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Abstract

Phase-contrast (PC) magnetic resonance imaging provides time-resolved quantification of
blood flow dynamics that can aid clinical diagnosis. Long in vivo scan times due to repeated
3D volume sampling over cardiac phases and breathing cycles necessitate accelerated imaging
techniques that leverage data correlations. Standard compressed sensing reconstruction meth-
ods require tuning of hyperparameters and are computationally expensive, which diminishes
potential reduction of examination times. We propose an efficient model-based deep neural
reconstruction network and evaluate its performance on clinical aortic flow data. The network
is shown to reconstruct undersampled 4D flow MRI data in under a minute on the standard
consumer hardware. Remarkably, the relatively low amounts of tunable parameters allowed
the network to be trained on images from 11 reference scans while generalizing well to retro-
spective and prospective undersampled data for various acceleration factors and anatomies.

Introduction

4D flow MRI provides spatio-temporally resolved quantification of blood flow and offers great
potential for the assessment of cardiovascular disease, e.g. aortic valve stenosis, atherosclerosis, or
vessel wall remodelling1. However, clinical adaptation of the method has been hampered by long
exam times.

Many efforts have been dedicated to accelerate flow acquisition by exploiting redundancies in
the data. Partial Fourier imaging2 has been used for moderate acceleration3, but the underlying
assumption of a slowly varying phase has been shown to be incorrect for 4D flow MRI4. Parallel
imaging (PI)5, which exploits the spatially varying sensitivity of receiver elements in the coil array
has become a standard for accelerated imaging, but undersampling rates are limited by noise
amplification6. The advent of compressed sensing (CS)7 has enabled acceleration of 4D flow MRI
by acquiring only a subset of k-space data and exploiting prior information about data regularities
during reconstruction8,9,10,11,12,13, with typical acceleration factors ranging from 510 up to 2713. In
particular, the locally low rank (LLR) regularized reconstruction14 has been a successful technique,
which iteratively balances the data fidelity cost and the singular norm of a patch matrix stacked
over cardiac phases (see Methods for details). However, iterative reconstruction methods as used
in CS increase reconstruction times considerably, implying that evaluation of 4D flow MRI data
will typically happen when the subject has already been moved out of the scanner.

In recent years, deep neural networks have gained increasing popularity in MR image recon-
struction. In the training stage, the neural network learns abstract features from a set of scans.
After training, newly acquired data are reconstructed with very little computational effort by in-
ference with the learned weights. This reduction in reconstruction times can facilitate the use of
accelerated imaging methods in clinical practice. Moreover, reconstruction results can be supe-
rior to traditional CS methods15,16. Some approaches discard concepts of iterative image recon-
struction altogether, e.g. by learning end-to-end mappings from k-space to image space17. As a
downside, such networks usually require abundant amounts of high quality training data which
is not available for high-dimensional flow MRI. Model-based neural reconstruction networks can
also be designed to replicate the behaviour of an iterative reconstruction by interlacing nonlinear
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convolutional filters with an operation that enforces closeness of the current image estimate to
the acquired data15,18,16,19, similar to the data fidelity step in an iterative shrinkage-thresholding
algorithm20. A recent study21 showed that neural network architectures which incorporate such
an operation generalize better to different undersampling rates. In contrast, generic architectures
which are solely based on convolutional layers can even lead to deteriorated image quality when
the undersampling factor is increased, although one would expect the reconstruction result to
improve when more information is available. The adversarial approach for training MR recon-
struction networks22,23 is usually aimed at improving perceptual reconstruction quality, such as
image sharpness. Typically, this is achieved at the expense of reconstruction nRMSE (normalized
root-mean-square error)24, which is critical for flow quantification.

