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Abstract

Identifying the molecular mechanisms that control differential gene expression (DE) is a major 

goal of basic and disease biology. We develop a systems biology model to predict DE, and mine 

the biological basis of the factors that influence predicted gene expression, in order to understand 

how it may be generated. This model, called DEcode, utilizes deep learning to predict DE based 

on genome-wide binding sites on RNAs and promoters. Ranking predictive factors from the 

DEcode indicates that clinically relevant expression changes between thousands of individuals can 

be predicted mainly through the joint action of post-transcriptional RNA-binding factors. We also 

show the broad potential applications of DEcode to generate biological insights, by predicting DE 

between tissues, differential transcript-usage, and drivers of aging throughout the human lifespan, 

of gene coexpression relationships on a genome-wide scale, and of frequently DE genes across 

diverse conditions. Researchers can freely utilize DEcode to identify influential molecular 

mechanisms for any human expression data - www.differentialexpression.org.

Introduction

While all human cells share DNA sequences, gene regulation differs among cell types and 

developmental stages, and in response to environmental cues and stimuli. Accordingly, when 

gene expression is not properly regulated, cellular homeostasis can be perturbed, often 

affecting cell function and leading to disease1. These distinctions between cell states are 

observed as differential expression (DE) of gene transcripts. DE have been catalogued for 

tens of thousands of gene expression datasets, in the context of distinctions between species, 

organs, and conditions. Despite the important and pervasive nature of DE, it has been 

challenging to shift from these observations towards a coherent understanding of the 

underlying generative processes that would essentially decode DE– a transition which is 
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essential for progress in basic and disease biology. We address this gap by exploiting novel 

computational and systems biology approaches to develop a predictive model of DE based 

on genome-wide regulatory interaction data.

Diverse molecular interactions have been shown to generate DE, and jointly regulate gene 

expression at the transcriptional and post-transcriptional levels. Major classes of gene 

regulatory interactions have been catalogued at the genomic scale, including transcription 

factor (TF)-promoter interactions2, protein-RNA interactions3, RNA-RNA interactions4, 

chromatin interactions5, and epigenetic modifications on DNAs6, histones, and RNAs7. 

Statistical models of gene expression can help fulfil the purpose of these resources in 

describing the origins of gene regulation and DE1. However, such raw data resources have 

outpaced model development, likely due to the challenge of uniting diverse molecular data 

into a single accurate model.

Among many possible statistical approaches to predicting DE, deep learning (DL) blends 

diverse data sources in a way that approximates the convergence of regulatory interactions. 

Indeed, DL has been applied to genomic research8, 9 including RNA splicing10, genomic 

variant functions11, and RNA/DNA binding12. However, accurate prediction is only one 

component of understanding DE; additional genomic and systems biology analysis are 

helpful in understanding how predictions are fuelled by existing molecular concepts, 

mechanisms, and classes.

To decode the basis of DE in terms of molecular regulatory interactions, we first learn to 

predict it with a high degree of accuracy, using a DL model we call “DEcode”. This model 

combines several types of gene regulatory interactions and allows us to prioritize the main 

systems and molecules that influence DE on a tissue-specific basis. We further establish 

likely molecular mechanisms for this gene regulation and validate the influence of the 

predicted strongest regulators. In parallel, we predict the origin of person-to-person DE, 

which is the major component of experimental and clinical studies. These particularly 

challenging predictions are validated on a genome-wide scale, as we identify key drivers of 

coexpression, and also drivers for phenotype-associated DE. Utilizing diverse genomic 

datasets, we identify a complex, yet strikingly consistent set of principles that control DE. 

DEcode can be applied to the majority of current and future gene expression data, to 

accelerate basic and disease biology, by identifying the origins of DE in each experiment.

Results

Predicting differential expression across human tissues

The overarching goal of this study is to understand the major regulatory principles of DE 

signature by predicting gene expression as a function of molecular interactions. These 

results should be tissue-specific and ideally have sufficient accuracy to predict the relatively 

small expression changes observed between individual humans. To accomplish this, we 

utilized deep convolutional neural networks in a system called DEcode that can predict inter-

tissue variations and inter-person variations in gene expression from promoter and mRNA 

features (Figure 1). The promoter features included: the genomic locations of 

experimentally-determined binding sites of 762 TFs13 and the mRNA features encompassed 
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the locations of experimentally-determined binding sites of 171 RNA-binding proteins 

(RBPs)14 and predicted binding sites of 213 miRNAs15 (Supplementary Table 1). First, we 

applied the DEcode framework to tissue-specific human transcriptomes of 27,428 genes and 

