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Protein–protein interactions (PPIs) are crucial to a wide range 
of biological activities and functions in the human body, 
including cell metabolism, signal transduction, muscle con-

traction and immune systems. The antibody–antigen system is one 
of the most essential among all PPIs and plays a unique role in the 
study of PPIs. Antibodies are large proteins that serve important 
roles in the immune system by counteracting antigens—chemicals 
recognized as alien by the human body. On the tip of an antibody, 
there is an antigen-binding fragment that contains a paratope for 
recognizing a unique antigen via its epitope; more specifically, a 
paratope consists of a set of complementarity-determining regions 
that have the highest conformational flexibility among sites on an 
antibody1. The high selectivity of antibody–antigen recognition 
mechanism and the flexibility of antibodies as large proteins make 
antibodies a suitable platform for designing counteractants of tar-
get molecules. Antibodies have been widely used as therapeutic 
agents to treat human diseases. Antibody therapy has several advan-
tages over traditional therapy, including longer serum half-life,  
higher avidity and selectivity, and the ability to invoke desired 
immune responses2–4. Antibody therapy also brings hope of curing 
several previously incurable diseases and there are ongoing efforts 
in the direction of HIV vaccine development5 and cancer therapeu-
tic antibodies6,7.

Three-dimensional (3D) structural information and thermody-
namic measurements are two essential components for understand-
ing the molecular mechanism of PPIs. Many experimental methods 
have been developed to determine the structure of protein–protein 
complexes. Among them, X-ray crystallography, NMR and cryo-
electron microscopy are the main workhorses8. The Protein Data 
Bank9, one of the largest protein structure databases, includes tens 
of thousands of protein–protein complex structures and is expand-
ing at an unprecedented rate.

Site-directed mutation is a key technology for probing the thermo-
dynamic properties of PPIs, including binding affinities of antibody–
antigen interactions. Sirin et al.10 collected an AB-Bind database of 
mutation-induced antibody–antigen complex binding free energy 
changes. This database contains 1,101 mutation data entries, includ-
ing 645 single-point mutations on 32 different antibody–antigen 
complexes. SKEMPI is a more general database for protein–protein 
binding affinity changes following mutation (ΔΔG)11, it contains 
3,047 mutation data entries for protein–protein heterodimeric com-
plexes with experimentally determined structures.

The aforementioned databases have been widely used as bench-
mark tests for evaluating the predictive power of computational 
methods, which are indispensable for the investigation of PPIs,  
especially for the systematic screening of mutations12,13. There are 
many reliable computational methods that can predict mutant  
structures on the wild-type, such as Rosetta14 and Jackal15. 
Computational methods for generating protein structures from 
sequences (for example, MODELLER16) and predicting docking 
poses for protein–protein complexes (for example, BioLuminate17) 
are also available.

The thermodynamic properties of PPIs are usually interpreted 
as the binding affinity or binding free energy, ΔG. Given the impor-
tance of computational methods, a variety of them have been 
developed that use structures to predict antibody–antigen binding 
affinities. DFIRE18 relies on an all-atom, distance-scaled, pairwise 
potential that is derived using a database of high-quality diverse 
protein structures, whereas STATIUM uses a pairwise statistical 
potential that scores how well a protein complex can accommo-
date different pairs of residues in the parent complex geometry. 
Force-fields for proteins can also be used to compute the binding 
free energy, representing van  der Waals interactions, hydropho-
bic packing, electrostatics and solvation effects. These approaches 
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include FoldX (FOLDEF)19, Discovery Studio (CHARMMPLR)20 
and Rosetta14. Typically, physics-based methods provide mecha-
nistic interpretations but are not designed for handling large and 
diverse datasets.

Pires et al. optimized their graph-based cut-off scanning matrix 
(CSM) method for predicting antibody–antigen affinity changes 
following mutation given in the AB-Bind database21. This method 
(named mCSM-AB) was shown to outperform the aforementioned 
physical methods yet only achieve a Pearson’s correlation coefficient 
(RP) of 0.53 with tenfold cross-validation on a set of 645 single-point 
mutations. The limited performance of the current methods there-
fore highlights a pressing need for a new generation of ΔΔG predic-
tors that are constructed with entirely new design principles and/
or innovative machine learning algorithms. Although the physics-
based methods assume potential functions of certain forms and the 
graph-based method only considers pairwise interactions, we seek 
an approach that makes fewer assumptions and allows a systemic 
description of PPIs.

