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ABSTRACT 

 

Tumour mutational burden (TMB) is an important biomarker for predicting response to 

immunotherapy in cancer patients. Gold-standard measurement of TMB is performed 

using whole exome sequencing (WES), which is not available at most hospitals owing to 

its high cost, operational complexity, and long turnover times. We developed a machine 

learning algorithm, Image2TMB, which can predict TMB from readily available lung 

adenocarcinoma histopathological images. Image2TMB integrates the predictions of 

three deep learning models that operate at different resolution scales (5X, 10X, and 20X 

magnification) to determine if the TMB of a cancer is high or low. On a held-out set of 

patients, Image2TMB achieves an area under the precision recall curve of 0.92, an 

average precision of 0.89, and has the predictive power of a targeted sequencing panel 

of approximately 100 genes. This study demonstrates that it is possible to infer genomic 

features from histopathology images, and potentially opens avenues for exploring 

genotype-phenotype relationships. 
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FIGURES 

 
Figure 1.  

Overview of Image2TMB and dataset. a, Computational pipeline of Image2TMB. A 

given whole-slide image is divided into tiles with 5X, 10X, and 20X magnifications. 

Convolutional neural networks based on the Inception v3 architecture predict the 

probability of high TMB for each tile. The tile-level predictions are aggregated (Agg) into 

a single prediction at each magnification by removing predictions between 0.3 and 0.7 

and then taking the median. A random forest uses the aggregated results from the three 

magnifications to predict whether the TMB of the patient is above or below a given 

threshold. Scale bar indicates 1 mm. b, Histogram of the number of tiles per slide. c, 

Histogram of TMB across all available cases in the TCGA LUAD dataset. Line indicates 

the threshold used to define high and low TMB. d, Number of patients, slides, and tiles 

in the training, validation, and test datasets.  
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Figure 2.  

Performance of Image2TMB. a, Area under the receiver operator curves (AUC, left), 

area under the precision recall curves (middle), and box plots of the patient probability 

predictions of the Image2TMB and aggregated predictions at each magnification (right). 

b, Slide-level probability predictions of slides with tumour tissue versus slides with 

tissue uninvolved by tumour. c, The area under the ROC curve (AUC) and the average 

precision (AP) of the random forest is compared against a baseline model consisting of 

a logistic regressor (LogReg) over a panel of selected genes. d, Scatter plot of TMB 

regression. Confidence intervals are in Supplementary Table 1. All results are reported 

only for patients in the test dataset. 
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Figure 3.  

Stratification study of TMB prediction. Receiver operator curves, precision recall 

curves, and box plots of probability predictions in patient populations stratified by 

smoking history (smoker or nonsmoker) and whether a pathogenic mutation was 

detected in TP53, KRAS, and EGFR. WT is wild type. All non-smokers have TMBs 

below 206. All results are reported only for patients in the test dataset. 
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Figure 4.  

Spatial heterogeneity of predictions. For five random patients in the test set, we 

show a raw histopathological slide and heatmaps of the tile predictions at each 

magnification. The bottom slide is lung tissue that is uninvolved by tumour (from a 

patient with a tumour with TMB = 361), while the other slides show tissues involved by 

tumour. 
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INTRODUCTION 

Immune checkpoint inhibitors have induced significant and long-lasting responses in 

patients with non-small cell lung cancer (NSCLC)1-3. Pembrolizumab is FDA approved 

for first-line treatment of metastatic NSCLC in combination with chemotherapy, and as 

monotherapy in patients with high PD-L1 (programmed death-ligand 1) expression. 

Nivolumab is FDA approved for second-line treatment of metastatic NSCLC. Despite 

remarkable responses in many patients, early investigations have revealed that not all 

patients benefit from immunotherapies. While PD-L1 expression is a biomarker of 

response to immunotherapy, a significant number of patients with low PD-L1 expression 

and only half of patients with high PD-L1 expression benefit from pembrolizumab1. The 

search for novel predictors of response to immunotherapy is therefore essential. 

  

Tumour mutational burden (TMB) is emerging as an important biomarker for predicting 

response to immunotherapy4-6. TMB is a measure of the total number of 

nonsynonymous somatic mutations per megabase of the tumour genome coding area3. 

