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Abstract

Reliable recognition of malignant white blood cells is a key step in the diag-
nosis of hematologic malignancies such as Acute Myeloid Leukemia. Microscopic
morphological examination of blood cells is usually performed by trained human
examiners, making the process tedious, time-consuming and hard to standardise.

We compile an annotated image dataset of over 18,000 white blood cells, use
it to train a convolutional neural network for leukocyte classification, and evaluate
the network’s performance. The network classifies the most important cell types
with high accuracy. It also allows us to decide two clinically relevant questions with
human-level performance, namely (i) if a given cell has blast character, and (ii) if
it belongs to the cell types normally present in non-pathological blood smears.

Our approach holds the potential to be used as a classification aid for examining
much larger numbers of cells in a smear than can usually be done by a human
expert. This will allow clinicians to recognize malignant cell populations with lower
prevalence at an earlier stage of the disease.

Introduction

Microscopic examination and classification of blood cells is an important cornerstone of
hematological diagnostics [1, 2, 3]. Specifically, morphological evaluation of leukocytes
from peripheral blood or bone marrow samples is one of the initial steps in the diag-
nosis of hematopoietic malignancies such as Acute Myeloid Leukemia (AML) [4, 5]. In
particular, the common French-Americal-British (FAB) classification of AMLs strongy
relies on cytomorphology [6]. Having been part of routine workup of hematological di-
agnosis since the 19th century, cytomorphological examination of leukocytes has so far
defied automation and is regularly performed by trained human experts. Therefore, cy-
tomorphological classification is tedious and time-consuming to produce, suffering from
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berg; Phone + 49 (0) 89 3187 (0), Fax + 49 (0) 89 3187 3322, Email: carsten.marr@helmholtz-
muenchen.de

1

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 28, 2019. ; https://doi.org/10.1101/564039doi: bioRxiv preprint 

https://doi.org/10.1101/564039


considerable intra- and inter-observer variation that is difficult to account for, and hard
to deliver in situations where trained experts are lacking. Furthermore, it is difficult
to reliably correlate with the result of other, intrinsically more quantitative diagnostic
modalities such as immunophenotyping or molecular genetics. Reliable, automated differ-
entiation of cell morphology and recognition of malignant cells is also a key prerequisite to
allow screening for hematological neoplasms, potentially enabling their earlier detection
and treatment.

As cytomorphological examination is based on evaluating microscopic cell images, it
can be formulated as an image classification task. Deep convolutional neural networks
(CNNs) have proven very successful in the field of natural image classification [7, 8,
9]. Recently, CNNs have been successfully applied to various medical imaging tasks,
including skin cancer recognition [10], evaluation of retinal disorders [11] and the analysis
of histological sections [12, 13], for example through mitosis detection [14], region of
interest detection and analysis [15] or tissue type segmentation [16]. This motivates us to
apply CNNs to cytomorphological classification of blood cells, in particular those relevant
in AML.

Previous work on leukocyte classification has mainly been focused on feature extrac-
tion from cytological images [17, 18]. In that context, lymphoblastic leukemias, where
the cytomorphology is less diverse than in the myeloid case, have received more atten-
tion [19, 20]. Providing sufficiently many labelled images for deep learning methods to
work has proven challenging in medical image analysis, due to restrictions on access to
and expense of expert time for providing ground truth annotations [21, 22]. Therefore,
most studies have worked on datasets limited in the number of patients included or indi-
vidual cytological images classified [23, 24]. Hence, applications of CNNs to white blood
cell classification have so far been focused on differentiation of specific subtypes such as
erythroid and myeloid precursors [23].

Here, we introduce a database comprising 18,365 individual cell images from 200
individuals, and develop a CNN that is able to classify individual cells from peripheral
blood smears and judge for malignancy with high accuracy.

Materials and Methods

We selected peripheral blood smears from 100 patients diagnosed with different subtypes
of AML at the Laboratory of Leukemia Diagnostics at Munich University Hospital be-
tween 2014 and 2017, and smears from 100 patients found to exhibit no morphological
features of hematological malignancies in the same time frame. The study setup was re-
viewed by the local ethics committee, and consent was obtained under reference number
17-349.