Persistent homology22–25—a new branch of algebraic topology—
is able to bridge geometry and topology, leading to a new efficient 
approach for the simplification of biological structural complex-
ity26–31; however, it neglects critical chemical/biological informa-
tion when it is directly applied to complex biomolecular structures. 
Element-specific persistent homology can retain critical biologi-
cal information during the topological abstraction. Paired with 
advanced machine learning, such as a convolutional neural network 
(CNN), this new topological method gives rise to some of the best 
predictions for protein–ligand binding affinities32, protein folding 
free energy changes following mutation33,34 and drug virtual screen-
ing35. This approach has won many contests in the D3R Grand 
Challenges, a worldwide competition series in computer-aided drug 
design36; however, the techniques designed for protein–ligand bind-
ing analysis could not be directly applied to PPIs due to biological 
differences and the different characteristics of available datasets.

In the present work we introduce site-specific persistent homol-
ogy that is tailored for PPI analysis. We explore the utility of site-
specific persistent homology and machine learning algorithm for 
characterizing PPIs that are associated with site-specific mutations. 
We hypothesize that a topological approach that generates intrin-
sically low-dimensional representations of PPIs could dramatically 
reduce the dimensionality of antibody–antigen complexes, leading 
to a reliable high-throughput screening in searching for valuable 
mutants in protein design. To validate our hypothesis, we integrate 
topological descriptors with a machine learning algorithm (CNN-
assisted gradient-boosting trees (GBTs)) to predict PPI ΔΔG. The 
resulting topology-based network tree (TopNetTree) method is 
found to outperform other methods on two major benchmark data-
sets, AB-Bind10 and SKEMPI11, by a large margin. Our TopNetTree 
offers an accurate and reliable tool for studying PPIs.

TopNetTree model for PPI binding energy change following 
mutation prediction
This section describes the TopNetTree model and its application to 
PPI ΔΔG prediction. As shown in Fig. 1, the proposed TopNetTree 
consists of two major modules: topology-based feature generation 
and a CNN-assisted GBT model (Fig. 1). For the feature generation, 
we mainly used element- and site-specific persistent homology to 
capture structural characteristics, which was enhanced by chemi-
cal–physical descriptors, whereas for the learning model we used 
a GBT fed with inputs from a CNN as a predictor. We demonstrate 
the performance of the proposed TopNetTree by three commonly 
used PPI benchmark datasets.

Topological representation of PPIs. The pairwise interactions 
between atoms are characterized by the zeroth homology group  
(H0, also known as the size function37). The higher-dimensional 

homology groups encode higher-order patterns in PPI complexes. 
The first homology group (H1), which is generated with Euclidean 
distance (De)-based filtration, characterizes loop or tunnel-like struc-
tures, as shown in Fig. 2, whereas the second homology group (H2) 
describes cavity structures in PPI complexes. We obtain a comprehen-
sive topological description of PPIs by combining various dimensions.

A topological representation should be able to extract patterns 
of different biological or chemical aspects (for example, hydrogen 
bonds between oxygen and nitrogen atoms, hydrophobicity, polar-
izability and so on) from a PPI system that is represented by a set of 
atomic coordinates (that is, a point cloud). We construct simplicial 
complexes using selected subsets of atomic coordinates and modi-
fied distance matrices to achieve this goal.

For the construction of an element- and site-specific persistent 
homology, we classify the atoms in a PPI complex into various  
subsets:
	(1)	 Am

I
: atoms of the mutation site.

	(2)	 AmnðrÞ
I

: atoms in the neighbourhood of the mutation site with-
in a cut-off distance, r.

	(3)	 AAbðrÞ
I

: antibody atoms within r of the binding site.
	(4)	 AAgðrÞ

I
: antigen atoms within r of the binding site.

	(5)	 AeleðEÞ
I

: atoms in the system that has atoms of element type, E. 
When characterizing interactions between atoms ai and aj in set 
A
I
 and/or set B

I
, we use a modified distance matrix to exclude 

the interactions between the atoms from the same set. In the 
following formula, 𝐷mod is defined as the modified distance and 
𝐷e is defined as the Euclidian distance.