79,647 transcripts measured in the GTEx consortium16 to predict log-fold changes across 53 

tissues against the median expression of all tissues, as well as the median expression of all 

tissues with a multi-task learning architecture. The predicted median expression levels 

showed high consistency with the actual observations for both gene-level (Spearman's rho = 

0.81) and transcript-level (Spearman's rho = 0.62) (Figure 2a). Moreover, the model 

predicted the differential transcript usage within the same gene (Spearman's rho = 0.44). The 

DEcode models also predicted the DE profiles across 53 tissues for both gene (mean 

Spearman's rho = 0.34), transcript (mean Spearman's rho = 0.32), and transcript-usage levels 

(mean Spearman's rho = 0.16) (Figure 2b). The predicted gene expression for the testing 

genes was indeed tissue-specific, as they showed less correspondence with the expression 

profiles from alternate tissues (Figure 2c).

To provide context for the statistical benefit of the use of systems biology data for predicting 

DE, we contrast it to a raw-sequence-based method called ExPecto11, as it was designed to 

predict GTEx gene expression from epigenetic states, estimated from promoter sequences 

via DL. In this comparison, DEcode showed an average of 6.1% improvement in root mean 

square error over ExPecto (Figure 2d) which translates into an average correlation 

coefficient with actual gene expression of 0.42 - a 50% increase over 0.28 from ExPecto 

(Supplementary Figure 1).

Regulators for differential expression across tissues

Beyond the predictive performance of DEcode, we utilize the model to help define the 

biological processes regulating DE. Many studies have demonstrated that TFs-promoter 

interactions are critical determinants of transcriptional activity of promoters and thereby 

define gene expression levels2. However, it is unclear to what extent RNA features, which 

we define as each RNA’s binding sites of RBPs and miRNAs, contribute to gene expression 

levels. To answer this question, we re-trained the DEcode model, randomizing either RNA 

features, promoter features, or both. We found that RNA features alone explained the gene-

level log-fold changes less accurately than the model with all features, but as well as the 

model trained with promoter features (Figure 3a). Interestingly, the RNA-based model 

performed better than the promoter-based model for the prediction of the transcript 

expression and differential transcript-usage.

To further quantify the importance of each regulator weighted in the DEcode models, we 

calculated DeepLIFT scores, which are a measure of the additive contribution of its binding 

site to each prediction17, 18, for each task of predicting fold-change (Supplementary Table 

2). Based on the DeepLIFT scores, TFs and RBPs showed comparable effects on the gene-

level prediction (Figure 3b). However, at the transcript and transcript-usage-level, RBPs 

tended to influence the prediction more than TFs. We also found biological processes 

enriched for the influential predictors ranked by the DeepLIFT scores that are coherent with 

known gene regulation (Figure 3c and Supplementary Table 3). For instance, the predictors 
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for gene and transcript expression were associated with histone modification, whereas 

splicing-related factors were only enriched for predictors of transcript and transcript-usage.

We also examined critical predictors for each of 53 tissues (Figure 3d). The DeepLIFT 

scores across tissues recapitulated the contribution of binding sites of known master 

regulators in each tissue such as REST for brain tissues19, SPI1 and RUNX1 for immune-

related tissues20, TP63 and KLF4 for skin21, HNF4A for liver22, and PPARG for adipose-

related tissues23, which suggested the differences in predictive contributions of binding sites 

of a given regulator reflect the differential activities of regulators across tissues. We 

hypothesized that the differential activities of a regulator could be in part explained by the 

relative abundance of a regulator across tissues. Based on this hypothesis, we contrasted 

DeepLIFT scores for the binding sites of each regulatory factor and its expression levels 

across tissues. We indeed found that 99 RBPs and 410 TFs showed significant correlations 

between DeepLIFT scores of their binding sites and their expression levels (FDR < 5%) 

(Supplementary Figure 2). These relationships were not based on differences in expression 

profiles between brain and non-brain tissues, as the relationships remained the same without 

brain tissues (Supplementary Figure 3). The sign of the correlation possibly reflects whether 

the binding of a regulator to RNA increased or decreased the abundance of the RNA. For 

instance, the model suggested that PPARG and PTBP1 are positive regulators of gene 

expression as DeepLIFT scores of PPARG or PTBP1 binding sites were higher in the tissues 

expressing PPARG or PTBP1 at higher levels (Figure 3e), which are consistent with their 

known functions23,24. Conversely, the expression levels of REST, a transcriptional 

repressor19, or METTL14, an RNA methyltransferase destabilizing RNAs25, showed inverse 

correlations with their DeepLIFT scores as expected. These results indicated that the 

DEcode model is interpretable and reflects biological mechanisms for controlling RNA 

abundance.