In this work, an approach based on the idea of deep variational neural networks15 is imple-
mented for rapid 4D flow reconstruction, wich is referred to as FlowVN hereafter.. For comparsion,
the 3D variational network (VN) architecture as presented in15 was adapted for 4D flow data by
using 3D filter banks operating on subsets of xyzt dimensional data, yielding the model that we
refer to as HamVN. The FlowVN twork architecture replicates 10 steps of an iterative image re-
construction, while allowing for learnable spatio-temporal filter kernels, activation functions, and
regularization weights in each iteration. It is demonstrated that based on training performed with
retrospectively undersampled data of healthy subjects, FlowVN can accurately reconstruct patho-
logical flow in a stenotic aorta in 21 seconds. Moreover, an imaging study with healthy subjects
demonstrates good agreement of reconstructions from prospective undersampling with reference
measurement.
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Figure 1: Breathing resolved 4D flow data acquisition. a, Data are sampled using a
Cartesian pseudo-radial tiny Golden angle sampling pattern. b, Time-resolved data are binned to
end expiration using a combination of principal component analysis, low-pass filtering, and coil-
clustering. c, Acquired data are sorted according to heart phase and velocity encoding. d, Datasets
used during training and evaluation. To conduct prospective evaluation, 7 healthy volunteers
underwent accelerated CS and reference PI acquisitions during the same scan session.

4D flow MRI reconstruction with FlowVN

The FlowVN architecture improves HamVN in the following ways: (i) linear activations are used
instead of radial basis functions (RBF), (ii) the network is conditioned on the sampling rate, (iii)
exponential weighting of intermediate layers is used as regularization, (iv) real and imaginary
parts of the signal are filtered by shared weights, (v) momentum is considered during gradient
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Table 1: Model complexities and typical reconstruction time for 4D flow reconstruction.
Typical reconstruction time for 4-point velocity encoded data compressed to 5 virtual coils and
reconstructed on 113×113×25 grid. CS-LLR was executed on a 6-core Intel CPU, FlowVN and
HamVN were implemented in Tensorflow and evaluated on a NVIDIA Titan RTX.

Method Recon. Time # of Param.

CS-LLR 10 min 24 s 2

HamVN 89 s 62,742

FlowVN 21 s 63,583

descent (GD) unrolling, and, (vi) the data term allows tunable activation functions. The network
is trained for a wide range of acceleration factors by allowing acceleration dependent weighting of
data consistency and filtering steps.

As illustrated in Fig. 1a, for each velocity encoding direction, the k-space data is acquired using
a Cartesian Golden angle sampling strategy, yielding variable density undersampling patterns in
k-space. The signal of a total of 28 physical coils is compressed into 5 virtual coils via clustering25.
The samples are then sorted into respiratory bins and data in the end-expiratory bin is used for
reconstruction.

A deep variational network can be seen as a differentiable sequence of an unrolled numerical
optimization scheme. To enable learning, such sequence is then relaxed by allowing tunable filter
weights and activation functions. As described in Methods, we unroll K=10 steps of a gradient
descent with momentum governed by a scalar α(k):

S(k+1) ← α(k+1)S(k) + G(k), (1)

P(k+1) ← P(k) − S(k+1). (2)

At each k-th layer P(k) the current complex-valued spatio-temporal image estimate is represented,
while S(k) maintains a running average of update steps. The update step G(k) consists of the data
consistency and regularization terms (see Methods and Supplementary Algorithm 1 for details),
that are weighted according to the sampling rate M = 1/R (R is the acceleration factor) via tunable

activation functions ϕ
(k)
ud (M) and ϕ

(k)
ur (M), respectively. The data consistency term modulates the

k-space data residual via an activation function and maps them back to the image space via a
conjugate imaging operator. The regularization term at each layer contains 3D filters grouped into
4 banks, where each bank performs convolutions in 3 dedicated dimensions, namely xyz, xyt, xzt
and yzt, therefore avoiding costly 4D convolutions. To avoid overfitting, we assume shared filters
and activation functions that operate on real and imaginary components of the image. Note that
both data and regularization terms do not assume correlations between real and imaginary parts
of the signal, as highlighted in Fig. 2b.