Dmodðai; ajÞ ¼
1; if ai; aj 2 A; or ai; aj 2 B;
Deðai; ajÞ; if ai 2 A and aj 2 B;

�
ð1Þ

Specific designations for sets A
I
 and B

I
 are given in Supplementary 

Table 1, which summarizes various topological barcodes.

Vectorization of topological barcodes. Using persistent homology, 
the original 3D point-cloud data are characterized by topological 
barcodes that are represented as collections of intervals that capture 
geometric patterns, topological patterns and PPIs while dramati-
cally simplifying complicated structural representations of a PPI-
complex. The upper bound of the filtration parameter corresponds 
to the distance cut-off of interactions of interest, which is set to 
be the same for different samples in the dataset. Instead of having 
bounding cubes of different sizes around the binding and muta-
tion sites, topological barcodes for different samples are in the same 
range of filtration values, which improves the scalability in compari-
son with the direct use of the original 3D data. We construct feature 
vectors from these sets of intervals for machine learning models.

One method of vectorization is to discretize the range of the fil-
tration parameter into bins and record the behaviour of the bar-
codes in each bin35. In this work we subdivide a filtration range (for 
example, [0, 12] Å) into bins of length 0.5 Å; namely, [0, 0.5], (0.5, 1], 
⋯ , (11.5, 12] Å. For each bin, we count the numbers of persistence 
intervals, birth events and death events (see Fig. 3 for an illustration 
of filtration and persistence). This approach gives us three feature 
vectors for each topological barcode. Note that this characterization 
of birth and death might not be stable against different discretiza-
tions. As such, only H0 barcodes obtained from the Vietoris–Rips 
filtration are used in our approach.

One advantage of binned barcode vectorization is that it keeps the 
distance information that reflects the strength of hydrogen bonds, 
van der Waals interactions and so on. The bin representation of bar-
code features can be easily incorporated into a CNN, which captures 
and discriminates local patterns; that is, the impact of mutations.

Another method of vectorization is to summarize barcode statis-
tics, including the sum, maximum, minimum, mean and standard  
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derivation of bar lengths, birth values and death values. We use 
this method to vectorize H1 and H2 barcodes obtained from alpha 
complex filtration as these higher-dimensional barcodes are sparser 
than the zero-dimensional ones23.

Machine learning models. A major challenge in the prediction of 
binding affinity changes following mutation for PPIs is that the data 
is highly complex due to 3D structures, whereas the datasets are rela-
tively small. We designed a hybrid machine learning algorithm that 
combines a CNN and GBT to overcome this difficulty. The topo-
logically simplified description of the 3D structures are further con-
verted into concise features by the CNN module; the GBT module 
then builds robust predictors with effective control of overfitting.

TopGBT model. An ensemble method is a class of machine learn-
ing algorithms that builds a powerful model from weak learners. It 
improves the performance on the weak learners with the assumption  

that the individual learners are likely to make different mistakes and 
thus summing the weak learners will reduce the overall error. In 
this work we use GBTs that add a tree to the ensemble according 
to the current prediction error on the training data. This method 
(a toplogy-based GBT or TopGBT) performs well when there is a 
moderate number of features and is relatively robust against hyper-
parameter tuning and overfitting. The implementation provided by 
the scikit-learn package (v.0.18.1)38 is used.

TopCNN model. CNNs are some of the most successful deep learn-
ing architectures, a regular CNN is a special case of a multilayer 
artificial neural network where only local connections are allowed 
between convolution layers and the weights are shared across dif-
ferent locations. We use a topology-based CNN (TopCNN) as an 
intermediate model; specifically, we feed vectorized H0 features into 
CNNs to extract higher level features for the downstream model 
(detailed parameters and prepossessing process of our model can be 
found in the Supplementary Information).