We hypothesized that if key predictors in DEcode models are truly impactful transcriptome 

regulators, then defects in such regulators would have significant impacts on cellular 

phenotypes and thereby lead to disease. To examine this hypothesis, first, we obtained genes 

whose loss-of-function (LoF) mutations are depleted through the process of natural 

selection, from the Exome Aggregation Consortium (ExAC)26 and thus that are considered 

to play important roles in individual fitness. We found that these LoF-mutation-intolerant 

regulators had greater DeepLIFT score magnitudes for the prediction of the fold-change 

across 53 tissues (Figure 3f and Supplementary Table 4). In particular, these associations are 

based on genes that are intolerant to LoF mutations only in a single allele (Supplementary 

Figure 4). Further, we confirmed that mutations in the predicted key regulators tend to cause 

genetic disorders based on the assessment with the Online Mendelian Inheritance in Man 

(OMIM). Interestingly, their roles on fitness are likely preserved across species, as 

dysfunctions of the predicted key regulators also lead pre-weaning lethality in mice. 

Moreover, we found the loss-of-function of the predicted key regulators of the transcriptome 

could also impair cellular viability. Intriguingly, the key predictors are more likely to be 

hubs in protein-protein interaction networks, which is the same property observed with 

disease-causing genes27. These results were robust, as they were also supported by the 

DeepLIFT scores for the transcript and transcript-usage prediction (Supplementary Figure 

5). Together, the results indicated that the key predictors of transcriptome indeed play 
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critical roles in maintaining vital cellular and body functions. Thus the DEcode model could 

be used to prioritize disease-causing genes, and this capability points toward the broader 

validity of predicted key regulators.

Predicting differential expression across individuals

Next, we asked whether the same input of promoter and RNA features could also predict 

relative expression differences across individuals within the same tissue. We extended the 

DEcode framework to model DE across individuals for 14 representative tissues with a 

sample size greater than 100 in GTEx. This was challenging, as the average variance in gene 

expression within tissues was less than 25% of that between tissues (Supplementary Figure 

6).

The person-specific models successfully predicted fold changes across individuals with a 

mean Spearman’s correlation of ~0.28 (Figure 4a). The performance was further increased 

to 0.34 when we filtered out the models that worked poorly for the validation data 

(Supplementary Figure 7). The models were indeed person-specific, as they did not predict 

gene expression profiles of unrelated individuals. To examine if the model captured the 

person-specific expression shared across tissues28, we compared gene expression between 

tissues within the same individuals and between different individuals. The predicted 

expression showed better concordance between tissues from the same individuals, as is the 

case with actual expression data, which indicated the model captured the person-specific 

regulatory mechanisms, even though we did not use any direct information that could 

identify individuals (Figure 4b).

Next, to gauge the contribution of RNA and promoter features to the person-specific 

expression profiles, we re-trained models with randomized RNA features, promoter features, 

or both. The RNA-feature-based model performed on average 85% as well as the model 

trained with all features. This corresponded to an average 173% performance gain, 

compared to the promoter-feature-based model, which suggested that the post-transcriptional 

controls are the major determinants of the DE across individuals (Figure 4c). The model also 

allowed us to investigate the person-specific activities of regulators by calculating DeepLIFT 

scores (Figure 4d). At least 100 of regulators out of 933 regulators in each tissue showed a 

significant correlation between their DeepLIFT scores and expression levels across 

individuals (Extended Data Figure 1a). The signs of these correlations were consistent 

between tissues, and consistent with those of the cross-tissue model (Extended Data Figure 

1bc). This suggested that DE between individuals and between tissues can be modelled by 

the universal relationships between regulators and their targets.

To examine whether specific genes contributed to the per-person accuracy of the predicted 

gene expression, we also assessed its accuracy on a per-gene basis. The predicted expression 

of a majority of the testing genes (78% on average) showed significant positive correlations 

with the actual gene expression (FDR<5%). To assess whether systems biology data 

improved per-gene performance over a raw-sequence-based method, we compared DEcode 

with PrediXcan29, which predicts person-specific gene expression from genetic variations in 

cis-regulatory regions of genes. The PrediXcan model predicted gene expression levels of 

only about 11% of the testing genes at FDR less than 5%, which was far less than that of 

Tasaki et al. Page 5

Nat Mach Intell. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DEcode (Figure 4e). This suggested that the differential activity of transcriptional and post-

transcriptional regulators has a larger effect on gene expression than genetic variations in 

cis-regulatory regions.

The genes that DEcode could predict with the greatest accuracy were similar across tissues 

(Extended Data Figure 1d). This suggested that the predictability of gene expression is 

defined by gene characteristics rather than a target tissue. We, therefore, explored gene 

characteristics that were associated with the per-gene accuracy of the predicted expression. 