The image estimate P(K)(B,Θ) of the final layer can be then seen as a function of the k-
space samples B and network parameters Θ. To tune the network parameters Θ we minimize the
layer-wise exponentially weighted `1 image reconstruction loss:

min
Θ

E
{B,P∗}∼T

K∑
k=1

e−τ(K−k) ‖P(k)(B; Θ)−P∗‖1, (3)

over the retrospectively undersampled training dataset T , where P∗ is the ground truth image.
Layer weighting is controlled by parameter τ≥0: when τ ≈ 0, the reconstruction error is penal-
ized equally across layers, therefore gradients of network parameters have lower variance during
stochastic optimization, yielding faster convergence. On the contrary, when τ→ +∞, only recon-
struction at the final layer P(K) is minimized, which improves fitting accuracy on the training data.
It is worth mentioning that τ controls the trade-off between training reconstruction residual and
network regularity. Similarly to Landweber iterations26,15 and deep supervision27, such implicit
regularization penalizes irregular representations at intermediate layers and favors networks that
can provide fast reconstruction. We propose to initialize τ with zero and then gradually increase
it according to the training schedule (see Methods).

3



a d

k-space

Random crop 
in dim-s x,t4D

 im
ag

e mask

FT in 
dim-s y,z

Training loss:   ∑" #$% &$" '(") − '∗ ,

'(-) '("$,) it. 1 '(") ... it. 2 '(&)'(&$,)'(,) ...
3(,) 3("$,) 3(") 3(&$,)

Initialize with
ZF IFT

it. 1
Solution

FlowVN
'∗

co
ils

0 0.5 1 1.5 2

Iteration 10 4

5

10

15

20

25

R
e
lE

rr
(v

*,
 v

)

0

2

4

6

L
1
-e

rr
o
r

10 5

Velocity magnitude relative error

Target image error

b e

… !
"#

ba
nk

!"$, "#$ banks……

& '
3D

 fi
lte

rs
 (

)

& '
ac

tiv
at

io
ns
*
+,)

(
),

& '
3D

 fi
lte

rs
 (

-

& '
ac

tiv
at

io
ns
*
+,-

Forward 
operator

.⊙01 − 3

∑

It. 5
Regularization term. (6, *7,6

Data term. *8

Ρ(;)

=(;)

>

Ac
tiv

at
io

n 
*
?

∑

×
*
AB
(C .
)

×*AD ( C.)

×E

∑

=

∑

=(;F))

Ρ(;F))

!#
$b

an
k

US-modulation
terms. *AB, *AD

Momentum term

(
-,

Adjoint 
operator

0G(.⊙ [… ])

0.05 0.1 0.15 0.2

0

0.5

1

1.5

2

c f

k-
sp

ac
e
!
∈
ℂ$

%$
&×
$ (

IFT in x 
dimension

FlowVN reconstruction )(+)

coils -. ∈ ℂ$/

)(0)

... ...

)(1) )(2) )(+31)

2

Figure 2: FlowVN architecture and training. a, Structure of FlowVN and its training strategy
which uses a reduced field-of-view data. b, Single unrolled iteration block consisting of convolu-
tional filtering, data fidelity, undersampling modulation and gradient descent momentum terms.
Tunable parameters are highlighted in red. c, FlowVN at inference time yields 4D image recon-
struction. d, Target training image error and velocity magnitude error in the aorta evaluated
using training data. e, Data and gradient term weighting functions shown for each of 10 layers. f,
Exemplary slices of 3D xyz filters and their corresponding activation functions at layer 5.

To demonstrate the validity of our approach, we note that the extracted velocity magnitude
error in the aorta decreases simultaneously with the target reconstruction error during training, as
shown in Fig. 2d, therefore indicating that the target `1 image error is a valid training surrogate.
It can be seen from Fig. 2e that the regularization term is suppressed for lower acceleration factors
R (higher sampling rate M). A subset of learned FlowVN parameters Θ is shown in Fig. 2f
illustrating that learned convolutions perform direction-dependent filtering.

Retrospective and Prospective Evaluation

Reconstructed image magnitudes (for a single velocity encoding component), estimated velocity
magnitudes and their errors of a healthy volunteer data for acceleration factor R=14 are illustrated
in Fig. 3 for retrospectively undersampled data. Compared to CS-LLR and HamVN, the proposed
FlowVN provides better reconstruction accuracy in terms of image magnitude and velocities. Scat-
ter plot and correlation analysis further suggest that the velocity magnitude image estimated via
FlowVN is in better agreement with ground truth. As shown in Supplementary Table 2 these
observations extend to other acceleration factors R (6–22) as tested on 7 healthy volunteers.