TopNetTree model. CNNs can automatically extract high-level fea-
tures from H0. These CNN-extracted features are combined with 
features constructed from high-dimensional topological barcodes, 
H1 and H2, as the inputs of the GBTs; specifically, we build a super-
vised CNN model with the PPI ΔΔG as labels. After the model is 
trained, we feed the flatten layer neural outputs into a GBT model to 
rank their importance. Based on the importance, a subset of CNN 
features is combined with other features, such as the statistics of 
H1 and H2 barcodes, for the final GBT model as shown in Fig. 1. 
The GBT is used for its robustness against overfitting, good perfor-
mance for moderately small data sizes and its model interpretabil-
ity (further details on TopNetTree are given in the Supplementary 
Information).

Model performance for PPIs. We consider three datasets: the 
AB-Bind dataset10, the SKEMPI dataset11 and the SKEMPI 2.0 data-
set39 to validate the proposed TopNetTree model. Two evaluation 
metrics (RP and the root-mean-square error, r.m.s.e.) are used to 
assess the quality of prediction. Detailed information of evaluation 
metrics can be found in the Supplementry Information.

The prediction of AB-Bind free energy changes following mutation. 
The AB-Bind dataset includes 1,101 mutational data points with 
experimentally determined binding affinities10. We follow Pires 
et al.21 by considering only 645 single mutations across 29 antibody–
antigen complexes. Among them, 87 mutations are on five com-
plexes with homology structures. This dataset, called the AB-Bind 
S645 set, consists of about 20% stabilizing mutations and 80% 
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Fig. 1 | An illustration of the proposed TopNetTree model. The H0 features are processed by a CNN whose flatten layer outputs—together with H1,H2 and 
auxiliary features—are fed into a GBT model for the final prediction.
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Fig. 2 | Topological barcode change associated with a mutation. Residue 
leucine in the wild-type is mutated into alanine. Barcodes are generated for 
carbon atoms within a cut-off of 12 Å of the mutant residue.
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destabilizing ones; there are 27 non-binders in the whole dataset, 
which are variants determined not to bind within the sensitivity of 
the assay. The binding affinity changes following mutation of these 
non-binders were set to –8 kcal mol–1. These non-binders could be 
regarded as outliers in the database and have a strongly negative 
impact on the prediction model accuracy.

Our model achieved an RP of 0.65 on the AB-Bind S645 dataset, 
which is significantly better than those of other existing methods 
as shown in Table 1. In comparison with non-machine learning 
methods such as Rosetta and bASA, our method is over 100% more 
accurate in terms of RP, indicating that our topology-based machine 
learning methods have a better predictive power for PPI systems. 
Our method is about 22% more accurate than the best-existing 
score of RP = 0.53 (given by mCSM-AB), indicating the power of 
our TopNetTree.

Both GBTs and neural networks are quite sensitive to system 
errors as the training of a model is based on optimizing the mean-
square error of the loss function. The ΔΔG of 27 non-binders  
(–8 kcal mol–1) did not follow the distribution of the whole data-
set. Pires et al.21 found that excluding non-binders from the dataset 
would significantly increase the performance of a prediction model. 
In our case, the RP increased from 0.65 to 0.68 for the same treat-
ment as shown in Fig. 4. We also applied a blind test on homology 
structures using the rest of the samples as the training set, achieving 
an RP of 0.55, as shown in Fig. 4.

The performance on the SKEMPI dataset. The SKEMPI dataset11 
contains 3,047 binding free energy changes following muta-
tion, which are assembled from the scientific literature for pro-
tein–protein heterodimeric complexes with experimentally 
determined structures; it includes single-point mutations and 
multipoint mutations. There are 2,317 single point mutation data 
entries among the whole database, which are referred to as the 
SKEMPI S2317 set.

Xiong et  al. recently selected a subset of 1,131 non-redun-
dant interface single-point mutations (denoted set S1131) from 
SKEMPI set S231740. The same authors applied several methods to 
the SKEMPI S1131 set40, including BindProfX40, Profile-score41,42 
FoldX19 BeAtMuSiC43, SAMMBE44 and Dcomplex45.

Table 2 shows the Pearson correlation coefficients on tenfold 
cross-validations. It is found that the proposed TopNetTree is about 
15% more accurate than the best-existing method.