We found that the models showed higher performance for the genes that are registered in 

multiple gene annotation databases than those found only in the GENCODE database 

(Extended Data Figure 1e). Since the GENCODE-specific genes are novel or putative and 

thus their annotations might not be well established, it is reasonable that the performance of 

the model for those genes was lower than other well-established genes. Beyond the 

annotation reliability, we found that the number of known binding features for each gene had 

a larger effect on the predictability (Extended Data Figure 1f). This suggested that the more 

information on RNA and promoter interactions is available, the more the prediction becomes 

accurate. Interestingly, the number of binding features in RNAs was a stronger determinant 

of the predictive accuracy than that in promoter regions (Figure 4f). RNA-protein 

interactions are largely missing as global RNA-binding profiles are available for only about 

10% of known RBPs30. Thus, the incompleteness of RNA features is likely to be an origin 

of lower accuracy for a portion of genes.

Generative process of trait-related expression changes

Next, we asked whether the person-specific expression profiles predicted by the DEcode 

models also retained trait-associated DE changes. For this, we conducted DE analysis 

against the donor’s age and sex using the predicted gene expression data. Notably, test 

statistics of the predicted data showed significant positive correlations with those of the 

actual data in all tissues for both traits (Figure 5a). Especially, age- and sex-specific 

expression changes were well preserved in the predicted data in lung (Spearman's rho = 

0.59, P < 2.2e-16) and hippocampus (Spearman's rho = 0.47, P < 2.2e-16), respectively. The 

predicted associations were tissue-specific as they were the closest to those of corresponding 

tissues in 9 and 11 out of 14 tissues for age and sex, respectively (Figure 5b). We also 

explored the regulators for the age- and sex-related gene expression changes by associating 

regulator's DeepLIFT scores with age and sex. We found that many regulators, for instance, 

717 in the tibial artery and 904 in the breast mammary tissue, showed age- and sex-

dependent changes at FDR 5%, respectively (Figure 5c and Supplementary Table 5), which 

showed the capability of DEcode to associate transcriptional regulators with phenotypes. 

Although there were more TFs associated with phenotypes than RBPs and miRNAs, overall 

collective impacts of RNA features on the generative process of DEs for age and sex were 

greater than those of promoter features in most tissues (Supplementary Figure 8).

Regulatory basis of gene co-expression relationships

Co-expression analysis is a frequent component of transcriptome studies as gene-to-gene co-

expression relationships are regarded as functional units of the transcriptional system31. 

Therefore, we examined if the DEcode models could detect known gene co-expression 
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relationships. These tests were both a potential validation of the person-specific DEcode 

predictions, and a means to explore the biological basis of co-expression. We found that the 

gene co-expression relationships in the predicted gene expression profiles separated gene 

pairs with positive and negative correlation in the actual gene expression data in each tissue 

(Figure 6a). Furthermore, the predicted gene expression profiles also detected inter-tissue 

co-expression relationships (Figure 6b). The accuracy of these results motivated us to 

investigate key factors driving co-expression, via the DEcode predictions. RNA features 

alone could explain co-expression relationships better than promoter features in most tissues 

(Extended Data Figure 2), which again suggested the significant contribution of RNA 

features to person-specific transcriptomes.

To further assess the capability of DEcode to decipher the mechanisms leading a specific co-

expression relationship, we focused on the co-expression of LAPTM5 and CD53, which 

were robustly co-expressed both in the simulated expression data and the actual data in all 

tissues except whole-blood. Using the trained model, we simulated the consequences of 

disruptions of promoter and mRNA features. The co-expression relationship was weakened 

when the features near the transcriptional start site (TSS) and 1,000 bp downstream of the 

TSS in LAPTM5 or near TSS and 500 bp upstream of TSS in CD53 were removed (Figure 

6c). These observed effects were reasonable as many TFs bind to these regions. We further 

examined the specific regulators for the co-expression relationships by simulating knockout 

(KO) effects of regulators. The in-silico KO experiments revealed that immune-related TFs 

such as SPI1 and TBX21 potentiated the co-expression relationships consistently across 

multiple tissues (Figure 6d). To validate if these regulators indeed induced the co-expression 

relationships, we conducted a mediation analysis that is an orthogonal computational 

method to infer the effect of regulators on downstream targets. The set of the 10 regulators 

together mediated up to 94% of covariance, which was significantly greater than the same 

number of randomly picked regulators (Figure 6e).