For all selected blood smear images, we followed the workflow depicted schematically
in Fig. 1: An area of interest comprising approximately 20 mm2 within the monolayer
region of the smear was selected from a low-resolution pre-scan, and scanned at 100-
fold optical magnification with oil immersion using an M8 digital microscope / scanner
(Precipoint GmbH, Freising, Germany). The resulting digitised data consisted of multi-
resolution pyramidal images of a size of approximately 1 GB per scanned area of interest.
A trained examiner experienced in routine cytomorphological diagnostics at Munich Uni-
versity Hospital differentiated physiological and pathological leukocyte types contained
in the microscopic scans into the classification scheme shown in Fig. 2B, which is derived
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from standard morphological categories and was refined to take into account subcate-
gories relevant for the morphological classification of AML, such as bilobed Promyelo-
cytes, which are typical of the FAB subtype M3v [3]. Annotation was carried out on a
single-cell basis, and approximately 100 cells were differentiated in each smear. Subim-
age patches of size 400 x 400 pixels (corresponding to approximately 29µm x 29µm)
around the annotated cells were extracted without further cropping or filtering, including
background components such as erythrocytes, platelets or cell fragments. When exam-
ining the screened blood smears, the cytologist followed the routine clinical procedure.
Overall, 18,365 single-cell images were annotated and cut out of the scan regions. The
full class-wise statistics of the dataset are given in Tab. S1, and sample images of the
most important physiological and pathological classes are shown in Fig. 2A and C. The
database of single-cell images is provided online.

Annotations of single-cell images provide the ground truth for training and evaluation
of our network. Morphological classes containing fewer than 10 images were merged with
neighbouring classes of the taxonomy. Specifically, myeloblasts with and without Auer
rods were merged into a common myeloblast class, and faggot cells and promyelocytes
with and without Auer rods were merged into a common promyelocyte class, resulting in
15 classes for training and evaluation. A subset of 1,905 single-cell images from all mor-
phological categories were presented to a second, independent examiner, and annotated
for a second time in order to estimate inter-rater variability.

For our image classification task, we used a ResNeXt CNN topology described by
Xie et al. [25], which derives from a residual network, and achieved a second rank in the
classification task of the ImageNet ILSVRC 2016 competition. While several versions
of residual networks have been shown to be successful in natural image classification,
ResNeXt is characterised by a comparatively small number of free hyper-parameters, and
is therefore expected to be a convenient choice, in particular as no networks pre-trained
on similar datasets are available. We adopted the network to input image dimensions of
400 x 400 x 3 and retained the cardinality hyper-parameter at C = 32 as used in Ref. [25],
avoiding further tuning of hyper-parameters based on our dataset. The ResNeXt network
was implemented using the implementation of Ref. [26] for Keras 2.0 [27], with the input
size adjusted to accept images of size 400x400 pixels, and the final dense layer adapted
to our 16-category classification scheme.

The network was trained for at least 20 epochs, which took a computing time of
approximately 4 days on a Nvidia GeForce GTX TITAN X GPU.

We randomly divide the images contained in each class of our dataset in a test- and
training group, where the training group contains approximately 80%, and the test group
20% of the images. For 5-fold cross-validation, we performed a stratified split of the cell
images into 5 folds, where each fold contains approximately 20% of the images in each
class. An individual image is contained in one fold only. Consequently, five different
models are trained, each of which uses one fold for testing, and the four remaining folds
for training.

In order to cope with the imbalance of cell numbers contained in different classes
and take advantage of the rotational invariance of the cell classification problem, we
generated additional images by applying random rotational transformations of 0−359
degrees, as well as random horizontal and vertical flips to the single-cell images in our
dataset. Using these operations, we augmented the data set in such a way that each class
contained approximately 10,000 images for training.

To quantitatively evaluate the class-wise accuracy, we calculate precision, specificity
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Figure 1: Data handling workflow. Peripheral blood smears from 100 AML patients and
100 patients without signs of hematological malignancy were digitised using an oil-immersion
microscope at 100-fold magnification. After annotation of single cells using the classification
scheme shown in Fig. 2B, a convolutional neural network was trained and evaluated.

and sensitivity as comparison metrics, which are defined as follows:

sensitivity =
true positive

positive
(1)

specificity =
true negative

negative
(2)

precision =
true positive

true positive + false positive
, (3)

where “true positive” and “true negative” are the number of images correctly ascribed or
not ascribed to a given class by the network, respectively, “positive” and “negative” are
the overall number of images shown belonging or not belonging to a certain class, and
“false positive” is the number of cell images wrongly ascribed to that class.