The performance on the SKEMPI 2.0 dataset. The SKEMPI 2.0 
(ref. 39) database is an updated version of the SKEMPI database, 
containing new mutations collected after its first version, includ-
ing data from three other databases: AB-Bind10, PROXiMATE46 
and dbMPIKT47. This dataset contains 7,085 entries, including 
single- and multi-point mutations. By selecting only single-point 
mutations and excluding mutation entries without energy-change 

values, 4,947 data points were chosen from SKEMPI 2.0 (denoted 
set S4947). David et al. recently applied their updated mCSM-PPI2 
method48 to the SKEMPI2 dataset. They filtered only single-point 
mutations and selected 4,169 variants in 319 different complexes 
(denoted set S4169). Set S8338 was derived from set S4169 by set-
ting the reverse mutation energy changes to the negative values of its 
original energy changes. We applied our TopNetTree model to sets 
S4947, S4169 and S8338. We tested set S4947 with the regular ten-
fold cross-validation, achieving an average RP of 0.82 and an r.m.s.e. 
of 1.11 kcal mol–1 for the tenfold cross-validation. We followed the 
method of tenfold stratified cross-validation used in mCSM-PPI2 
paper for sets S4169 and S833848. For set S4169, we obtained an 
average RP of 0.79 and r.m.s.e. of 1.13 kcal mol–1, compared with the 
average RP of 0.76 and r.m.s.e. of 1.19 kcal mol–1 achieved by mCSM-
PPI2. Finally, for set S8338, our method attained an average RP of 
0.85 and r.m.s.e. of 1.11 kcal mol–1, whereas mCSM-PPI2 reported 
the average RP 0.82 and r.m.s.e. of 1.18 kcal mol–1 (ref. 48).

We further validated our method by the blind prediction of 
another subset of the AB-Bind database. As SKEMPI 2.0 contains 
entries in the AB-Bind dataset, we chose 24 protein complexes 
that appear in both AB-Bind and SKEMPI 2.0 datasets as the 
test set for 787 mutations (denoted as the S787 set). The S4947  
set, excluding the S787 set, was used as the training set.  
We achieved an average RP of 0.53 and r.m.s.e. of 1.45 kcal mol–1 
on this blind test (further details are given in the Supplementary 
Information).

D
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Fig. 3 | Filtration and persistence. An illustration of filtration and H1 persistence diagram of a set of points on a plane.

Table 1 | Comparison of the RP of various methods for the  
AB-Bind S645 set

Method RP

TopNetTree 0.65/0.68a

TopGBT 0.56

mCSM-AB 0.53/0.56a

TopCNN 0.53

Discovery Studio 0.45

mCSM-PPI 0.31

FoldX 0.34

STATIUM 0.32

DFIRE 0.31

bASA 0.22

dDFIRE 0.19

Rosetta 0.16

Aside from those from present TopNetTrees and TopGBTs, the results are adopted from ref. 21. 
aResults exclude 27 non-binders (their ΔΔG values were set to –8 kcal mol–1; ref. 10).
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Discussion
The quality of machine learning predictions typically depends on 
model inputs. In our case, the inputs consist of three crucial compo-
nents: protein structures, the mutation position and mutation type. 

In this section we discuss the influence of each component to the 
prediction quality.

Prediction result analysis for different protein complexes. For 
the AB-Bind S645 set, mutations can be separated into 24 different 
protein–protein complexes (we merged the complex with its homol-
ogy model as one category). We did intra- and inter-protein cross-
validations to further analyse the prediction quality across different 
protein complexes.

Inter-protein-level cross-validation. To perform inter-protein-level 
cross-validation for 24 different protein–protein complexes, the 
samples in one protein complex are taken as the test set, whereas 
the rest of the dataset is used as the training set (see Supplementary 
Table 2 for more details). For this test, our model reached an average 
RP of 0.508 and a median RP of 0.541. This performance is compa-
rable with the result of blind test on homology models (see Fig. 4);  
however, the performance of the model varies among different  
protein families. Models trained on some protein families could 
extrapolate to other families; for example, the two protein fami-
lies with the best results, 1KTZ and 2JEL, can reach RP of 0.866 
and 0.818, respectively, whereas the two families with the poorest 
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Fig. 4 | Data and results of TopNetTree model. a, A tenfold cross-validation on the AB-Bind S645 set that shows an RP of 0.65 with a P-value of 5.948 × 10–

