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The challenges of deploying artificial intelligence 
models in a rapidly evolving pandemic
The attention and resources of AI researchers have been captured by COVID-19. However, successful adoption 
of AI models in the fight against the pandemic is facing various challenges, including moving clinical needs as the 
epidemic progresses and the necessity to translate models to local healthcare situations.

Yipeng Hu, Joseph Jacob, Geoffrey J. M. Parker, David J. Hawkes, John R. Hurst and Danail Stoyanov

The COVID-19 pandemic, caused by 
the severe acute respiratory syndrome 
coronavirus 2, emerged into a world 

that was seeing rapid developments in 
artificial intelligence (AI) based on big 
data, computational power and neural 
networks. In recent years, the gaze of AI 
researchers has increasingly turned to 
applications in healthcare. Inevitably, there 
has been much interest in exploring the 
potential for AI to support the response to 
the pandemic across a wide range of clinical 
and societal challenges1, for instance in 
disease forecasting, disease surveillance and 
antiviral drug discovery. However, to date 
AI has had surprisingly little impact on the 
management of COVID-19. This Comment 
focuses on examining the possible reasons 
behind the lack of successful adoption of AI 
models specifically for COVID-19 diagnosis 
and prognosis in frontline healthcare 
services. We highlight the moving clinical 
needs that models have had to address at 
different stages of the epidemic, and explain 
the importance of translating models to 
reflect local healthcare environments. We 
argue that both basic and applied research 
are essential to accelerate the potential of AI 
models, and this is particularly so during a 
rapidly evolving pandemic. This perspective 
on the response to COVID-19 may provide 
a glimpse into how the global scientific 
community should react to combat future 
disease outbreaks more effectively.

The evolving clinical need
The clinical management of COVID-19 
has spanned various stages including 
anticipation, early detection, containment 
and mitigation, together aiming towards 
eventual eradication2. Each stage differs in 
its measured and actual disease prevalence, 
which directly impacts the availability 
of clinical resources, and over a matter 
of weeks, clinical priorities can fluctuate 
rapidly. Priorities may range from providing 
robust diagnoses, to maintaining infection 
control and ensuring availability of 

facilities for mechanical ventilation. These 
rapid changes, occurring in tandem with 
enhanced knowledge of virus behaviour 
and increasing availability of supporting 
data, have meant that the outputs required 
of predictive AI models need to constantly 
evolve. Accordingly, the AI models that 
are most urgently needed and can feasibly 
be built are likely to be different at each 
epidemic stage.

The anticipation and early detection 
stages. With a relatively low number 
of positive cases and many potentially 
asymptomatic cases during the early 
stages of the pandemic, a highly sensitive 
diagnostic AI model to detect COVID-19  
would have been useful. The lack of 
pre-existing data from this new disease 
means the feasibility of building such 
new AI models to determine diagnosis or 
prognosis is a challenge, one that could be 
addressed by an AI community focused 
on breaking the existing barriers between 
data domains using machine learning. 
Generalizing AI models to unseen data 
(inference), data coming from different 
distributions (domain adaptation, transfer 
learning) and data with limited or no labels 
(semi- or unsupervised learning)3 are all 
priority areas in the technical development 

of AI. The early stages of a new disease have 
been described as overlooked periods in the 
general management of infectious diseases4. 
The AI community should design strategies 
and methodologies for rapid deployment in 
the event of future epidemic threats, to make 
data collection, model training, testing  
and wide deployment as efficient as possible 
next time.

The containment and mitigation stages. 
During the containment and mitigation of 
COVID-19, data have become increasingly 
available with the exponential growth of 
confirmed positive cases. During this time it 
is essential to rapidly curate sizable training 
datasets and develop stable, well-performing 
AI models that can respond to emerging 
clinically urgent needs, such as rapid, 
consistent patient triage at scale across a 
health service.

Reverse transcription polymerase chain 
reaction (RT-PCR) tests via nasopharyngeal 
swabbing have nearly 100% specificity and 
are considered the diagnostic ground-truth 
for COVID-19. However, RT-PCR has 
limited negative predictive value with 
variable availability and diagnostic speed. 
Alternative methodologies for diagnosing 
COVID-19 include medical imaging 
techniques such as computed tomography 
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Fig. 1 | Translating AI models. Illustration of a typical AI translation workflow, including AI model 
development, deployment and adaptation (or model update).
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(CT) and chest radiographs5. Some 
groups have also explored point-of-care 
ultrasound, albeit with limitations6. Driven 
by data availability, the focus of AI work in 
COVID-19 has centred on RT-PCR-labelled 
diagnostic models7, or the automated 
evaluation of clinical/imaging features 
— for example, lung involvement on CT 
imaging8. Those developing AI-assisted 
diagnostic tools must recognize that very 
high diagnostic accuracies are required to 
demonstrate added value above and beyond 
existing clinical imaging and RT-PCR tests.

