ H such that F (ϕ ◦ g) = F (ϕ) ◦ T (g) for
any ϕ ∈ Φ and any g ∈ G;

• for any pair of morphisms m, m′ ∈ hom(C(Φ,G)) such that UR(m) = UR(m′) we have
that UR(F (m)) = UR(F (m′)).
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Appendix C Proofs

Theorem (4.1). The topology τDX on X induced by the pseudo-metric DX is finer than the
initial topology τin on X with respect to Φ. If Φ is totally bounded, then the topology τDX
coincides with τin.

Proof. We know that the set BDX = {BX(x, ε) : x ∈ X, ε > 0} is a base for the topology τDX
and the set Bin =

{⋂
i∈I ϕ

−1
i (Ui) : |I| <∞, Ui ∈ TE ∀i ∈ I

}
is a base for the topology τin.

First of all we have to show that the topology τDX is finer than the initial topology τin.
Let us take a set in the base Bin of τin, i.e. a set

⋂
i∈I ϕ

−1
i (Ui), where I is a finite set of indexes

and Ui ∈ TE for every index i ∈ I. It will be sufficient to show that for every y ∈
⋂
i∈I ϕ

−1
i (Ui)

a ball BX(y, ε) ∈ BDX exists, such that BX(y, ε) ⊆
⋂
i∈I ϕ

−1
i (Ui). Since y ∈

⋂
i∈I ϕ

−1
i (Ui),

we have that ϕi(y) ∈ Ui for every i ∈ I. Therefore, for each i ∈ I we can find an open
interval ]ai, bi[ such that ϕi(y) ∈]ai, bi[⊆ Ui. Let us set ε := mini∈I min{ϕi(y)−ai, bi−ϕi(y)},
and observe that ε > 0. If z ∈ BX(y, ε), then |ϕ(y) − ϕ(z)| < ε for every ϕ ∈ Φ, and
in particular |ϕi(y) − ϕi(z)| < ε for every i ∈ I. Hence the definition of ε immediately
implies that ϕi(z) ∈]ai, bi[ for every i ∈ I, so that z ∈

⋂
i∈I ϕ

−1
i (]ai, bi[). It follows that

BX(y, ε) ⊆
⋂
i∈I ϕ

−1
i (]ai, bi[) ⊆

⋂
i∈I ϕ

−1
i (Ui). Therefore, y ∈ BX(y, ε) ⊆

⋂
i∈I ϕ

−1
i (Ui), and

our first statement is proved.
If Φ is totally bounded, Proposition A.3 in Appendix A guarantees that for every δ > 0 a

finite subset Φδ of Φ exists such that∣∣∣∣sup
ϕ∈Φ
|ϕ(x1)− ϕ(x2)| −max

ϕ∈Φδ
|ϕ(x1)− ϕ(x2)|

∣∣∣∣ < 2δ (20)

for every x1, x2 ∈ X. Let us now set Bδ(x, r) :=
{
x′ ∈ X

∣∣∣maxϕi∈Φδ |ϕi(x)− ϕi(x′)| < r
}

for every x ∈ X and every r > 0. We have to prove that the initial topology τin is finer
than the topology τDX . In order to do this, it will be sufficient to show that for every
y ∈ BX(x, ε) ∈ BDX a set

⋂
i∈I ϕ

−1
i (Ui) ∈ Bin exists, such that y ∈

⋂
i∈I ϕ

−1
i (Ui) ⊆ BX(x, ε).

Let us choose a positive δ such that 2δ < ε. Inequality (20) implies that Bδ(y, ε −
2δ) ⊆ BX(y, ε). We now set Ui :=]ϕi(y) − ε + 2δ, ϕi(y) + ε − 2δ[ for i ∈ I. Obviously,
y ∈

⋂
ϕi∈Φδ ϕ

−1
i (Ui). If z ∈

⋂
ϕi∈Φδ ϕ

−1
i (Ui), then |ϕi(z)− ϕi(y)| < ε− 2δ for every ϕi ∈ Φδ.

Hence, z ∈ Bδ(y, ε − 2δ). It follows that
⋂
ϕi∈Φδ ϕ

−1
i (Ui) ⊆ Bδ(y, ε − 2δ). Therefore,

y ∈
⋂
ϕi∈Φδ ϕ

−1
i (Ui) ⊆ BX(x, ε) because of the inclusion Bδ(y, ε−2δ) ⊆ BX(y, ε). This means

that τin is finer than τDX . Since we already know that τDX is finer than τin, it follows that
τDX coincides with τin.