12 (r.m.s.e. = 1.57 kcal mol–1, s.d. = 0.002 kcal mol–1 for ten repeat experiments). b, A tenfold cross-validation on an AB-Bind dataset excluding 27 non-binders 
that shows an RP of 0.68 with a P-value of 9.797 × 10–13 (r.m.s.e. = 1.06 kcal mol–1, s.d. = 0.0017 kcal mol–1 for ten repeat experiments). c, A blind prediction of 
the AB-Bind subset associated with homology structures that shows an RP of 0.55 with a P-value of 8.372 × 10–12 (r.m.s.e. = 1.68 kcal mol–1). d, Distributions 
of binding affinity changes following mutation of the AB-Bind dataset that are grouped concerning residue region types and alanine mutations. The 
maximum, minimum, mean and median values of each group are cited in the violin plot. Mean values of each group are cited in red whereas median 
values of each group are cited in blue. e, Prediction results for different residue region types, with an RP of 0.60, 0.66, 0.66, 0.65 and 0.48 for the core, rim, 
support, interior and surface, respectively.

Table 2 | A comparison of the RP values of various methods 
for the single-point mutation in the SKEMPI dataset of 1,131 
mutations

Method RP

TopNetTree 0.850

BindProfX 0.738

Profile-score + FoldX 0.738

Profile-score 0.675

SAAMBE44 0.624

FoldX 0.457

BeAtMuSic 0.272

Dcomplex 0.056

Aside from those from TopNetTree and SAMBE, the results are adopted from ref. 40.
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results, 1FFW and 1YY9, have RP values of –0.043 and –0.068, 
respectively.

Intra-protein-level leave-one-out cross-validation. Cross-validation 
was carried out within each protein complex. For this test, our 
model reached average/median RP

I
 values of 0.170/0.215, which 

are significantly lower than the tenfold cross-validation result 
over the entire dataset. One possible reason for this behaviour is 
that the training set for each complex is too small with only an 
average of 27 samples per complex. This result also implies that 
our model needs a diversity of training samples to achieve stable 
and consistent prediction quality (see Supplementary Table 3 for 
more details).

Prediction result analysis for different mutation regions.  
The locations of the site mutations could be categorized into 
five different regions: interior, surface, rim, support and core (a 
detailed definition can be found in the Methods). In experimen-
tal data, mutations at the core or support region have a higher 
average energy change of around 1.8 kcal mol–1 (1.72 kcal mol–1 
and 1.91 kcal mol–1, respectively), whereas mutations at the rim 
or interior region have an average energy change of around 0.8 
kcal mol–1 (0.82 kcal mol–1 and 0.83 kcal mol–1, respectively), as 
shown in Fig. 4. On the other hand, the surface mutations have an 
average energy change of less than 0.2 kcal mol–1. Similar patterns 
regarding mutation sites and energy changes were reported in the 
literature49. A possible reason for these patterns is that different 
mutation regions vary in their accessibility to water; in general, 
surface, interior and rim regions have greater access to water than 
the core and support regions.

Figure 4 shows our predictions concerning different mutation 
regions. Average RP

I
 values of 0.60, 0.66, 0.66, 0.65 and 0.48 were 

achieved for the core, rim, support, interior and surface regions, 
respectively. This result shows that the performance is consistent 
among different mutation regions except for the surface region. We 
believe that the relative inferior performance for surface mutations 
is due to its small data size and that the energy disturbance caused 
by surface mutations is small on average.

Charged Polar Hydrophobic Special cases
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a
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Fig. 5 | A comparison of average experimental and prediction binding affinity changes following mutations associated with different amino acid types 
for the AB-Bind dataset. The x-axis labels the residue type of the original, whereas the y-axis labels the residue type of the mutant. For a reverse mutation, 
its ΔΔG is taken to be the same magnitude as the original value with an opposite sign. a, Average binding affinity changes following mutation (kcal mol–1). 
b, Variance of binding affinity changes following mutation (kcal mol–1).