It is also important to question which 
prognostic outcomes require greatest 
prioritization during this period. The 
majority of existing AI models aim to 
predict hospitalization and mortality9 
using predictors such as age, gender, blood 
biomarkers, pre-existing co-morbidities 
and imaging5. In resource-constrained 
clinical environments, there is great value 
in predicting resource consumption as a 
‘surrogate’ prognostic outcome, as a lack 
of personal protective equipment, for 
example, can directly affect community 
prognoses10. Intuitive candidate outcome 
measures for AI models might include time 
spent on mechanical ventilators or within 
intensive care units. But as knowledge of 
COVID-19 has grown, early intubation of 
a patient has diminished in priority in the 
care pathway. Similarly, with limitations 
in resources, pragmatic choices have had 
to be made regarding patient selection for 
intensive care unit admission. Evolving 
management strategies such as these have 
a real-time impact on the outcomes that AI 
models aim to predict. Disease progression 
(or regression following treatment) 
models can be trained using time series 
data, such as longitudinal CT images11, to 
quantify the likelihood of developing severe 
pneumonia and acute myocardial injury, 
two leading causes of mortality12, and the 
cytokine release syndrome. A lesson from 
the COVID-19 pandemic has been that AI 
models motivated merely by the practical 
convenience of acquiring available labelled 
data has had limited clinical value.

The eradication stage and beyond. At the 
later eradication stage, constraints in data 
availability, development time and clinical 
resources would gradually be eased. The 
number of positive cases can drop quickly. 
Yet the need for a real-time, convenient, 
highly sensitive screening tool may persist 
to control transmission and judiciously 
recognize potential outbreaks.

The requirements for prognostic tools 
may shift to the identification of patients 
at risk of developing long-term health 
problems such as pulmonary fibrosis. 

Indeed cardiopulmonary, neurological13 and 
urological14 damage are all being recognized 
following COVID-19 infection. Given 
the potentially significant health service 
resource requirements that may result 
from long-term complications across large 
swathes of the population, the post-acute 
phase of COVID-19 will be a critical clinical 
research area, where AI models may play a 
central role.

Translating AI models
A typical AI translation workflow (Fig. 1)  
includes model development, model 
deployment and model adaptation (or 
model update). The COVID-19 AI research 
efforts have been concentrated primarily on 
new model development and the urgency 
brought about by the pandemic must 
not override the stringent requirements 
for clinical deployment15. Despite time 
pressures, rigorous validation is key to 
ensuring that safety and efficacy are tested; 
models must be validated before initial 
deployment and continuously monitored 
and adapted when implemented in local 
healthcare environments and as outcome 
likelihoods change due to evolving patient 
management strategies. Failing to adhere  
to such practice will impede translation  
and compromise the impact of AI on  
clinical needs.

Pre-deployment validation. Recent 
COVID-19 AI models have been criticized 
for a lack of transparency in development 
and a high likelihood of bias towards 
non-representative patient populations5. 
Limitations in data availability and quality 
can be the inherent cause of problems 
— for example, validation datasets with 
unrealistically high numbers of control 
cases acquired at the start of an outbreak or 
extremely low numbers of control cases at 
the peak of the outbreak. These models are 
unlikely to be directly useful in all stages of 
the pandemic due to potential bias.

Best practices in rigorous design and 
analysis of experiments should be adopted 
for AI model validation. In addition, model 
interpretation methods help to explain the 
reasoning of the predictions16,17, and may 
also indicate when certain data-driven 
methods are unlikely to generalize18. Model 
transparency could also be key to addressing 
regulatory and ethical issues19,20.

Local adaptation. It is not uncommon to 
find that an AI model trained with data 
from one healthcare centre, or even from 
multiple centres, does not generalize as well 
at a new centre. For example, the accuracy 
of chest X-ray detection, represented by 
the area under the receiver operating 

characteristic curve, was significantly 
reduced from 0.93 in a multi-centre internal 
validation to 0.82 on external validation 
data18. The practice of pre-deployment 
external validation reduces the risk of this 
overfitting problem based on the assumption 
that external data represent new local data. 
However, for each individual healthcare 
environment, local data are likely to have 
unique characteristics due to centre-specific 
acquisition features, equipment and 
protocols, all of which may have differing 
clinical constraints and requirements21. 
Moreover, temporal differences in data 
may increase, adversely affecting model 
accuracy, as the demographic and immunity 
landscape and clinical practice shift between 
different stages of the pandemic22. AI 
models therefore should have a continuous 
monitoring and adaptation strategy to these 
changing data to maintain their predictive 
accuracy.

Most proposed AI approaches for 
COVID-19 diagnosis/prognosis have so 
far been ‘locked’ algorithms that do not 
facilitate future adaptation. Model-adapting 
methods from other medical applications 
should be tested and integrated in these 
developments, such as transfer learning23 
and model retraining with a small local 
dataset. Recently, the US Food and Drug 
Administration has proposed a new 
approach to allow AI-based software to 
adapt and improve from real-world use24, 
paving the regulatory pathway to address 
these local adaptation needs.

Conclusion
The COVID-19 pandemic has presented 
numerous challenges to virtually every 
section of society in all geographic locations. 
AI can be an enabling technology to support 
urgent clinical needs in disease diagnosis 
and prognosis but is reliant on appropriate 
infrastructure, data management and 
translational pathways. New international 
cross-disciplinary collaborations, 
carefully identifying time-, course- and 
region-dependent clinical actions in 
response to COVID-19 can benefit from 
scientifically sound AI model development, 
validation and deployment to support local 
healthcare providers. Safe and responsible 
translation is the only way to realize 
the promise of AI models to contribute 
to combating the current coronavirus 
pandemic, its aftermath and potential 
future clustered outbreaks or comparable 
healthcare emergencies. ❐
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