Remark. The second statement of Theorem 4.1 becomes false if Φ is not totally bounded. For
example, assume Φ equal to the set of all functions from X = [0, 1] to R that are continuous
with respect to the Euclidean topologies on [0, 1] and R. Indeed, it is easy to check that in
this case τDX is the discrete topology, while the initial topology τin is the Euclidean topology
on [0, 1].

Remark. The pseudo-metric space (X,DX) may not be a T0-space. For example, this happens
if X is a space containing at least two points and Φ is the set of all the constant functions
from X to [0, 1].
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Theorem (4.2). If Φ is compact and X is complete then X is also compact.

Proof. First of all we want to prove that every sequence (xi) in X admits a Cauchy subse-
quence in X. After that, the statement follows immediately because every Cauchy sequence
in a complete space is convergent, so that X is sequentially compact, and hence compact,
since X is a pseudo-metric space [18].

Let us consider an arbitrary sequence (xi) in X and an arbitrarily small ε > 0. Since Φ is
compact, we can find a finite subset Φε = {ϕ1, . . . , ϕn} such that Φ =

⋃n
i=1BΦ(ϕi, ε), where

BΦ(ϕ, ε) = {ϕ′ ∈ Φ : DΦ(ϕ′, ϕ) < ε}. In particular, we can say that for any ϕ ∈ Φ there
exists ϕk̄ ∈ Φε such that ‖ϕ− ϕk̄‖∞ < ε. Now, we consider the real sequence ϕ1(xi) that is
bounded because all the functions in Φ are bounded. From Bolzano-Weierstrass Theorem it
follows that we can extract a convergent subsequence ϕ1(xih). Then we consider the sequence
ϕ2(xih). Since ϕ2 is bounded, we can extract a convergent subsequence ϕ2(xiht ). We can
repeat the same argument for any ϕk ∈ Φε. Thus, we obtain a subsequence (xij) of (xi),
such that ϕk(xij) is a real convergent sequence for any k ∈ {1, . . . , n}, and hence a Cauchy
sequence in R. Moreover, since Φε is a finite set, there exists an index ̄ such that for any
k ∈ {1, . . . , n} we have that

|ϕk(xir)− ϕk(xis)| < ε, ∀ r, s ≥ ̄. (21)

We observe that ̄ does not depend on ϕ, but only on ε and Φε.
In order to prove that (xij) is a Cauchy sequence in X, we observe that for any r, s ∈ N

and any ϕ ∈ Φ we have:

|ϕ(xir)− ϕ(xis)| = |ϕ(xir)− ϕk(xir) + ϕk(xir)− ϕk(xis) + ϕk(xis)− ϕ(xis)|
≤ |ϕ(xir)− ϕk(xir)|+ |ϕk(xir)− ϕk(xis)|+ |ϕk(xis)− ϕ(xis)| (22)

≤ ‖ϕ− ϕk‖∞ + |ϕk(xir)− ϕk(xis)|+ ‖ϕk − ϕ‖∞.

It follows that |ϕ(xir) − ϕ(xis)| < 3ε for every ϕ ∈ Φ and every r, s ≥ ̄. Thus,
supϕ∈Φ |ϕ(xir)−ϕ(xis)| = DX(xir , xis) ≤ 3ε. Hence, the sequence (xij ) is a Cauchy sequence
in X. The completeness of X implies that the statement of Theorem 4.2 is true.

Example. Let Φ be the set containing all the 1-Lipschitz functions from X = {(x, y) ∈ R3 :
x2 + y2 = 1, arcsin(x) ∈ Q} to [0, 1], and G be the group of all rotations ρ2πq of 2πq radians
with q ∈ Q. The topological space X is neither complete nor compact.

Proposition (4.3). If g is a bijection from X to X such that ϕ ◦ g ∈ Φ and ϕ ◦ g−1 ∈ Φ for
every ϕ ∈ Φ, then g is an isometry (and hence a homeomorphism) with respect to DX .

Proof. Let us fix two arbitrary points x, x′ in X. Obviously, the map Rg : Φ → Φ taking
each function ϕ to ϕ ◦ g is surjective, since ϕ = Rg (Rg−1(ϕ)). Hence Rg(Φ) = Φ. Therefore,
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g preserves the pseudo-distance DX :

DX(g(x), g(x′)) = sup
ϕ∈Φ
|ϕ(g(x))− ϕ(g(x′))|

= sup
ϕ∈Φ
|(ϕ ◦ g)(x)− (ϕ ◦ g)(x′)| (23)

= sup
ϕ∈Rg(Φ)

|ϕ(x)− ϕ(x′)| (24)

= sup
ϕ∈Φ
|ϕ(x)− ϕ(x′)| = DX(x, x′).