Molecular regulations for frequently DE genes

A recent meta-analysis of over 600 human transcriptome data revealed that some genes are 

more likely to be detected as DE genes than others in diverse case-control studies32. From 

this observation, Megan et al. formulated the “DE prior”, a global ranking of gene’s generic 

likelihood of being DE. The genes with high DE prior rank were significantly more enriched 

with frequently DE genes, as compared to other functional gene sets, such as those 

contained in gene ontology. However, the regulatory-origin behind the ranking of these 

highly responsive genes has yet to be uncovered. Therefore, we used DEcode to examine 

whether the DE prior rank could be generated by gene regulatory interactions, and to 

identify critical regulators for frequently DE genes. The ability of DEcode to predict global 

DE prior ranks was highly significant (P < 2.2e-16) and practically relevant (Spearman's rho 

= 0.53) (Extended Data Figure 3a). Furthermore, DEcode was able to identify genes with 

high (90th percentile and greater) DE prior probability (AUCROC = 0.81, 95% confidence 

interval = 0.78 - 0.84) (Extended Data Figure 3b). Re-training the model with randomized 

inputs indicated that TF-promoter interactions were the major factors explaining the DE 

prior rank. To further characterize TFs that contributed to the prediction, we defined critical 

TFs based on the DeepLIFT score (Supplementary Table 6) and performed pathway analysis 
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on them. We found that critical TFs were enriched for cancer or inflammatory-related 

pathways (FDR<5%) such as pathways in cancer (Fold = 3.1, P = 4.2e-5), JAK-STAT 

signalling pathway (Fold = 6.8, P = 4.8e-5), chemokine signalling pathway (Fold = 7.3, P = 

1.4e-4), and acute myeloid leukemia (Fold = 4.5, P = 3.6e-4) (Supplementary Table 7). This 

result is consistent with the disease-related data context for DE prior, which is 62% cancer-

related and 23% inflammatory-related. Supported by the ability to predict DE prior ranks, 

and by the consistency of these results, this application of DEcode illustrates how it goes 

beyond DE gene lists, to uncover major key drivers for generating DE.

Discussion

We introduced the DEcode framework, which integrates a wealth of genomic data into a 

unified computational model of transcriptome regulations to predict multiple transcriptional 

effects in tissue- and person-specific transcriptomes. Systems biology analysis of these 

results provided biological insights regarding the regulatory mechanisms of transcriptome. 

For instance, it suggested that significant contributions of post-transcriptional regulators for 

explaining tissue-specific DE, differential transcript-usage, and even individual differences 

in transcriptomes and thus post-transcriptional controls might be key mechanisms to fine-

tune the transcriptome in response to environmental and genetic factors.

We designed the DEcode framework as multi-task learning that predicts transcriptomes of 

multiple samples simultaneously with shared feature extraction layers as opposed to single-

task learning that builds a prediction model specific to each sample. The multi-task design 

not only reduced learning time, as feature extraction layers are optimized for all samples 

jointly and training data is generated only once, but also improved prediction accuracy for 

both tissue-specific expression and person-specific expression (Supplementary Figure 9). 

This improvement is likely because multi-task learning was able to extract RNA and 

promoter features that were generalizable across samples, which prevented overfitting to a 

specific sample. In addition, the multi-task design would benefit in comparing differential 

contributions of key predictive features between samples, as it shares the same feature 

extraction processes, which is a critical step to lead a biologically meaningful interpretation 

of the DEcode model.

Transcriptome analysis often identifies differentially expressed genes and then assesses the 

enrichment of functional genes such as TF-targets one by one. The person-specific DEcode 

model offers several comparative advantages over this traditional approach. First, DEcode 

can take into account the effects of multiple regulators simultaneously as opposed to one at a 

time. Second, DEcode can estimate the person-specific regulator’s activities that can be used 

to identify regulators associated with a phenotype of interest. Third, DEcode can simulate 

the consequence of KO perturbations for each gene. This step can reduce the number of 

candidate key drivers of gene expression changes by an order of magnitude or more, and 

facilitates the design of follow-up experiments. Indeed, key predictors nominated based on 

DEcode showed significant and robust overlaps with various diseases-causing/related gene 

sets. Therefore, DEcode can extract more actionable information from transcriptome data, 

which will benefit a variety of transcriptome studies.
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Looking toward even more expansive applications, the DEcode framework has the flexibility 

to incorporate other types of genomic information such as raw sequences, DNA methylation, 

histone marks, and RNA modifications, and also can be extended to other organisms. Thus, 

DEcode framework provides a direct bridge between accumulating genomic big data and 

individual transcriptome studies, allowing researchers to predict molecules that control DE 

associated with any condition or disease.