Fig. 4 indicates that FlowVN can accurately reconstruct the jet at the inlet section of the aorta
for a patient with a pathological aortic valve.

The prospective undersampling acquisition results are reported in Fig. 5a,b: peak velocities and
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Figure 3: Reconstruction results on retrospectively undersampled data. Image magni-
tudes and estimated 4D velocity magnitude maps on retrospectively 14× undersampled data from
a healthy volunteer. Corresponding slice locations are illustrated with red dashed lines, indicating
crossection of the aorta and systolic peak. Scatter plot of velocity magnitude over manually seg-
mented aorta (contour shown in magenta) is given together with correlation analysis (y = ax+ b).

peak flow estimated using CS-LLR and FlowVN are in good agreement with PI reconstruction,
while HamVN systematically underestimates velocity magnitudes. Moreover, correlation analysis
in Fig. 5d reveals high correlation between CS-LLR and FlowVN velocity estimates. In contrast,
HamVN shows systematic velocity underestimation, compared to CS-LLR.

The exemplary reconstruction time for typical 4-point velocity encoded images reported in
Table 1 shows that the proposed FlowVN is 30 times faster than CS-LLR reconstruction.

Discussion

Practical learning-based image reconstruction can be traced back to dictionary learning meth-
ods28,29, where prior information is learned from image patches and then used as a sparsity-inducing
regularizer for iterative reconstruction. Such an approach yields orders of magnitude longer recon-
struction times, compared to modern deep learning approaches. A straightforward application of
deep artificial neural networks has been suggested for learning reconstruction as a regression from
the k-space17 or zero-filled reconstructions30 directly into the image space. Although tempting,
such an approach might be unjustified, because the k-space and zero-filling artefacts have global
dependence on image intensities. The advent of effective automatic differentiation systems31,32

revitalized the idea of unrolling33 and relaxing numerical schemes that can solve the original re-
construction problem. Following this approach, a number of deep neural network architectures
were proposed18,34,15,35, that disentangle image acquisition and image prior models. Unrolling
gradient descent reconstruction with tunable filters and activation functions yields the HamVN
architecture proposed by Hammernik et al.15. One advantage of VNs is that, compared to other
deep architectures, they employ relatively limited number of free parameters to tune, therefore
they are less susceptible to overfitting.

In this work we have further developed the VN architecture15,36,37 to accommodate high perfor-
mance undersampled 4D flow reconstruction with limited training. Namely, we avoid exponential
model complexity growth by avoiding 4D convolutions and by using separable 3D convolutions
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Figure 4: Retrospective reconstruction of the data from patient with abnormal flow
pattern. Reconstruction results of 10× retrospectively undersampled patient data shown at sys-
tolic peak flow. Manual aorta segmentation and field-of-view are shown with magenta and green
dashed lines, respectively.

that are shared for real and imaginary parts of the image. Furthermore, in contrast to the original
HamVN15, we train our FlowVN for a wide range of undersampling factors by allowing the regu-
larization term to depend on them. As illustrated in Fig. 2e, regularization scaled by ϕur decreases
as more samples are available, while the data term ϕud stays constant for most of the layers. Such
conditioning allows network training on a larger variety of artefacts and as it is necessary in prac-
tice, since for a given fixed acquisition time, the precise value of the undersampling factor is not
known a priori and depends on breathing and cardiac motion patterns. We hypothesize that the
wide range of acceleration factors which were used simultaneously to train the FlowVN provided a
diverse collection of aliasing artefacts and enabled robust learning on a remarkably limited train-
ing set of 11 subjects. The exponential weighting of the layer-wise reconstruction loss (3) further
regularized FlowVN parameters by penalizing the nonlinear behaviour presented in HamVN re-
constructions. Supplemental Fig. 6 and Table 3 provide quantification of reconstruction accuracy
effects attributed to the modifications proposed with FlowVN. In particular, modifications to the
network architecture result in a model that can better adapt to data and yield higher accuracy
for retrospectively undersampled experiments, while the proposed exponential weighting of the
training loss improves accuracy of the prospective evaluation, which indicates better generaliza-
tion ability. It is worth noting, that FlowVN has only 1% more tunable parameters compared to
HamVN (c.f. Table 1), while improving reconstruction nRMSE by 23% (averaged over acceleration
factors as given in Supplemental Fig. 6). We note that 4D flow MRI greatly benefits from using
coil information during reconstruction (see Supplementary Table 3). Accordingly, comparison with
single-coil reconstruction networks18 has limited benefit.
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Figure 5: Quantitative flow evaluation of reconstruction methods on the prospectively
undersampled data (12.4 ≤ R ≤ 13.8) from 7 healthy volunteers. a,b, Bland-Altman
analysis of peak velocities and peak flow assessed over manually segmented aorta slices as illustrated
in c. Black dashed bars indicate zero difference between corresponding measurements and solid
lines show mean and standard deviation values. d, Correlation analysis of aortic velocity magnitude
estimates by learned VN architectures and CS-LLR reconstruction. The blue line shows the linear
regression fit and grey dashed line corresponds to y = x.