Tumours with high TMB are thought to express a greater diversity of neoantigens, 

resulting in increased immune recognition when immune checkpoint inhibitors release 

natural brakes on the immune system3. Several studies have shown that response to 

immunotherapy is associated with high TMB in patients with advanced solid 

tumours3,6,7. In addition, using high TMB as an indication for combination 

nivolumab/ipilimumab therapy has shown promise in early clinical trials8. Oncologists 

are therefore increasingly considering TMB in their decision to prescribe 

immunotherapy. Low cost, reliable, and fast assays for TMB are critically needed. 
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Whole exome sequencing (WES) is the gold-standard for measurement of TMB. While 

feasible in research settings in which the utility of TMB has been determined, WES is 

not currently used in the clinical oncology arena owing to prohibitively high costs and 

logistical constraints, including lengthy turnaround times9. However, clinicians now 

routinely use lower-cost next generation sequencing of targeted panels of genes. These 

targeted panels guide use of gene-directed therapies and entry into clinical trials, with a 

typical turnaround time of two to four weeks. Efforts are underway in clinical laboratories 

to repurpose these targeted sequencing assays to predict TMB that is determined when 

using WES, by using the default prediction technique of normalizing the number of 

mutations found by the covered sequencing area10. However, major hurdles for use of 

panel sequencing for TMB prediction include inadequate sampling owing to the small 

fraction of the exome sequenced, and the targeting of genes that are recurrently 

mutated in cancer, which introduces bias into the normalized TMB estimate10. For these 

reasons, larger panel sizes, at minimum 1-3 megabases, and a paired-normal sample 

are needed for robust normalized TMB estimates11. This requires adding sequencing 

space for many genes, including non-recurrently mutated genes for which clinical utility 

other than TMB may not be established. Larger panel sizes also increase cost and force 

important trade-offs between sequencing depth and number of patients per sequencing 

run. In most clinical settings, these logistical constraints potentially increase turnaround 

times beyond the usual two to four weeks for targeted panel sequencing. Development 

of an alternative simpler method to assess TMB would therefore be enormously 

beneficial. 
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While histopathologists have long recognized the association of certain cancer 

morphological phenotypes with mutations in individual genes, TMB has not been 

considered in that regard to date. We hypothesized that aggregated mutations across 

individual tumour cells result in global morphological changes that are detectable in 

routine histopathological images when using machine learning techniques. Machine 

learning employing handcrafted features on histopathological images12,13, has 

previously been used to differentiate subtypes14, and predict survival outcomes15. 

Recently, deep learning has been applied to biomedical images and promises more 

accurate and robust predictions16. Deep convolutional networks have been applied to 

histopathological images to detect tumours17,26, differentiate subtypes of NSCLC, and 

predict certain gene mutations in NSCLC18,19.  

 

Herein, we develop a deep learning method, named Image2TMB, for predicting TMB in 

lung adenocarcinoma (LUAD) by using digitized images of frozen hematoxylin and 

eosin (H&E)-stained histopathological slides from 499 patients in The Cancer Genome 

Atlas (TGCA) (https://www.cancer.gov/tcga). We focus on developing an approach for 

LUAD owing to the availability of both image and sequence data for a large number of 

patients with this malignancy as compared to other cancer types in the TGCA, and 

owing to the particular success of TMB as a biomarker in the treatment of lung 

cancer5,8. Image2TMB uses Inception v320, a convolutional neural network (CNN) that 

has achieved state-of-the-art performance on the ImageNet Large Scale Visual 

Recognition Challenge21. Image2TMB classifies patients as high TMB with good 
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performance, including within important subgroups of patients stratified by smoking 

status and whether they contain pathogenic variants for TP53 (tumour protein p53), 

EGFR (epidermal growth factor) and KRAS (Ki-ras2 Kirsten rat sarcoma viral oncogene 

homolog). We believe that with further development and clinical validation, our method 

offers a potential alternative assay to determine TMB with at-diagnosis turnaround times 

and very low cost. In addition, Image2TMB demonstrates that biological images contain 

features that represent nucleotide changes in the whole genome, and not just in a few 

genes. Our results indicate that histopathological images contain previously unexplored 

yet clinically useful features that are detectable using deep learning techniques.  