Data and code availability

Code for the network trained in this study and network weights are avaiable at CodeOcean,
together with a subset of the single-cell image data used to test the network. Additional
image data may be available from the authors upon reasonable request, with permission
from Munich University Hospital.

Results

We evaluate the performance of the trained network by feeding single-cell images through
it, and comparing the output prediction with the labels assigned by human examiners.
The network outputs a vector of probabilities P = (P1, ..., Pi, ..., P15), where the compo-
nents Pi are the respective predicted probabilities for the image to belong to class i out
of the 15 overall classes. The network’s image class prediction is then the class m with
the highest corresponding predicted probability Pm.
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Figure 2: Classification of 18,000 single-cell images into a 18-class scheme.
(A): Sample images of the three most frequent mature cell classes contained in the dataset. Scale
bars correspond to 10µm. (B): Taxonomy tree of the classification scheme used for annotation
of single-cell images. Cell morphologies present under physiological conditions are contained in
the left branch, while cells normally absent under physiological conditions are contained in the
right branch. Smudge cells are classified in a separate category. To ensure sufficient population
of classes, some leaves of the taxonomy were combined into overall classes for training and
testing (cf. main text). (C): Sample images of the three most frequent immature cell classes
contained in the dataset. Scale bars correspond to 10µm.

The class-wise prediction accuracy of the network is shown in the confusion matrix of
Fig. 3A. We note that the network achieves excellent agreement with human annotations
(each above 90%) for the most common physiological cell types, including segmented
neutrophils, typical lymphocytes, monocytes, and eosinophils. Also myeloblasts, whose
presence in the peripheral blood is common in myeloid leukemias [5], are recognised with
high accuracy, yielding a precision and sensitivity of 94% (cf. Tab. 1). Other classes are
more challenging for the network, in particular the intermediate stages of granulopoiesis
and erythropoiesis, and basophils,where our test and training dataset contains less than
100 images. Values of precision and sensitivity for all cell classes obtained by 5-fold cross-
vaildation are given in Tab. 1. We note that due to the varying number of specific cell
types present in smears, the number of test and training images varies by up to two orders
of magnitude for different classes. In order to avoid biased evaluation of our classifier,
we refer to class-wise precision and sensitivity, and do not evaluate an overall accuracy
score, which would be biased towards the classes with a high number of samples [7].

In order to relate the network performance to the inter-rater variability encountered
among human examiners, we asked another, independent cytologist to re-annotate a sub-
set of 1,905 single-cell images containing all subtypes previously annotated. The level
of agreement between the two annotators is shown in Fig. S1. Notably, the CNN and
the second annotator show similar patterns of deviation to the first examiner, specifi-
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cally as far as classification of atypical lymphocytes and promyelocytes as myeloblasts is
concerned. This may reflect visual similarities between instances of these cell types recog-
nised by both the network and human examiners, which intrinsically limit the single-cell
labelling process. Furthermore, the first examiner had access to the whole smear and was
hence able to compare to other cells present, whereas the second examiner, just as the
network, classified only single-cell images.

To evaluate if our network fixates on relevant parts of the single-cell images, we
calculated saliency maps following the procedure outlined by Simonyan et al. [28]. These
maps allow visualising how important a given pixel is for the network’s classification
decision. Saliency maps for several test images are shown in Fig. 3B, demonstrating that
pixels within the leukocyte are most important for the network’s classification decision,
suggesting that the network has learned to focus on relevant areas of the input image.

A key clinical question when examining blood cell morphology is if a given cell is a
myeloblast or monoblast, as these two cell types are counted as blast equivalents, and are
generally required to be present in the peripheral blood for a diagnosis of AML [5]. Using
the output of our network, we can determine the probability of a cell to possess blast
character, Pblast = Pmyeloblast + Pmonoblast, and choose a threshold probability t, so that
the binary prediction of the network is given by ŷ = Pblast ≥ t. The receiver operating
characteristic (ROC) curve is the result of sweeping t between 0 and 1, and is shown
in Fig. 3C. The area under the curve (AUC), which we measure as 0.992 ± 0.001 using
5-fold cross-validation, shows that out network provides a test of the blast character of
a given single-cell image that can be considered outstanding by the criteria of diagnostic
test assessment [29]. In comparison to the network’s performance, the second human
rater reproduces the cell label provided by the first annotator with a sensitivity of 95.3%
and a specificity of 91.1% (cf. Fig. 3C), which lies close but somewhat below the network
ROC curve.