The proposed FlowVN is a learning-based approach for reconstructing undersampled 4D flow
MRI data in under a minute. For fixed reconstruction accuracy, FlowVN enables higher acceleration
factors (12% improvement compared to CS-LLR image nRMSE at R=16) and does not introduce
significant bias of peak flow estimates. The proposed reconstruction is 30 times faster than state-
of-the art CS-LLR and 4.2 times faster than HamVN, due to using linear activation functions
rather than RBFs, which requires computation of pairwise distances between control knots and
image intensities. It is worth noting that FlowVN demonstrates high generalization ability, being
able to preserve patient pathologies that were not present in the training data.
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Methods

Compressed Sensing 4D Flow Reconstruction

PC MRI encodes flow velocity v(r, t) ∈ R3 at spatial location r during cardiac phase t (1 ≤ t ≤ Nt)
according to the following equation:

ρi(r, t) = ρ0(r, t) exp

(
jπ

(Φv(r, t))i
venc

)
, (4)

where venc is the velocity corresponding to a phase of ±π, yi, i = 0, . . . , 3 are the encoded velocity
vector components. The four-point velocity encoding matrix is given as

Φ =


0 0 0
1 0 0
0 1 0
0 0 1

 . (5)

Therefore, flow velocity v can be calculated from the phase difference of reconstructed PC images
ρi.

Let ρit ∈ CNv be a discretized image on a Nx×Ny×Nz=Nv grid corresponding to a cardiac
phase t and velocity encoding i. Assuming Cartesian sampling on a regular N1×N2×N3=Ns grid,

the Fourier transform F ∈ CNs×Nv , and Nc coil sensitivity maps Wk
def
= diag(ck) ∈ CNv×Nv define

the spatial encoding operator E ∈ CNsNc×Nv :

Eρ
def
=
[
(FW1ρ)

T
, . . . , (FWNc

ρ)
T
]T
∈ CNsNc . (6)

Considering a single velocity-encoded image sequence, let P ∈ CNv×Nt and B ∈ CNsNc×Nt

be stacked column-vectors of signals ρ and zero-filled k-space samples respectively, while M ∈
{0, 1}NsNc×Nt defines the undersampling mask. Iterative image reconstruction methods seek for a
maximum a posteriori (MAP) solution defined by the following optimization problem:

P̂MAP = argmin
P

1

2
‖M� (EP−B) ‖2F +R(P), (7)

where the regularization term R enforces prior assumptions about image regularities. Herein we
consider the local low-rank (LLR) regularization14 to leverage image correlations among cardiac
phases:

RLLR(P) = λLLR

∑
i≤Nptch

‖TiP‖∗, (8)

where Ti ∈ {0, 1}p
3×Nv is the corresponding p×p×p patch extraction operator, yielding Nptch

patches, and ‖ · ‖∗ is the nuclear norm. For LLR regularization the optimization problem (7) is
convex and can be efficiently solved using operator splitting techniques such as the fast iterative
shrinkage-thresholding algorithm (FISTA)20.