 

 

RESULTS 

 

An overview of Image2TMB and the dataset we used is outlined in Fig. 1, and the 

performance of Image2TMB is shown in Fig. 2. Image2TMB achieved good 

performance on an independent test set of patients, with an AUC of 0.92 and the 

average precision (AP) of 0.89 (Fig. 2a). Interestingly, the multi-scale model 

aggregating across the three magnifications performed substantially better than any of 

the scales on their own. The best single-scale performance was achieved by the 20X 

magnification, with an AUC of 0.81 and AP of 0.74; higher magnification was generally 

better for prediction than lower magnification. The improvements from multi-scale 

aggregation suggested that there was complementary information that the deep 

learning model can capture from the different levels of granularity in the images. As an 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 16, 2020. ; https://doi.org/10.1101/2020.06.15.153379doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.153379


 

11 

additional validation, we applied Image2TMB to slides of non-cancerous lung tissue 

biopsied from the test patients that were not used during the training of our algorithm 

(Fig. 2b). For patients with a TMB above 206, probability predictions were significantly 

lower for these slides as compared to the cancer slides. Probability predictions of non-

cancerous slides did not significantly differ between the patients above and below a 

TMB of 206, unlike predictions of the cancer slides. This provides evidence that 

Image2TMB was utilizing features unique to cancerous tissue to make predictions, and 

correctly predicted non-cancerous tissue having a low TMB even when the patient had 

a cancer with a high TMB. 

 

We chose the binary classification task of predicting TMB above and below a given 

threshold because TMB was being tested as an indication for immunotherapy. The 

same Image2TMB model could also be adapted to predict the TMB number itself as a 

regression task, and it achieved an R2 of 0.49 on the test patients (Fig. 2d). 

 

To place Image2TMB in context, we compared its performance with that of predicting 

TMB from targeted sequencing of gene panels, which is common in clinical practice9. 

We selected the gene panel with a greedy procedure: we started with the single gene 

whose gene-level TMB was the most highly correlated with the exome TMB, and then 

iteratively added genes that maximally improved the performance of the panel-based 

predictor. The panel predictor was a logistic regression that predicted the exome TMB 

from the TMB of the individual genes in the panel. In the clinical setting, targeted 

sequencing panel genes are not selected based on their TMB predictive values and 
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these clinical gene panels would likely perform worse than the panel results we report 

here for a similar number of genes. Fig. 2c shows the AUC and AP of the gene panel as 

its size increases. The performance of Image2TMB was comparable to panels of 100 

genes. The advantage of Image2TMB is that it can be immediately obtained from the 

readily available histopathological images, while targeted sequencing of 100 genes 

typically requires two to four weeks and costs several hundreds of dollars to achieve. 

 

Next, we examined the performance of Image2TMB on different subgroups of patients. 

We stratified the patients by their smoking status and whether they contained 

pathogenic variants for TP53, EGFR and KRAS, which are frequent in lung cancer. 

TP53 and KRAS mutations have been associated with high TMB, while EGFR 

mutations have been associated with low TMB22-24. Within every subgroup of patients, 

smokers and non-smokers, and wild type and carrier for variants in these three genes, 

Image2TMB consistently achieved high performance (Fig. 3). This further validated the 

robustness of the method when applied to different scenarios.  

 

To validate the robustness of Image2TMB, we trained it to predict other TMB thresholds 

of 135.5, 223, and 293.5, which correspond to the median, upper tertile, and upper 

quartile of TMBs of patients available in the TCGA LUAD dataset. We found that the 

AUC, AP, comparison to selected panels of genes, calibration, regression, performance 

on different patient subgroups, and Matthew’s Correlation Coefficient (MCC) were all 

comparable across all thresholds (Supplementary Fig. 1-3, Supplementary Table 2). 
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Image2TMB also provides a visualisation of the spatial distribution of mutational burden 

predictions. The tile-level prediction of Image2TMB can be used to generate heatmaps 

of the spatial TMB predictions at three different resolutions for each histopathological 

image (Fig. 4). Red areas of the heatmap indicated regions of the tissue predicted by 

the algorithm to have high TMB. Predicted regions of high TMB were consistent across 

the different magnifications, even though the models at different magnifications were 

trained independently. Image2TMB predicted regions of both high and low TMB within 

the bounds of tumours, suggesting the model may be detecting morphological 

correlates of TMB that are heterogeneous across the cancer. 

 

 

DISCUSSION 

 

TMB is emerging as an important correlate of response to immunotherapy and a 

possible indication for immunotherapy in NSCLC patients. Here, we demonstrate that 

TMB can be assessed in LUAD using digitized frozen-section histopathological images 

with similar classification ability to targeted sequencing of 100 genes covering 

approximately 300 kilobases. While thresholds for immunotherapy treatment indications 

have not been fully determined, our technique demonstrates good performance across 

a wide range of thresholds, showing robustness of Image2TMB to threshold choice. 

 

Targeted sequencing for prediction of TMB is currently constrained by high cost and 

lengthy turnaround times. In addition, the specific genes included in panels vary 
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between institutions, resulting in differing biases in estimation of TMB when using 

targeted next generation sequencing. In contrast, the method we present here is limited 

only by computational and slide digitization logistical and cost considerations. 