Since g is bijective, it follows that g is an isometry with respect to DX .

Theorem (4.7). G is a topological group with respect to the pseudo-metric topology and the
action of G on Φ through right composition is continuous.

Proof. It will suffice to prove that if f = limi→+∞ fi and g = limi→+∞ gi in G with respect
to the pseudo-metric DG, then g ◦ f = limi→+∞ gi ◦ fi and f−1 = limi→+∞ f

−1
i .

Because of the compactness of Φ and Proposition A.3, for every δ > 0 we can take a finite
subset Φδ of Φ such that∣∣∣∣sup

ϕ∈Φ
|ϕ(x1)− ϕ(x2)| −max

ϕ∈Φδ
|ϕ(x1)− ϕ(x2)|

∣∣∣∣ < 2δ

for every x1, x2 ∈ X. We have that

DG(gi ◦ fi, g ◦ f) ≤ DG(gi ◦ fi, g ◦ fi) +DG(g ◦ fi, g ◦ f) =

= sup
ϕ∈Φ
‖ϕ ◦ (gi ◦ fi)− ϕ ◦ (g ◦ fi)‖∞ + sup

ϕ∈Φ
‖ϕ ◦ (g ◦ fi)− ϕ ◦ (g ◦ f)‖∞ (25)

= sup
ϕ∈Φ

sup
x∈X
|ϕ(gi(fi(x))− ϕ(g(fi(x))|+ sup

ϕ∈Φ
sup
x∈X
|ϕ(g(fi(x))− ϕ(g(f(x))|

= sup
ϕ∈Φ

sup
y∈X
|ϕ(gi(y))− ϕ(g(y))|+ sup

ϕ∈Φ
sup
x∈X
|ϕ(g(fi(x))− ϕ(g(f(x))|

< DG(gi, g) + max
ϕ∈Φδ

sup
x∈X
|ϕ(g(fi(x))− ϕ(g(f(x))|+ 2δ. (26)

Since g = limi→+∞ gi, limi→+∞DG(gi, g) = 0. Because of Theorem 4.2, X is compact
and hence ϕ ◦ g : X → R is a uniformly continuous function. Since f = limi→+∞ fi, it
follows that limi→+∞ supx∈X |ϕ(g(fi(x)) − ϕ(g(f(x))| = 0 for every ϕ ∈ Φδ, and hence
limi→+∞maxϕ∈Φδ supx∈X |ϕ(g(fi(x))−ϕ(g(f(x))| = 0. Given that δ can be taken arbitrarily
small, we get g ◦ f = limi→+∞ gi ◦ fi.

We also want to prove that f−1 = limi→+∞ f
−1
i . By contradiction, if we had not that

limi→∞DG(f−1
i , f−1) = 0, then there would exist a constant c > 0 and a subsequence (fij)

of (fi) such that DG(f−1
ij
, f−1) ≥ c > 0 for every index j. However, we should still have

limj→∞DG(fij , f) = 0 because (fij ) is a subsequence of (fi). Since DG(f−1
ij
, f−1) ≥ c > 0 for

every index j, a ϕj ∈ Φ should exist such that ‖ϕj ◦ f−1
ij
− ϕj ◦ f−1‖∞ ≥ c > 0.
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Because of the compactness of Φ, it would not be restrictive to assume (possibly by
considering subsequences) the existence of the following limits: ϕ̄ = limj→∞ ϕj and ϕ̂ =
limj→∞ ϕj ◦ f−1

ij
. We would have that

DΦ(ϕ̂, ϕ̄ ◦ f−1) = DΦ( lim
j→∞

ϕj ◦ f−1
ij
, lim
j→∞

ϕj ◦ f−1)

= lim
j→∞

DΦ(ϕj ◦ f−1
ij
, ϕj ◦ f−1) ≥ c > 0 (27)

so that ϕ̂ 6= ϕ̄ ◦ f−1.
On the other hand, we should have

DΦ(ϕ̂ ◦ f, ϕ̄) = DΦ(( lim
j→∞

ϕj ◦ f−1
ij

) ◦ f, lim
j→∞

ϕj)

= lim
j→∞

DΦ((ϕj ◦ f−1
ij

) ◦ f, (ϕj ◦ f−1
ij

) ◦ fij) (28)

≤ lim
j→∞

DG(fij , f) = 0

so that ϕ̂ ◦ f = ϕ̄.
It follows that Rf is not injective, against our assumptions.
This contradiction proves that limi→∞ f

−1
i = f−1.