Table 3 | Criteria of residue regions50, ΔrASA = rASAm − rASAc

Region ΔrASA rASAc rASAm

Interior 0  <25% —
Surface 0  >25% —
Rim  >0  >25% —
Support  >0 —  <25%

Core  >0  <25%  >25%
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Prediction result analysis for different mutation types. The pat-
tern of PPI binding affinity changes over different mutation types 
is important for protein design. We test how well can the model 
prediction resemble the distribution in experimental data. Here we 
investigate the behaviour of our model for 20 different amino acids 
types in the AB-Bind S645 set. A reverse mutation from ‘B’ to ‘A’ is 
considered to be the same mutation type as from ‘A’ to ‘B’, and the 
associated energy change admits an opposite sign (the mutations 
count for each mutation type can be found in Supplementary Fig. 1).

Overall, our predicted patterns are remarkably similar to those of 
experimental data in terms of both average binding energy changes 
and variance of binding energy changes, as shown in Fig. 5. It is 
interesting to note that all the mutations to alanine have a positive 
energy change—a possible reason is that mutations from a large 
residue to a small one could lead to a stabilizing effect to the whole 
system. Aside from the size of amino acids, we also categorized 
them into charged, polar, hydrophobic and special-case groups. In 
terms of binding affinity changes, we find that most mutations from 
polar to hydrophobic residues have a positive free energy change 
(for example, S to M), which means mutations from polar residues 
to hydrophobic residues would make the whole PPI system more 
stable. We also observed that a mutation from charged residues to 
uncharged polar residues could lead to a negative energy change; 
for example, lysine to serine (K to S), which means such mutations 
might have broken some charge–charge interaction pairs.

Although our model shares a similar pattern in the variance of 
energy changes with experimental data, the variance of the model 
predictions is generally lower than the experimental data as shown 
in Fig. 5. It remains a challenging task to come up with predictions 
with a diversity level the same as that of experimental data.

Conclusion
The importance of PPIs is evident from the intensive efforts to 
study them from many perspectives, including quantum mechan-
ics, molecular mechanics, biochemistry, biophysics and molecular 
biology; for example, the RP value between predicted ΔΔG values 
and experimental data in cross-validations of a commonly used PPI 
database, AB-Bind10, is only 0.53.

Topology has recently been shown to be surprisingly effective 
in simplifying biomolecular structural complexity26,27,29. It has been 
devised to win worldwide competitions in computer-aided drug 
design36. It is therefore of enormous importance to exploit topology 
for understanding PPIs. In this work, we propose TopNetTrees for 
ΔΔG predictions; specifically, an element- and site-specific persis-
tent homology is introduced to characterize PPIs. Furthermore, we 
propose machine learning algorithms—CNN-assisted GBTs—to pair 
with the topological method for the prediction of PPI ΔΔG. We dem-
onstrate that the proposed TopNetTree achieves an RP of 0.65, which 
is about 22% better than the previous best result for the AB-Bind data-
set. For another benchmark PPI dataset, SKEMPI, the present method 
significantly outperforms the state-of-the-art in the literature.

Methods
Simplicial complex and filtration. An abstract simplicial complex is a finite 
collection of sets of points (that is, atoms) K ¼ fσigi

I
, where the elements in σi 

are called vertices and σi is called a k-simplex if it has k + 1 distinct vertices. If 
τ ⊆ σi then τ is called a face of σi. A simplicial complex, K, is valid if τ ⊆ σi for σi ∈ K 
indicates that τ ∈ K, and that the non-empty intersection of any two simplices σ1, 
σ2 ∈ K is a face of both σ1 and σ2.

In practice, it is favourable to characterize point clouds or atomic positions 
in various spatial scales rather than in a fixed scaled simplicial complex 
representation. To construct a scale-changing simplicial complex, consider a 
function f : K ! R

I
 that satisfies f(τ) ≤ f(σ) whenever τ ⊆ σ. Given a real value, x, f 

induces a subcomplex of K by constructing a sub-level set, K(x) = {σ ∈ K∣f(σ) ≤ x}. 
As K is finite, the range of f is also finite and the induced subcomplexes, when 
ordered, form a filtration of K,