Methods

Transcriptome data processing

To prepare gene expression data used for the model training, we downloaded the median 

gene TPM (transcripts per million) from 53 human tissues from the v7 release of GTEx 

portal (https://gtexportal.org). We kept 27,428 genes expressed greater than two TPM in at 

least one tissue and log2-transformed TPM with the addition of 0.25 to avoid a negative 

infinity. Then, we calculated the median log2-TPM across 53 tissues and log2-fold-changes 

relative to the median of all tissues. The processed gene-level expression data comprised 

27,428 genes with 54 columns including relative fold-changes for 53 tissues and the median 

log2-TPM across 53 tissues. To compile transcript-level data, we downloaded the individual-

level transcript TPM from the GTEx portal and computed the median transcript TPM by 

tissue. We processed the transcript data in the same way we did for the gene-level data. The 

resulted transcript-level data included 79,647 transcripts that corresponded to 23,813 genes. 

For building person-specific DEcode models, we obtained the gene-level TPM for each 

individual in 14 tissues from the GTEx portal. We filtered out lowly-expressed genes in each 

tissue and kept genes expressed greater than one TPM in at least 50% of samples. Then, we 

log2-transformed TPM with the addition of 0.25 and then quantile normalized the log2-

TPM. Finally, we removed the effects of technical covariates including rRNA rate, intronic 

rate, and RIN number via linear regression for each gene followed by quantile 

normalization.

Promoter and RNA binding features.

To generate RNA and DNA feature matrices, we downloaded genomic locations of binding 

sites of 171 RBPs from POSTAR214 as of Oct 2018, 218 miRNAs from TargetScan Release 

7.215, and 826 TFs from GTRD13 as of Oct 2018. Then, we mapped the binding sites of 

RBPs, miRNAs, and TFs to promoters and exons defined in the GTF file provided by the 

GTEx portal. A promoter region of each gene was defined as the region from 2,000 bp 

upstream of the TSS to 1,000bp downstream of the TSS. We only used interactors that bind 

to promoters or RNA-coding regions of at least 30 genes, or transcripts as the predictors in 

each model. To reduce the size of the input, an RNA-coding region and a promoter region of 

each gene was binned with 100 bp intervals and the number of bases bound to each RBP, 

miRNA, or TF was counted in each interval. This step generated RNA and DNA feature 

matrices for each gene described in Figure 1.

Training tissue-specific models

For training the gene-level model of tissue-specific expression, we reserved all 2,705 genes 

coded on chromosome 1 as the testing data and the rest of the genes was randomly split into 
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training data (22,251 genes) and validation data (2,472 genes). In the case of the transcript 

model, we used all 7,631 transcripts coded on chromosome 1 as the testing data and the rest 

of the transcripts was randomly split into training data (64,978 transcripts) and validation 

data (7,038 transcripts). This cross-chromosome train-test split prevents information leaking 

from intra-chromosomal interactions and potential overlaps of regulatory regions. The 

individual binding features (TF, RBP, and miRNA) were normalized by their maximum 

value across genes. The relative fold-changes for 53 tissues were scaled together to set the 

standard deviation as one and the median log2-TPM was separately scaled to set the 

standard deviation as one. These steps were conducted for the training data first and then the 

same scaling factors were used for the validation and the testing data to avoid information 

leaking from those data. We constructed and trained DL models using Keras (version 2.1.3) 

with a TensorFlow (version 1.4.1) backend. Hyper-parameters were optimized using 

hyperopt (version 0.2)33 based on the mean squared error against the validation data. The 

detailed structure of the model was described in Supplementary Figure 10. The training was 

done using mini-batches of 128 training examples with a learning rate of 0.001 for Adam 

optimizer. The number of maximum training epochs was set to 100 with early-stopping of 

10 based on validation loss. This training cycle was repeated 10 times and the best model for 

the validation data was selected as the final model (Supplementary Figure 11). All models 

were trained using TITAN X Pascal graphics processing units (Nvidia).

Comparison of DEcode with ExPecto

To perform a fair comparison between DEcode and ExPecto11, we used 18,550 genes that 

were commonly included in both studies and trained models with the same set of genes for 

training and evaluation. Since ExPecto model was originally built using genes on 

chromosome 8 as the testing data, we followed the same procedure as we reserved all 714 

genes coded on chromosome 8 as the testing data and the rest of the genes was randomly 

split into training data (16,052 genes) and validation data (1784 genes). The epigenetic states 

estimated by ExPecto were downloaded from the ExPecto repository (https://github.com/

FunctionLab/ExPecto) as of Nov 2019. Given the epigenetic states, we built a prediction 

model for tissue-specific gene expression for each tissue via XGBoost based on the training 

script downloaded from the ExPecto repository. We modified the original script so that the 

early stopping of the model optimization was decided based on the performance on the 

validation data instead of the testing data. This modification prevented the overfitting of the 

model to the testing data. We used the same hyper-parameters for XGBoost as in the script. 