Another clinically important, binary decision on individual white blood cells is whether
a given cell belongs to one of the typical cell types, present in peripheral blood under nor-
mal circumstances, or to atypical cell types that occur in pathological situations, namely
myeloblasts, monoblasts, myelocytes, metamyelocytes, promyelocytes, erythroblasts and
atypical lymphocytes. As in the test for blast character, we determine the overall prob-
ability Patypical for a given cell to belong to one of these groups by adding the output
probabilities of all atypical cell classes, and defining a threshold probability t for the
atypicality test to be positive. Again, the network yields an outstanding test of the atyp-
icality of a cell in a given image, with an AUC of 0.991 ± 0.002, which compares to a
human second-rater sensitivity of 95.9% and specificity of 91.0% (Fig. 3D). Importantly,
our network outperforms the cytologist who re-annotated the subset of 1,905 single-cell
images in both clinically relevant binary decision tasks tested here (cf. Fig. 3C and D).

Discussion

The convolutional neural network presented in this study shows Outstanding performance
at identifying the most important morphological white blood cell types present in non-
pathological blood, as well as the key pathological cell types in Acute Myeloid Leukemias.
For the most common physiological leukocyte classes as well as for myeloblasts, it attains
precision and sensitivity values above 90%, allowing these cells to be identified with a
very high accuracy which outperforms other classifiers in the literature [23, 18]. The

6

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 28, 2019. ; https://doi.org/10.1101/564039doi: bioRxiv preprint 

https://doi.org/10.1101/564039


0.0 0.2 0.4 0.6 0.8 1.0

Specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
e

n
si

ti
v

it
y

0.0 0.2 0.4 0.6 0.8 1.0

Specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
e

n
si

ti
v

it
y

Neut r
ophil

(s
egm

ente
d)

Neut r
ophil 

(b
and)

Ly
m

phocy
te

 (t
ypic

al)

Ly
m

phocy
te

 (a
ty

pic
al)

M
onocy

te

Eosi
nophil

Baso
phil

M
yelo

bla
st

Pro
m

yelo
cy

te

Pro
m

yelo
cy

te
 (b

ilo
bed)

M
yelo

cy
te

M
eta

m
yelo

cy
te

M
onobla

st

Ery
th

ro
bla

st

Sm
udge

Network predict ion

Neut rophil (segm ented)

Neut rophil (band)

Lym phocyte (typical)

Lym phocyte (atypical)

Monocyte

Eosinophil

Basophil

Myeloblast

Prom yelocyte

Prom yelocyte (bilobed)

Myelocyte

Metam yelocyte

Monoblast

Erythroblast

Sm udge

E
x

a
m

in
e

r 
la

b
e

l

0.0

0.2

0.4

0.6

0.8

1.0

R
e

la
ti

v
e

 f
re

q
u

e
n

cy

NetworkCytologist NetworkCytologist

blasts atypical

C 

B

D

A

Neutrophil (segmented)

Lymphocyte (typical)

Monocyte

Eosinophil Myeloblast

Monoblast

Figure 3: Human-level network performance in single-cell classification, pixel-wise
attention and binary decision tasks.
(A): Class-wise agreement between network prediction and ground-truth human examiner label.
Outstanding classification performance is observed for key cell classes such as myeloblasts. The
full, class-wise statistics of prediction quality is given in Tab. 1. (B): Saliency maps illustrate
the gradient of a pixel with respect to the networks’s loss function. Brighter pixels have a
higher influence on the network’s classification decision. Maps suggest that the network has
learned to focus on the leukocyte and map out its internal structures, while giving less weight
to background content. (C): ROC curve of binary decision between cells with and without
blast character. The network performs very well with an AUC of 0.992 ± 0.001 (obtained by
training n = 5 networks for cross-validation, each tested on a separate 20% of overall image
data), and attains the performance of a second human annotator shown by ’x’. Inset: Schematic
depiction of cell class taxonomy, where blast equivalent classes are coloured red. (D): On the
binary classification for atypical cells normally absent in non-pathological smears, outstanding
performance is observed with an AUC of 0.991 ± 0.002. Also for this binary question, the
network attains human-level performance. Inset: Schematic depiction of cell class taxonomy,
with atypical cell classes coloured red.
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Class Precision Sensitivity Number of images