FlowVN Training

We employ a K=10 layer VN and perform 5·104 iterations of the ADAM algorithm (learning
rate 10−3, β1=0.85, β2=0.98, batch size of 3) for training, during which we continually adjust
τ = iopt·10−3 with iopt being the iteration number. On every layer, each 3D filter bank contains
Nf=8 filters of size nc=5 voxels. Activation functions ϕ{.} are parametrized by Nknts=91 control
knots with spacing ω=0.17:

ϕ{h} =(1− h/ω + bh/ωc)φbh/ωc+
(h/ω − bh/ωc)φbh/ωc+1,

(9)

with gradients provided by the following formulas:

∂ϕ

∂φi
{h} = 1i≤h≤i+1 · (1− h+ bhc)+

1i−1≤h≤i · (h− bhc),
∂ϕ

∂h
{h} = φbhc+1 − φbhc.

(10)
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The acquired zero-filled k-space B with undersampling mask M was normalized by ‖M‖1‖B‖F .

To enable backpropagation to be carried out with limited GPU memory, we employ spatio-
temporal equivariance of the convolution and exploit the fact that k-space is fully sampled in
the readout dimension kx for Cartesian acquisitions. Therefore, to draw a training sample, we
perform random cropping of width wx and wt in dimensions x and t respectively and simulate
Fourier encoding in kykz dimensions as illustrated in Fig. 2(a). The network was implemented
using the Tensorflow framework32. Fully-sampled and partial Fourier acquisition data from 11
healthy volunteers was used during training.

In Vivo Data Acquisition

As illustrated in Fig. 1, we used 11 subject for network training, and 7 healthy subjects and 1
patient for evaluation. All in-vivo work was performed upon written informed consent of the
subjects and according to local ethics regulations.

Training datasets comprised 4D flow data measured in the aorta of 11 healthy subjects, 9 of
them fully sampled and 2 acquired with partial Fourier38 (factor 0.75×0.75).

For evaluation, data in the ascending aorta of 7 healthy subjects were acquired on a 3T Philips
Ingenia system (Philips Healthcare, Best, the Netherlands) using a Cartesian 4-point referenced
phase-contrast gradient-echo sequence with an encoding velocity venc = 150 cm/s, a spatial resolu-
tion of 2.5×2.5×2.5mm3, TE = 3.3ms, TR = 4.9ms, 25 cardiac phases and flip angle = 8◦. Exams
for each of the 7 healthy subjects comprised a standard navigator-gated 2-fold accelerated parallel
imaging5 exam for reference, and a CS acquisition with an acceleration factor of R=12.4 − 13.8,
using Cartesian pseudo-radial golden angle sampling pattern39 and data driven-respiratory motion
detection, as in11. Only data in expiration were kept for reconstruction as shown in Fig. 1.

To evaluate reconstruction accuracy on pathological anatomy, 4D flow data was acquired in
a single patient with dilation of the ascending aorta, combined aortic stenosis and regurgitation
due to a bicuspid aortic valve on a 3T Philips Ingenia system (Philips Healthcare, Best, the
Netherlands) using a navigator-gated 2-fold accelerated parallel imaging5 scan.

A receiver coil with 28 channels was used for acquisition which were reduced to 5 channels
using coil compression40. Coil sensitivity maps were estimated with ESPIRiT41. Concomitant
field correction was applied to the signal phase according to Bernstein et al.42 and eddy currents
were corrected for with a third-order polynomial model fitted to stationary tissue43,44.

Evaluation

We compared the proposed FlowVN to the state-of-the-art compressed sensing LLR-regularized (8)
reconstruction14 and the variational network by Hammernik et al.15 which we refer to as HamVN.
The LLR implementation from the Berkeley advanced reconstruction toolbox (BART)45 was used
with patch size p=8 and a maximum number of optimization iterations of 80. The optimal value of
regularization parameter λLLR=2.06 was chosen via grid search to minimize the reconstructed flow
field residual ‖v̂ − v∗‖2 averaged over the manually segmented aorta on the retrospectively 12×
undersampled acquisition. Since the original VN15 was proposed for magnitude reconstruction of
2D and 3D data, we introduced the following modifications for the presented 4D flow evaluation:
(i) 3D filters were grouped into 4 banks as in FlowVN (see Supplemental Algorithm 1), (ii) `1-norm
of reconstruction was optimized (i.e. equation (3) with τ→+∞ ). We refer to this architecture as
“HamVN”, the number of network layers, filters and control knots were the same as in FlowVN.