We built 10 models for each method using the same genes for training, validation, and 

testing to predict gene expression in the 53 tissues.

DeepLIFT score calculation

To evaluate the importance of input features to the prediction, we calculated DeepLIFT 

(Deep SHAP) scores17 using DeepExplainer implementation (version 0.27.0)18. The 

DeepLIFT method estimates the contribution of each input compared to a reference input in 

a trained DL model. To compute the contribution of the presence of a binding site, we used a 

reference that does not have any binding sites in both promoters and RNAs with the median 

length of all genes in the testing data. DeepLIFT scores follow a summation-to-delta 

property where the summation of input contributions (DeepLIFT scores) is equal to the 
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difference in the predicted value compared to the prediction from the reference input. We 

calculated DeepLIFT scores for each gene and transcript in testing data for each of 53 

outputs, then summed up the scores over promoter or RNA regions for each feature, and 

finally averaged them over genes. To estimate the collective impact on differential 

expression across 53 tissues, we averaged absolute DeepLIFT scores of all tissues for each 

regulator. To evaluate the regulator’s contribution to the prediction of transcript-usage, we 

calculated the variance of DeepLIFT scores across transcript variants for each gene and then 

averaged them over genes. We performed pre-ranked gene set enrichment analysis (GSEA)34 

to assess gene ontology terms in MSigDB v7.135 associated with key TFs and RBPs. The 

absolute DeepLIFT scores were log-transformed and standardized to make them close to a 

normal distribution and then applied to GSEA with 10,000 permutations. The Enrichment 

Map was utilized for visualization of the results36.

Disease genes

The probability that a gene is intolerant for a loss-of-function mutation was downloaded 

from the release 0.3.1 of the ExAC portal (http://exac.broadinstitute.org). We defined genes 

with probability greater than 99% as intolerant of homozygous or heterozygous LoF 

mutations. Disease genes were obtained from the OMIM portal as of June 2019 (https://

www.omim.org/). We excluded provisional gene-to-phenotype associations and genes 

associated with non-disease phenotypes, multifactorial disorders, or infection. We obtained 

mouse-lethal genes from Gene Discovery Informatics Toolkit (v1.0.0)37 that provided pre-

processed gene lists from the murine knock-out experiments registered in Mouse genome 

informatics (MGI)38 and the International Mouse Phenotyping Consortium (IMPC)39. The 

results of CRISPR screening for the genes essential for proliferation or viability conducted 

in the DepMap project40 were downloaded from Enrichr portal41, 42 as of June 2019 (https://

amp.pharm.mssm.edu/Enrichr). Enrichr portal provided two CRISPR screening results 

conducted independently at Broad Institute and the Sanger Institute. To reduce the false 

positives in the CRISPR screening, we used essential genes that were identified in both of 

the two independent screenings. Protein-protein interaction networks were downloaded from 

eXpression2Kinases Web43 which consists of 210,221 interactions across 15,716 proteins.

Training person-specific models

To train person-specific models, we utilized the same model structure as the tissue-model, 

except that the number of model outputs was modified to match the sample size of the 

tissue. We re-used the parameters of convolutional layers in the tissue-model and only 

parameters in the fully-connected layers were tuned (Supplementary Figure 12). We used the 

same gene splits and the same procedure of normalization and scaling as the tissue-model 

for training and evaluating models. We evaluated the model prediction for each individual 

separately based on validation data and filtered out the individual models that performed less 

than 50% percentile of all individual models for some analyses.

Training PrediXcan models

To build a prediction model for gene expression from genotype data, we trained PrediXcan29 

models with GTEx gene expression and genotype data. A QCed vcf file of GTEx genotype 

data called by whole-genome sequence was downloaded from dbGaP for 635 individuals. 
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We filtered out variants with a missing rate greater than 1% and minor allele frequency less 

than 1% and kept 9,219,660 variants for PrediXcan. We followed the model building 

procedure employed in PredictDB (http://predictdb.org/), a repository of PrediXcan models, 

as of Nov 2019. Briefly, we randomly split the samples into 5 folds. Then for each fold, we 

removed the fold from the data and used the remaining data to train an elastic-net model 

using 10-fold cross-validation to tune the lambda parameter. With the trained model, we 

predicted gene expression values for the hold out samples. We applied the PrediXcan 

method to predict the same gene expression data used for the person-specific DEcode 

models. We built PrediXcan model for each gene using variants located within 1 Mbp 

upstream and downstream of its TSS. A missing value of the genotype data was replaced 

with an average dosage of non-missing samples.