Therefore, G is a topological group.
Let now ε be a positive real number. If DΦ(ϕ, ψ), DG(f, g) < δ := ε/2 then

DΦ(ϕ ◦ f, ψ ◦ g) ≤ DΦ(ϕ ◦ f, ϕ ◦ g) +DΦ(ϕ ◦ g, ψ ◦ g)

= DΦ(ϕ ◦ f, ϕ ◦ g) +DΦ(ϕ, ψ) (29)

≤ DG(f, g) +DΦ(ϕ, ψ) < ε/2 + ε/2 = ε.

This proves that the action of G on Φ through right composition is continuous.

Theorem (4.8). If G is complete then it is also compact with respect to DG.

Proof. We want to show that G is sequentially compact, and hence compact. Let (gi) be
a sequence in G and take a real number ε > 0. Given that Φ is compact, we can find a
finite subset Φε = {ϕ1, . . . , ϕn} such that for every ϕ ∈ Φ there exists ϕh ∈ Φε for which
DΦ(ϕh, ϕ) < ε. For any fixed k ∈ {1, . . . , n}, let us consider the sequence (ϕk ◦ gi) in Φ.
Applying the same argument as in the proof of Theorem 4.2, we can extract a subsequence
(gij) of (gi) such that (ϕk ◦ gij) converges in Φ with respect to DΦ and hence it is a Cauchy
sequence for any k ∈ {1, . . . , n}. For the finiteness of set Φε, we can find an index ̄ such that

DΦ(ϕk ◦ gir , ϕk ◦ gis) < ε, for every s, r ≥ ̄. (30)

In order to prove that (gij) is a Cauchy sequence, we observe that for any ϕ ∈ Φ, any
ϕk ∈ Φε, and any r, s ∈ N we have

DΦ(ϕ ◦ gir , ϕ ◦ gis))
≤ DΦ(ϕ ◦ gir , ϕk ◦ gir) +DΦ(ϕk ◦ gir , ϕk ◦ gis) +DΦ(ϕk ◦ gis , ϕ ◦ gis) (31)

= DΦ(ϕ, ϕk) +DΦ(ϕk ◦ gir , ϕk ◦ gis) +DΦ(ϕk, ϕ).
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We observe that ̄ does not depend on ϕ, but only on ε and Φε. By choosing a ϕk ∈ Φε
such that DΦ(ϕk, ϕ) < ε, we get DΦ(ϕ ◦ gir , ϕ ◦ gis)) < ε for every ϕ ∈ Φ and every r, s ≥ ̄.
Thus, DG(gir , gis) < 3ε. Hence, the sequence (gij) is a Cauchy sequence. Finally, given that
G is complete, (gij) is convergent. Therefore, G is sequentially compact.

Example. Let Φ be the set containing all the 1-Lipschitz functions from X = S1 = {(x, y) ∈
R3 : x2 + y2 = 1} to [0, 1], and G be the group of all rotations ρ2πq of X of 2πq radians with
q rational number. The space (G,DG) is neither complete nor compact.

Proposition (4.13). If F is a GENEO from (Φ,G) to (Ψ,H) associated with T : G→ H,
then it is a contraction with respect to the natural pseudo-distances dG, dH .

Proof. Since F is a GENEO, it follows that

dH(F (ϕ1), F (ϕ2)) = inf
h∈H

DΨ (F (ϕ1), F (ϕ2) ◦ h)

≤ inf
g∈G

DΨ (F (ϕ1), F (ϕ2) ◦ T (g)) (32)

= inf
g∈G

DΨ (F (ϕ1), F (ϕ2 ◦ g))

≤ inf
g∈G

DΦ (ϕ1, ϕ2 ◦ g) = dG(ϕ1, ϕ2).

Proposition (4.16). For every F ∈ Fall and every ϕ ∈ Φ: ‖F (ϕ)‖∞ ≤ ‖ϕ‖∞ + ‖F (0)‖∞,
where 0 denotes the function taking the value 0 everywhere.

Proof. Since F is non-expansive, we have that

‖F (ϕ)‖∞ = ‖F (ϕ)− F (0) + F (0)‖∞
≤ ‖F (ϕ)− F (0)‖∞ + ‖F (0)‖∞
≤ ‖ϕ− 0‖∞ + ‖F (0)‖∞ = ‖ϕ‖∞ + ‖F (0)‖∞.