+  Kðx1Þ  Kðx2Þ      Kðx‘Þ ¼ K ð2Þ

There are many constructions of K and one that is widely used for point clouds 
is the Vietoris–Rips complex. Given K as the collection of all possible simplices 
from a set of atomic coordinates until a fixed dimension, the filtration function 
is defined as fRips(σ) = max{d(vi, vj)∣vi, vj ∈ σ} for σ ∈ K, where d is a predefined 
distance function between the vertices; for example, De. In practice, an upper 
bound of the filtration value is set to avoid an excessively large simplicial 
complex. Another efficient construction called the alpha complex23 is often 
used to characterize geometry, and we denote the filtration function by 
f α : DTðXÞ ! R

I
, where DT(X) is the simplicial complex that is induced by the 

Delaunay triangulation of the set of atomic coordinates, X (ref. 23). The filtration 
function is defined as f αðσÞ ¼ maxf12Deðvi; vjÞjvi; vj 2 σg

I
 for σ ∈ DT(X). Back 

to molecular structures, the filtration of simplicial complexes describes the 
topological characteristics of interaction hypergraphs under various interaction 
range assumptions.

Homology and persistence. A homology group (in singular homology) of 
a simplicial complex topologically depicts hole-like structures of different 
dimensions. Given a simplicial complex, K, a k-chain is a finite formal sum of k-
simplices in K; that is, 

P
i aiσi

I
. There are many choices for coefficients, ai

I
, and we 

choose ai 2 Z2
I

 for simplicity. The kth chain group (denoted Ck(K)) comprises all 
of the k-chains under the addition that is induced by the addition of coefficients. 
A boundary operator ∂k: Ck(K) → Ck−1(K) connects chain groups of different 
dimensions by mapping a chain to the alternating sum of codimension-1 faces. It 
suffices to define the boundary operator on simplices,

∂kðfv0;    ; vkgÞ ¼
Xk

i¼0

ð�1Þifv0;    ; vi;    ; vkg; ð3Þ

where vi
I

 indicates the absence of vertex vi. The kth cycle group (denoted Zk(K)) 
is defined to be the kernel of ∂k, whose members are called k-cycles. The kth 
boundary group is the image of ∂k+1 and is denoted Bk(K). It follows that Bk(K) is 
a subgroup of Zk(K) based on the property of boundary maps, ∂k ∘ ∂k+1 = 0. The 
kth homology group, Hk(K), is defined to be the quotient group Zk(K)∕Bk(K). The 
equivalent classes in Hk(K) correspond to k-dimensional holes in K that cannot be 
deformed to eachother by adding or subtracting the boundary of a subcomplex.

Given a filtration as in equation (2), in addition to characterizing the homology 
group at each frame Hk(K(xi)), we also want to track how topological features 
persist along the sequence. Viewing Hk(K(xi)) as vector spaces together with 
inclusion map induced linear transformations gives a persistence module,

HkðKðx1ÞÞ ! HkðKðx2ÞÞ !    ! HkðKðx‘ÞÞ: ð4Þ

An interval module with respect to [b, d) denoted I½b;dÞ
I

 is defined as a collection of 
vector spaces {Vi} that are connected by linear maps, fi: Vi → Vi+1, where Vi ¼ Z2

I
 

for i ∈ [b, d) and Vi = 0 elsewhere and fi is identity map when possible and zero 
otherwise. The persistence module in equation (4) can be decomposed as a direct 
sum of interval modules ½b;dÞ2BI½b;dÞ

I
. Each I½b;dÞ

I
 corresponds to a homology class 

that appears at filtration value b and disappears at filtration value d (the values 
b and d are usually called the birth and death values). The collection of these 
pairs, B, encodes the evolution of k-dimensional holes when varying the filtration 
parameter and thus records the topological configuration of the input point cloud 
under different interactions ranges if a distance based filtration is used. Figure 3 
illustrates filtration and persistence.

Mutation regions. Mutant residue locations were classified into interface and non-
interface regions. Interface residues were further classified as the rim, support or 
core, and non-interface residues were also further classified as surface or interior, 
based on the classification approach by Levy50.

Residue classification is mainly based on the change of relative residue 
accessible surface area (rASA) between protein–protein complex (rASAc) and 
individual protein components of complex (rASAm), as shown in Table 3. The 
accessible surface area was calculated with AREAIMOL from the CCP4 suite51 and 
relative solvent accessibility was obtained by normalizing the absolute value with 
that of the same amino acid in a G–X–G peptide52.
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