Compared to targeted sequencing that can take two to four weeks to accomplish, it 

takes approximately 2–2.5 min to scan histopathological slides in the same manner as 

was used for TCGA, and less than 1 min to run our entire pipeline on the 

histopathological slides of a single patient. Once scanned, the same histopathological 

slides used by pathologists for diagnosis potentially could be used to predict TMB.  

 

Currently, the generalisability of our method is limited by the training set. In clinical 

practice, patients with advanced stage malignancy are likely to have relatively small 

diagnostic biopsy specimens (rather than surgical resections), which may be from one 

of many different potential sites of involvement including lymph nodes, pleural fluid, liver 

and other locations. To enable practical applications of our approach, training and 

testing in these different scenarios is necessary. In addition, the TCGA frozen-section 

images used to train the convolutional neural network are highly enriched for cancer 

cells, which does not reflect real-world tissue samples acquired at the time of biopsy or 

surgery. Histopathologists, however, could manually define cancerous regions within 

slide images, and apply Image2TMB on only those regions of interest. Frozen-section 

slides can often be of poor quality, with tissue fold artefacts, varying staining, and 

differing section thickness. Despite this, our method shows good performance, 

suggesting that this method is robust to variance in specimen processing. Given these 

promising results using frozen-section slides, future studies using formalin-fixed 
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paraffin-embedded tissue slides, which are of superior quality, may be successful. As 

the same stains and similar staining techniques are used across institutions, we believe 

that with further development and a larger training set, the method presented here could 

be generalizable and standardised.  

 

Further steps are needed to validate Image2TMB in a clinical setting. Further clinical 

validation would include comprehensive comparison to alternatives with different model 

architectures and hyperparameters, evaluation of the response of Image2TMB to 

heterogeneity in LUAD images and genomes, cohort studies to best choose the TMB 

threshold, and ultimately, clinical trials to study immunotherapy outcomes alongside 

such an approach. 

 

Our method shows performance in classification similar to that of large targeted 

sequencing panels. However, targeted sequencing panels have superior performance in 

quantitative prediction, with panels covering greater than one megabase demonstrating 

an R2 greater than 95%10. Reasons for this large discrepancy in classification and 

regression performance can likely be attributed to the fact that our deep learning models 

were trained only to determine if TMB was above or below a threshold, not to predict the 

exact TMB value. Targeted sequencing panels display poor quantitative predictive 

performance and increased variance in specimens with low TMB, as gene panels only 

sample up to a hundred out of 19,000 to 20,000 genes in the human genome10. 

Because our method does not rely on gene sampling, a notable advantage of our 

method is that prediction error is likely to be unaffected by low TMB levels. This is 
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consistent with our results, which show low variance in prediction at low TMB levels 

compared to targeted sequencing panels (Fig 2d). 

 

Our work finds that TMB, a clinically relevant measurement that conventionally requires 

additional and laborious testing, can be predicted from the H&E stained 

histopathological images in the TCGA LUAD dataset. Additionally, in contrast to other 

diagnostic tools, such as exome sequencing and panels, Image2TMB predicts the TMB 

for each region of the image. This may represent heterogeneity of histologic features 

associated with high TMB, or alternatively could represent heterogeneity in TMB itself. 

In contrast to current approaches for bulk measurement of TMB, Image2TMB shows 

that deep learning could assist in the study of the spatial heterogeneity of tumours. 

Image2TMB is also an initial step in applying deep learning to connect histopathological 

images with a whole-genome-level features, which would aid in the study of 

relationships between cancer genotypes and phenotypes. Image2TMB is therefore a 

step towards enhancing the usefulness of the vast quantities of readily available 

histopathological images, to help screen and prioritise patient samples and subsequent 

treatments. 
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METHODS 

 

Data processing  

We used whole-slide histopathological images and whole exome sequences from The 

Cancer Genome Atlas (TCGA), which is a collaboration between the National Cancer 

Institute (NCI) and the National Human Genome Research Institute (NHGRI). We used 

all available LUAD cases for this study, consisting of 499 patients associated with 760 

H&E stained whole-slide images of frozen tissue sections. Our computational approach, 

Image2TMB, and the TCGA dataset are summarized in Fig. 1. Because the whole-slide 

images were many thousands of pixels in each dimension, they were too large to be 

used as direct input to a neural network. We instead divided the whole-slide images into 