Theorem (5.1). Fall is compact with respect to DGENEO.

Proof. We know that (Fall, DGENEO) is a metric space. Therefore it will suffice to prove
that Fall is sequentially compact. In order to do this, let us assume that a sequence (Fi) in
Fall is given. Given that Φ is a compact (and hence separable) metric space, we can find a
countable and dense subset Φ∗ = {ϕj}j∈N of Φ. By means of a diagonalization process, we
can extract a subsequence (F ′i ) from (Fi), such that for every fixed index j the sequence
(F ′i (ϕj)) converges to a function in Ψ with respect to DΨ. Now, let us consider the function
F̄ : Φ→ Ψ defined by setting F̄ (ϕj) := limi→∞ F

′
i (ϕj) for each ϕj ∈ Φ∗.

We extend F̄ to Φ as follows. For every ϕ ∈ Φ we choose a sequence (ϕjr) in Φ∗, converging
to ϕ ∈ Φ, and set F̄ (ϕ) := limr→∞ F̄ (ϕjr). We claim that such a limit exists in Ψ and does
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not depend on the sequence that we have chosen, converging to ϕ ∈ Φ. In order to prove
that the previous limit exists, we observe that for every r, s ∈ N

DΨ

(
F̄ (ϕjr), F̄ (ϕjs)

)
= DΨ

(
lim
i→∞

F ′i (ϕjr), lim
i→∞

F ′i (ϕjs)
)

= lim
i→∞

DΨ (F ′i (ϕjr), F
′
i (ϕjs))

≤ lim
i→∞

DΦ (ϕjr , ϕjs) = DΦ (ϕjr , ϕjs) ,

because each F ′i is non-expansive.
Since the sequence (ϕjr) converges to ϕ ∈ Φ, it follows that (F̄ (ϕjr)) is a Cauchy sequence

with respect to DΨ. The compactness of Ψ implies that (F̄ (ϕjr)) converges in Ψ .
If another sequence (ϕkr) in given in Φ∗, converging to ϕ ∈ Φ, then for every index r ∈ N

DΨ

(
F̄ (ϕjr), F̄ (ϕkr)

)
= DΨ

(
lim
i→∞

F ′i (ϕjr), lim
i→∞

F ′i (ϕkr)
)

= lim
i→∞

DΨ (F ′i (ϕjr), F
′
i (ϕkr))

≤ lim
i→∞

DΦ (ϕjr , ϕkr)

= DΦ (ϕjr , ϕkr) .

Since both (ϕjr) and (ϕkr) converge to ϕ it follows that limr→∞ F̄ (ϕjr) = limr→∞ F̄ (ϕkr).
Therefore the definition of F̄ (ϕ) does not depend on the sequence (ϕjr) that we have chosen,
converging to ϕ.

Now we have to prove that F̄ ∈ Fall, i.e., that F̄ verifies the properties defining this set
of operators. We have already seen that F̄ : Φ→ Ψ .

For every ϕ, ϕ′ we can consider two sequences (ϕjr), (ϕkr) in Φ∗, converging to ϕ and ϕ′,
respectively. Due to the fact that the operators F ′i are non-expansive, we have that

DΨ

(
F̄ (ϕ), F̄ (ϕ′)

)
= DΨ

(
lim
r→∞

F̄ (ϕjr), lim
r→∞

F̄ (ϕkr)
)

= DΨ

(
lim
r→∞

lim
i→∞

F ′i (ϕjr), lim
r→∞

lim
i→∞

F ′i (ϕkr)
)

= lim
r→∞

lim
i→∞

DΨ (F ′i (ϕjr), F
′
i (ϕkr))

≤ lim
r→∞

lim
i→∞

DΦ (ϕjr , ϕkr)

= lim
r→∞

DΦ (ϕjr , ϕkr)

= DΦ (ϕ, ϕ′) .

Therefore, F̄ : Φ→ Ψ is non-expansive. As a consequence, it is also continuous.
We can now prove that the sequence (F ′i ) converges to F̄ with respect to DGENEO.
Let us consider an arbitrarily small ε > 0. Since Φ is compact and Φ∗ is dense in Φ, we

can find a finite subset {ϕj1 , . . . , ϕjn} of Φ∗ such that for every ϕ ∈ Φ, there exists an index
r ∈ {1, . . . , n}, for which DΦ (ϕ, ϕjr) < ε.
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Since the sequence (F ′i ) converges pointwise to F̄ on the set Φ∗, an index ı̄ exists, such
that DΨ

(
F̄ (ϕjr), F

′
i (ϕjr)