Retrospective Study

For simulated retrospective undersampling experiments, we used 2× PI data and simulate a pseudo-
radial Golden angle sampling pattern39 with acceleration factors of 6 to 22.

For each undersampling factor we evaluated the nRMSE of the image magnitude, the relative
error (RelErr) of velocity magnitudes inside the aorta and the angular error (AngErr) of the
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estimated velocity vectors:

nRMSE(a,a∗) =

√√√√ N∑
i

(ai − a?i )2

Nmaxj(a?j )
2
,

RelErr(a,a∗) =
‖a− a∗‖2
‖a∗‖2

,

AngErr(u,v) = arccos

(
〈u,v〉
‖u‖2‖v‖2

)
.

(11)

Additionally, we report the structural similarity index (SSIM)46 with σSSIM=1.5 on the recon-
structed magnitude images.

Prospective Study

Using manual aorta segmentations we compute flow over cross sections of the aorta by integrating
velocity components projected onto the cross section normal. The peak flow is then defined as the
maximal flow over cardiac phases for a given cross section. Moreover, we calculate peak through-
plane velocity defined as maximum velocity projection across cross sections of the aorta over cardiac
phases.

To quantify agreement with the reference 2× PI reconstruction, we performed Bland-Altman
analysis47 of peak flow and peak through-plane velocities.

Data and code availability

The code for the network training and inference used in this study and network weights are avaliable
on CodeOcean together with volunteer data: https://codeocean.com/capsule/0115983/tree48.
The code for analysis is available on CodeOcean: https://codeocean.com/capsule/2587940/

tree49.
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1 Supplementary Material

Algorithm 1 Proposed variational reconstruction network model FlowVN.

Input: B ∈ CNs×Nt — zero-filled k-space samples, M ∈ {0, 1}Ns×Nt — undersampling mask

Parameters: Θ = {φ(k)
ud ,φ

(k)
ur ,φ

(k)
d ,φ

(k)
r,in,D

(k)
in , α

(k), α(0)}i=1,...,Nf , k=1,...,K , n = 1, . . . , 4

M← 1
NsNt

∑
i≤Nsj≤Nt

Mij

P(0) ← α(0)EHB, S(0) ← 0
for k := 0 to K − 1

G(k) ←

data consistency term︷ ︸︸ ︷
ϕ

(k)
ud {M}E

H
(
M� ϕ(k)

d

{
M�

(
EP(k) −B

)})
+

regularization term︷ ︸︸ ︷
ϕ(k)

ur {M}
∑

i≤Nf ,n≤4

(
D

(k)
in

)T
ϕ

(k)
r,in

{
D

(k)
in vec

(
P(k)

)}
S(k+1) ← α(k+1)S(k) + G(k)

P(k+1) ← P(k) − S(k+1)

Output: reconstructed image V(B,M; Θ)
def
= P(K)

Table 2: Comparison of reconstruction errors (± standard deviation) of 7 retrospectively under-
sampled acquisitions of healthy subjects for different acceleration factors R. For each row the best
performing method is highlighted in bold. P-values are obtained by comparing error metrics dis-
tributions of LLR and corresponding VN architectures using the two-sided Wilcoxon signed-rank
test.

R=6

p-val.
R=8

p-val.
R=10

p-val.
R=12

p-val.
R=14

p-val.
R=16

p-val.
R=18

p-val.
R=20

p-val.
R=22

p-val.