M
at

u
re

le
u

k
o
cy

te
s

Neutrophil (segmented) 0.99 ± 0.00 0.96 ± 0.01 8, 484
Neutrophil (band) 0.25 ± 0.03 0.59 ± 0.16 109
Lymphocyte (typical) 0.96 ± 0.01 0.95 ± 0.02 3, 937
Lymphocyte (atypical) 0.20 ± 0.4 0.07 ± 0.13 11
Monocyte 0.90 ± 0.04 0.90 ± 0.05 1, 789
Eosinophil 0.95 ± 0.04 0.95 ± 0.01 424
Basophil 0.48 ± 0.16 0.82 ± 0.07 79

Im
m

at
u

re
le

u
k
o
cy

te
s

Myeloblast 0.94 ± 0.01 0.94 ± 0.02 3, 268
Promyelocyte 0.63 ± 0.16 0.54 ± 0.20 70
Promyelocyte (bilobed) 0.45 ± 0.32 0.41 ± 0.37 18
Myelocyte 0.46 ± 0.19 0.43 ± 0.07 42
Metamyelocyte 0.07 ± 0.13 0.13 ± 0.27 15
Monoblast 0.52 ± 0.30 0.58 ± 0.26 26
Erythroblast 0.75 ± 0.20 0.87 ± 0.09 78
Smudge cell 0.53 ± 0.28 0.77 ± 0.20 15

Total 18, 365

Table 1: Class-wise precision and sensitivity of the network, determined by 5-fold
cross-validation.
The model achieves precision and sensitivity above 0.9 on classes for which more than 100
images are available, such as segmented neutrophils, typical lymphocytes and myeloblasts. Large
deviations across folds occur for classes with small sample number, e.g. metamyelocytes and
promyelocytes.

classification predictions can be used to answer clinically relevant binary questions. Blast
character and atypicality are of high relevance in practice and can be provided with very
high confidence by the network.

As expected for our data-driven classification method, a correlation can be observed
between the number of images available for a specific class in our data set and the perfor-
mance of the network on that class (cf. Tab. 1). Although to the authors’ knowledge, the
image set presented in this paper is the largest used so far in the literature, we anticipate
that further enlarging the dataset would improve the network’s classification performance
also for rare cell types.

Sources of disagreement between the network and the ground truth are linked to the
inter-rater variability of the cytomorphologic examination, which is known to limit the re-
producibility particularly of rare leukocyte species [30]. We have estimated inter-observer
variability of cytomorphologic classification in our dataset by re-annotation of single-cell
images. We note that the inter-rater variability is particularly high for myeloblasts,
reflecting to some degree the polymorphic nature of that cell class. Furthermore, the
examiner providing the ground-truth labels for single-cell images had access to the whole
scan and was therefore able to compare the morphologies of cells present in a smear. In
contrast, both the second annotator and the network had to make a classification decision
based solely on a single-cell image, without the ability to compare to other cells from the
same patient.

We have compiled a dataset of 18,365 single-cell images of different cell morphologies
relevant in the diagnosis of AML from the peripheral blood smears of 200 individuals.
After annotation by human experts, we used this dataset to train and evaluate a state-
of-the-art image classification convolutional neural network. The network shows good
performance at differentiating morphological cell types important for recognising malig-
nancy in peripheral blood smears. For the diagnostically relevant binary questions if a
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given cell is considered to have blast character or to be atypical, the network achieves
outstanding accuracies with an ROC AUC of approximately 0.99 in both cases. Given
this level of performance and the fact that our method is scalable and fast, our algorithm
can be used to quickly evaluate thousands of cells on a blood smear scan, helping cytolo-
gists to find suspicious cells more readily. This might be particularly useful in situations
where the number of malignant cells is expected to be small, such as in the early stages of
the disease or beginning relapse. In our present paper, we tested the model on peripheral
blood smears from one lab scanned with one type of scanning device. In order to evaluate
the model’s performance in a realistic routine setting in more detail, further validation
is required using data from different sources and disease classes. However, given the
variability already present in a dataset compiled from 200 independently stained smears
from different patients, we expect the variability to be represented reasonably well in our
dataset.

Our method holds the potential to act as a rapid pre-screening and quantitatively in-
formed decision tool for cytological examiners, and might further increase its performance
when combined with additional, intrinsically quantitative methods used in the diagnosis
of hematological malignancies, such as flow cytometry or molecular genetics.
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