)
< ε for any i ≥ ı̄ and any r ∈ {1, . . . , n}. Therefore, for every

ϕ ∈ Φ we can find an index r ∈ {1, . . . , n} such that DΦ (ϕ, ϕjr) < ε and the following
inequalities hold for every index i ≥ ı̄, because of the non-expansivity of F̄ and F ′i :

DΨ

(
F̄ (ϕ), F ′i (ϕ)

)
≤ DΨ

(
F̄ (ϕ), F̄ (ϕjr)

)
+DΨ

(
F̄ (ϕjr), F

′
i (ϕjr)

)
+DΨ (F ′i (ϕjr), F

′
i (ϕ))

≤ DΦ (ϕ, ϕjr) +DΨ

(
F̄ (ϕjr), F

′
i (ϕjr)

)
+DΦ (ϕjr , ϕ) < 3ε.

We observe that ı̄ does not depend on ϕ, but only on ε and on the set {ϕj1 , . . . , ϕjn}. It
follows that DΨ

(
F̄ (ϕ), F ′i (ϕ)

)
< 3ε for every ϕ ∈ Φ and every i ≥ ı̄.

Hence, supϕ∈ΦDΨ

(
F̄ (ϕ), F ′i (ϕ)

)
≤ 3ε for every i ≥ ı̄. Therefore, the sequence (F ′i )

converges to F̄ with respect to DGENEO.
The last thing that we have to show is that F̄ is group equivariant. Let us consider a

ϕ ∈ Φ, a sequence (ϕjr) in Φ∗ converging to ϕ in Φ and a g ∈ G. Obviously, DΦ(ϕjr ◦g, ϕ◦g) =
DΦ(ϕjr , ϕ) and hence the sequence (ϕjr ◦ g) converges to ϕ ◦ g in Φ with respect to DΦ. We
recall that the right action of G on Φ is continuous, F̄ is continuous and each F ′i is group
equivariant. Hence, given that the sequence (F ′i ) converges to F̄ with respect to DGENEO,
the following equalities hold:

F̄ (ϕ ◦ g) = F̄ ( lim
r→∞

(ϕjr ◦ g))

= lim
r→∞

F̄ (ϕjr ◦ g)

= lim
r→∞

lim
i→∞

F ′i (ϕjr ◦ g)

= lim
r→∞

lim
i→∞

F ′i (ϕjr) ◦ T (g)

= lim
r→∞

F̄ (ϕjr) ◦ T (g)

= F̄ (ϕ) ◦ T (g).

This proves that F̄ is group equivariant, and hence a perception map. In conclusion, F̄ is
a GENEO. From the fact that the sequence F ′i converges to F̄ with respect to DGENEO, it
follows that (Fall, DGENEO) is sequentially compact.

Proposition (5.2). If FΣ(Φ) ⊆ Ψ , then FΣ is a GENEO from (Φ,G) to (Ψ,H) with respect
to T .

Proof. First we prove that FΣ is a perception map with respect to T . Since every Fi is a
perception map we have that:

FΣ(ϕ◦g) =
n∑
i=1

aiFi(ϕ◦g) =
n∑
i=1

ai(Fi(ϕ)◦T (g)) =
n∑
i=1

(aiFi(ϕ))◦T (g) = FΣ(ϕ)◦T (g). (33)
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Since every Fi is non-expansive, FΣ is non-expansive:

DΨ (FΣ(ϕ1), FΣ(ϕ2)) =

∥∥∥∥∥
n∑
i=1

aiFi(ϕ1)−
n∑
i=1

aiFi(ϕ2)

∥∥∥∥∥
∞

(34)

=

∥∥∥∥∥
n∑
i=1

ai(Fi(ϕ1)− Fi(ϕ2))

∥∥∥∥∥
∞

(35)

≤
n∑
i=1

|ai| ‖(Fi(ϕ1)− Fi(ϕ2))‖∞ (36)

≤
n∑
i=1

|ai| ‖ϕ1 − ϕ2‖∞ ≤ DΦ (ϕ1, ϕ2) . (37)

Therefore FΣ is a GENEO.

Theorem (5.3). If Ψ is convex, then the set of GENEOs from (Φ,G) to (Ψ,H) with respect
to T is convex.

Proof. It is sufficient to apply Proposition 5.2 for n = 2, by setting a1 = t, a2 = 1 − t for
0 ≤ t ≤ 1, and observing that the convexity of Ψ implies FΣ(Φ) ⊆ Ψ .