Image Magnitude nRMSE [%]
LLR HamVN FlowVN

1.9±0.3 2.3±0.2 1.7±0.2

<0.0001 0.0017
2.0±0.3 2.5±0.2 1.9±0.2

<0.0001 0.0076
2.2±0.3 2.8±0.3 2.2±0.2

<0.0001 0.1418
2.5±0.3 3.0±0.3 2.4±0.2

<0.0001 0.0256
2.8±0.3 3.3±0.3 2.6±0.3

<0.0001 <0.0001
3.3±0.4 3.6±0.3 2.9±0.3

<0.0001 <0.0001
3.6±0.4 3.8±0.4 3.0±0.3

<0.0001 <0.0001
3.8±0.4 4.0±0.4 3.2±0.3

0.0211 <0.0001
4.2±0.5 4.1±0.4 3.4±0.3

0.9551 <0.0001

Velocity Magnitude RelErr [%]
LLR HamVN FlowVN

9.4±1.9 12.8±2.5 8.7±2.4

<0.0001 0.0225
10.5±2.3 13.5±2.8 10.0±2.8

<0.0001 0.0790
11.8±2.2 14.9±3.0 11.4±2.8

<0.0001 0.0385
13.2±2.4 16.4±2.9 12.4±2.4

<0.0001 0.0003
15.1±2.5 18.0±3.5 14.0±2.9

<0.0001 <0.0001
17.4±2.3 20.2±3.2 15.5±3.3

<0.0001 <0.0001
19.0±2.7 22.4±2.9 16.9±2.9

<0.0001 <0.0001
19.9±3.4 23.1±4.1 17.5±3.4

<0.0001 <0.0001
21.9±2.8 25.3±3.6 19.2±3.3

<0.0001 <0.0001

Mean Flow AngErr [deg]
LLR HamVN FlowVN

7.0±1.8 9.6±2.6 6.9±1.9

<0.0001 0.1956
7.9±2.0 10.5±2.9 8.0±2.3

<0.0001 0.2228
8.9±2.2 11.5±3.1 9.2±2.5

<0.0001 0.0204
10.2±2.7 12.7±3.4 10.3±2.8

<0.0001 0.0225
11.3±2.9 13.6±3.8 11.4±3.2

<0.0001 0.1166
12.2±3.1 14.3±4.0 12.3±3.4

<0.0001 0.7785
13.3±3.4 15.3±4.2 13.0±3.6

<0.0001 0.4799
13.7±3.7 15.5±4.4 13.6±3.9

<0.0001 0.0073
14.8±3.6 16.1±4.5 14.3±3.8

<0.0001 0.0005

Table 3: Quantitative prospective comparison of VN architectures and modifications proposed in
this paper using data from 7 healthy volunteers (12.4 ≤ R ≤ 13.8). Peak velocities and peak flow
are assessed over manually segmented aorta slices and reported relative to average values of the
corresponding reference scan (± standard deviation). P-values are obtained by comparing error
metrics distributions of reference PI data and the corresponding reconstruction method using the
two-sided Wilcoxon signed-rank test. HamVN-3D performs 3D filtering of yzt dimensional data
(assuming that data is fully sampled in the x dimension). “HamVN-3D, single coil” was trained to
reconstruct each coil image separately and then to be combined using provided sensitivity maps.
Modifications are accumulated as presented and, eventually, yield the FlowVN configuration.

Method Peak Velocity Error[%] p-value Peak Flow Error[%] p-value

HamVN-3D, single coil 19.38±19.01 <0.0001 21.37±15.11 <0.0001
HamVN-3D 6.44±13.64 <0.0001 3.73 ± 12.12 0.0020
HamVN 3.64±10.10 <0.0001 1.90±9.69 0.3345
+linear activation functions 3.18±10.35 0.0002 1.65±10.70 0.3833
+unroll GD with momentum 2.95±9.89 0.0004 1.47±9.82 0.4749
+data activation functions 2.29±10.12 0.0213 0.63±9.74 0.7957
+US-depending modulation 1.98±8.43 0.0645 0.47±10.30 0.9272
+exp. weighting (FlowVN) 1.59±9.65 0.0875 0.05±9.79 0.9550
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Figure 6: Retrospective ablation study. a, Comparison of VN architectures and modifications
proposed in this paper, using retrospectively undersampled data from 7 healthy volunteers for dif-
ferent acceleration factors R. HamVN-3D performs 3D filtering of yzt dimensional data (assuming
that data is fully sampled in the x dimension). Modifications are accumulated as presented in the
legend and, eventually, yield the FlowVN configuration. Undersampling-dependent modulation
improves reconstruction quality only for higher acceleration factors. Note that the layer-wise ex-
ponential weighting of the reconstruction loss does not increase model complexity and, therefore,
does not improve reconstruction accuracy for retrospective acceleration simulations. b, Velocity
magnitude error maps for R=16 shown at systolic peak flow.
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