5X, 10X, and 20X magnification tiles that were all 512 × 512 pixels. This resulted in tens 

to thousands of tiles per slide (Fig. 1c). The whole-slide images were randomly split into 

three sets: training, validation and testing datasets, with 349, 75, and 75 patients, 

respectively (Fig. 1b). Each patient and their associated slides were assigned to only 

one of these train, validation, and test datasets, ensuring that there was no overlap 

between the datasets. We used the training and validation datasets for all of the 

development and training of our computational models, while the test dataset was used 

only to report final results. Crucially, this guarantees that our model was never trained 

and evaluated on the same tiles, slides, or patients. We took the TMB of each patient to 
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be the total number of nonsynonymous mutations in the whole exome sequence of the 

patient’s cancer. Mutations were identified with the VarScan2 variant caller25. 

 

Deep learning on histopathological images 

Image2TMB first made TMB predictions separately for every tile across the three 

magnifications. We used deep neural networks based on the Inception v3 architecture 

to predict the probability of high TMB for each tile. A separate Inception v3 model was 

trained for each magnification level. Inception v3 is a CNN that uses inception modules 

consisting of several convolution operations performed in parallel with different kernel 

sizes and one max pooling layer. We combined five convolution nodes with two max 

pooling operations and followed this by eleven stacks of inception modules. The last 

component of the architecture was a fully connected layer with a softmax operation. 

This produced two normalized probability predictions corresponding to the probability 

the tile was from a patient who has a TMB above or below a particular TMB threshold. 

We focused on a TMB of 206 as the target threshold because this threshold 

approximates 10 mutations per megabase when using genes found in the 

FoundationOne CDX panel, and has been used in clinical trials previously8. In our 

dataset, 38% of patients had a TMB above 206, making this a relatively balanced 

prediction task. To validate the robustness of our model, we also trained the same 

architecture to predict other TMB thresholds of 135.5, 223, and 293.5, which correspond 

to the median, upper tertile, and upper quartile of TMBs of patients available in the 

TCGA LUAD dataset (Supplementary Fig. 1-3). We initialized our network parameters 

with pre-trained weights from the ImageNet competition. We then trained all model 
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parameters using backpropagation on the tiles in the training dataset. The loss function 

was defined as the cross entropy between predicted probability and the true class 

labels.  

 

Patient-level prediction 

Image2TMB then aggregated the tile probabilities to produce a single probability per 

patient per magnification. This was accomplished by removing low confidence tile 

predictions (probabilities between 0.3 and 0.7) and then taking the median of all 

predictions for a given patient and magnification. This produced three probabilities per 

patient each corresponding to a different magnification. A random forest (RF) classifier 

was then trained on the validation dataset to predict from these three probabilities if a 

patient’s TMB was above the threshold. This prediction by the RF was the final, patient-

level prediction of our approach. The probability that a patient had high TMB (i.e. above 

the threshold) was taken to be the proportion of votes of the trees in the ensemble. RFs 

were separately trained for each threshold using only the validation dataset. It is this 

integration across magnifications to produce a single prediction that makes our 

approach multiscale.  

 

Performance evaluation 

After training, the performance was evaluated and reported using the test dataset. We 

derived receiver operator and precision recall statistics at several TMB thresholds of the 

patient-level prediction and the predictions of all Inception v3 models. We estimated 

confidence intervals by 10,000 iterations of the bootstrap method. Patient-level 
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accuracy was compared against a baseline model consisting of logistic regression over 

a limited panel of genes that predicts if a patient has a TMB over a particular threshold. 

The logistic regressor was trained on patient vector with each element corresponding to 

a gene, and with a value of one if the gene has a nonsynonymous mutation, and zero 

otherwise. The logistic regressor was fit to the training dataset and we examined its 

area under the curve and average precision on the test dataset. We increased the 

number of genes in the panel by adding the gene that most increased classification 

accuracy on the validation dataset. For patient subset analysis, smoking status was 

determined using information provided by TCGA. Pathogenicity of mutations in TP53, 

KRAS, and EGFR was determined by review of current literature and annotation 

databases, including OncoKB and My Cancer Genome. 

 

Hyperparameter and model selection 

All hyperparameter and model selection was conducted based on performance on the 

validation dataset. This included the selection of the multiscale approach, use of 

Inception v3 model, use of the RF, optimization parameters, and the 0.3 and 0.7 

thresholds for filtering the tile prediction. The test dataset was used only after our 

approach was fully developed, and to report all results presented in this research. No 

modifications were made to our approach after evaluation with the test dataset. 

Crucially, this ensured we did not violate the assumption of independence between the 

datasets used for developing and evaluating our approach. 
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