Proposition. D
F,k
match is a strongly G-invariant pseudo-metric on Φ.

Proof. Theorem 6.1 and the non-expansivity of every F ∈ F imply that

dmatch(rk(F (ϕ1)), rk(F (ϕ2))) ≤ DΨ (F (ϕ1), F (ϕ2))

≤ DΦ (ϕ1, ϕ2) .

Therefore D
F,k
match is a pseudo-metric, since it is the supremum of a family of pseudo-metrics

that are bounded at each pair (ϕ1, ϕ2). Moreover, for every ϕ1, ϕ2 ∈ Φ and every g ∈ G

D
F,k
match(ϕ1, ϕ2 ◦ g) := sup

F∈F
dmatch(rk(F (ϕ1)), rk(F (ϕ2 ◦ g)))

= sup
F∈F

dmatch(rk(F (ϕ1)), rk(F (ϕ2) ◦ T (g)))

= sup
F∈F

dmatch(rk(F (ϕ1)), rk(F (ϕ2))

= D
F,k
match(ϕ1, ϕ2)

because of the equality F (ϕ ◦ g) = F (ϕ) ◦ T (g) for every ϕ ∈ Φ and every g ∈ G and the
invariance of persistent homology under the action of the homeomorphisms. Since the function
D

F,k
match is symmetric, this is sufficient to guarantee that D

F,k
match is strongly G-invariant.

Theorem (6.5). If F is a non-empty subset of Fall, then

D
F,k
match ≤ dG ≤ DΦ. (38)
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Proof. For every F ∈ D
F,k
match, every g ∈ G and every ϕ1, ϕ2 ∈ Φ, we have that

dmatch(rk(F (ϕ1)), rk(F (ϕ2))) = dmatch(rk(F (ϕ1)), rk(F (ϕ2) ◦ T (g)))

= dmatch(rk(F (ϕ1)), rk(F (ϕ2 ◦ g)))

≤ DΨ (F (ϕ1), F (ϕ2 ◦ g)) ≤ DΦ (ϕ1, ϕ2 ◦ g) .

The first equality follows from the invariance of persistent homology under action of Homeo(X)
(see Remark 6.4), and the second equality follows from the fact F is a group equivariant
operator. The first inequality follows from the stability of persistent homology (Theorem 6.1),
while the second inequality follows from the non-expansivity of F . It follows that, if F ⊆ Fall,
then for every g ∈ G and every ϕ1, ϕ2 ∈ Φ

D
F,k
match(ϕ1, ϕ2) ≤ DΦ (ϕ1, ϕ2 ◦ g) . (39)

Hence, the inequality D
F,k
match ≤ dG follows, while dG ≤ DΦ is stated in Theorem 6.1.

Theorem (6.6). Let us assume that Φ = Ψ, every function in Φ is non-negative, the k-th
Betti number of X does not vanish, and Φ contains each constant function c for which a

function ϕ ∈ Φ exists such that 0 ≤ c ≤ ‖ϕ‖∞. Then D
Fall,k
match = dG.

Proof. For every ϕ′ ∈ Φ let us consider the operator Fϕ′ : Φ→ Φ defined by setting Fϕ′(ϕ)
equal to the constant function taking everywhere the value dG(ϕ, ϕ′) for every ϕ ∈ Φ (i.e.,
Fϕ′(ϕ)(x) = dG(ϕ, ϕ′) for any x ∈ X). Our assumptions guarantee that such a constant
function belongs to Φ = Ψ. We also set T = id : G→ G.

We observe that

1. Fϕ′ is a group equivariant operator on Φ, because the strong invariance of the natural
pseudo-distance dG with respect to the group G (Remark 6.2) implies that if ϕ ∈ Φ
and g ∈ G, then Fϕ′(ϕ ◦ g)(x) = dG(ϕ ◦ g, ϕ′) = Fϕ′(ϕ)(g(x)) = (Fϕ′(ϕ) ◦ g)(x) =
(Fϕ′(ϕ) ◦ T (g))(x), for every x ∈ X.

2. Fϕ′ is non-expansive on Φ, because for every ϕ1, ϕ2 ∈ Φ

DΨ (Fϕ′(ϕ1), Fϕ′(ϕ2)) = |dG(ϕ1, ϕ
′)− dG(ϕ2, ϕ

′)|
≤ dG(ϕ1, ϕ2) ≤ DΦ (ϕ1, ϕ2) .

Therefore, Fϕ′ is a GENEO.
For every ϕ1, ϕ2, ϕ

′ ∈ Φ we have that

dmatch(rk(Fϕ′(ϕ1)), rk(Fϕ′(ϕ2))) = |dG(ϕ1, ϕ
′)− dG(ϕ2, ϕ

′)|. (40)

Indeed, apart from the trivial points on the line {(u, v) ∈ R2 : u = v}, the persistence
diagram associated with rk(Fϕ′(ϕ1)) contains only the point (dG(ϕ1, ϕ

′),∞), while the
persistence diagram associated with rk(Fϕ′(ϕ2)) contains only the point (dG(ϕ2, ϕ

′),∞).
Both the points have the same multiplicity, which equals the (non-null) k-th Betti number of
X.
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Setting ϕ′ = ϕ2, we have that

dmatch(rk(Fϕ′(ϕ1)), rk(Fϕ′(ϕ2))) = dG(ϕ1, ϕ2). (41)

As a consequence, we have that

D
Fall,k
match(ϕ1, ϕ2) ≥ dG(ϕ1, ϕ2). (42)

By applying Theorem 6.5, we get

D
Fall,k
match(ϕ1, ϕ2) = dG(ϕ1, ϕ2) (43)

for every ϕ1, ϕ2.

Proposition (6.7). Let F,F′ ⊆ Fall. If the Hausdorff distance

HD(F,F′) := max

{
sup
F∈F

inf
F ′∈F′

DGENEO,H(F, F ′), sup
F ′∈F′

inf
F∈F

DGENEO,H(F, F ′)

}
is not larger than ε, then ∣∣∣DF,k

match(ϕ1, ϕ2)−D
F′,k
match(ϕ1, ϕ2)

∣∣∣ ≤ 2ε (44)

for every ϕ1, ϕ2 ∈ Φ.

Proof. Since HD(F,F′) ≤ ε, for every F ∈ F a F ′ ∈ F′ and an η > 0 exist such that
DGENEO,H(F, F ′) ≤ ε+ η. The definition of DGENEO,H implies that dH(F (ϕ), F ′(ϕ)) ≤ ε+ η
for every ϕ ∈ Φ. From Theorem 6.1 it follows that

dmatch(rk(F (ϕ1)), rk(F
′(ϕ1)) ≤ ε+ η (45)

and
dmatch(rk(F (ϕ2)), rk(F

′(ϕ2)) ≤ ε+ η (46)

for every ϕ1, ϕ2 ∈ Φ.
Therefore,

|dmatch(rk(F (ϕ1)), rk(F (ϕ2))− dmatch(rk(F
′(ϕ1)), rk(F

′(ϕ2))| ≤ 2(ε+ η). (47)

As a consequence, DF,k
match(ϕ1, ϕ2) ≤ D

F′,k
match(ϕ1, ϕ2) + 2(ε+ η). We can show analogously

that D
F′,k
match(ϕ1, ϕ2) ≤ D

F,k
match(ϕ1, ϕ2) + 2(ε + η). Since η can be chosen arbitrarily small,

from the previous two inequalities the proof of our statement follows.

Proposition (6.8). Let F be a non-empty subset of Fall. For every ε > 0, a finite subset F∗

of F exists, such that
|DF∗,k

match(ϕ1, ϕ2)−D
F,k
match(ϕ1, ϕ2)| ≤ ε (48)

for every ϕ1, ϕ2 ∈ Φ.

Proof. Let us consider the closure F̄ of F in Fall. Let us also consider the covering U of F̄
obtained by taking all the open balls of radius ε

2
centered at points of F, with respect to

DGENEO. Theorem 5.1 guarantees that Fall is compact, hence also F̄ is compact. Therefore
we can extract a finite covering {B1, . . . , Bm} of F̄ from U. We can set F∗ equal to the set of
centers of the balls B1, . . . , Bm. The statement of our corollary immediately follows from
Proposition 6.7, by recalling that DGENEO,H ≤ DGENEO and hence HD

(
F̄,F∗

)
≤ ε/2.

40



References

References

[1] Y. LeCun, Y. Bengio, et al., Convolutional networks for images, speech, and time series, The handbook
of brain theory and neural networks 3361 (10) (1995) 1995.

[2] F. Anselmi, L. Rosasco, T. Poggio, On invariance and selectivity in representation learning, Information
and Inference: A Journal of the IMA 5 (2) (2016) 134–158. arXiv:/oup/backfile/content_public/
journal/imaiai/5/2/10.1093_imaiai_iaw009/2/iaw009.pdf, doi:10.1093/imaiai/iaw009.
URL http://dx.doi.org/10.1093/imaiai/iaw009
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