Differential expression analysis for age and sex

Limma44 was used to identify genes associated with age using gender as a covariate. The 

log2-TPM values of genes in the testing data were used. We also tested the associations 

between DeepLIFT scores for predictors and age via limma to identify regulators for DE 

against ages and sex. The Benjamini–Hochberg procedure was used to control the false 

discovery rate at 5%.

in silico binding-site disruption experiment

To simulate the consequence of the removal of binding sites on the expression of LAPTM5 
and CD53, we generated 10,000 synthetic inputs for each of LAPTM5 and CD53 where all 

binding sites in each interval of its promoter and RNA were randomly removed. From each 

of these synthetic inputs, we computed predicted expression values and correlated them with 

ones of another gene without any disruptions in its binding sites. Then, we used multiple 

linear regression to associate the location of disrupted regions with the correlation values 

between LAPTM5 and CD53 to estimate the effects of the disruption in each region on the 

co-expression relationship.

in silico knockout experiment

To simulate the effect of regulator knockout (KO) on the expression of LAPTM5 and CD53, 

we generated 10,000 synthetic inputs for each LAPTM5 and CD53 where each protein or 

miRNA bound to its promoter or RNA was randomly removed from their feature matrices. 

From each of these synthetic inputs, we computed predicted expression values and 

correlated them with ones of another gene without any removals in its feature matrices. 

Then, we used multiple linear regression to associate KOs of regulators with the correlation 

values between LAPTM5 and CD53 to estimate the effects of the KO of each regulator on 

the co-expression relationship. We applied the Bonferroni correction to control multiple 

testing and the regulators with the corrected p-value less than 0.05 in all tissues were chosen 

as the key drivers of the co-expression.

Conditional independence test

To validate the effect of the predicted drivers on co-expression, we conducted a mediation 

analysis using a conditional independence test. A mediation analysis evaluated the 
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hypothesis where if LAPTM5 and CD53 are co-expressed due to the predicted regulators, 

normalizing expression levels of the two genes by the expression levels of the regulators 

would decrease the co-expression relationships. Specifically, we regressed the actual log2-

TPM values of LAPTM5 and CD53 with the actual log2-TPM values of the predicted 

drivers and computed R2 (variance explained) between the residuals of two genes. The R2 

based on the actual gene expression and one from the residuals were compared to quantify 

the covariance explained by the predicted drivers. To evaluate the significance of this effect, 

we repeated this process 1,000 times with an equal number of randomly picked genes that 

have a binding site in LAPTM5 or CD53 as regressors.

DEcode model for DE prior rank

DE prior rank was downloaded from https://github.com/maggiecrow/DEprior. In the DE 

prior rank, each gene has a probability-like value where zero is the minimum and one is the 

maximum. To convert this value to a non-bounded scale, we applied the logit transformation 

to the DE prior value. We assigned a value of 10 to a gene that had an infinite value after the 

logit transformation. We used the same gene splits as the GTEx-tissue-model, which resulted 

in 13,433 genes for training, 1,504 genes for validation, and 1,674 genes for testing. We 

trained the DEcode model for DE prior rank using the same procedure as with the GTEx-

person-specific models. To evaluate the contribution of promoter and RNA features to the 

prediction, the model was also trained with randomized input features. Receiver operating 

characteristic (ROC) curve analysis was performed using pROC R package45 with a default 

setting. We performed pathway analysis of the TFs with a DeepLIFT score greater than 90th 

percentile using KEGG pathways46. KEGG pathway gene sets were downloaded from 

MSigDB v6.135. The enrichment significance was based on results of the hypergeometric 

test, with 757 unique TF genes as a background, against KEGG pathways composed of at 

least 5 background genes. FDR was controlled at 5%. We manually curated the 159 disease-

related data sets used in the construction of the DE prior ranking, to determine the number of 

data sets related to cancer or inflammatory disease.

Definition of boxplot elements

We used R ggplot2 package to draw boxplots in this manuscript with the default setting. The 

upper, centre and lower line of the boxplot indicates 75%, 50%, and 25% quantile, 

respectively. The upper and lower whisker of the boxplot indicates 75% quantile + 1.5 × 

interquartile range (IQR) and 25% quantile - 1.5 × IQR.

Data availability

The data sources of GTEx data, TF and RBP binding peaks, miRNA binding locations, 

disease-related genes, protein-protein interaction data, pathways, gene ontology, and the 

DEprior rank that were used for model training and interpretation are available in 

Supplementary Table 8. Processed data are available through our Code Ocean capsule 

(https://doi.org/10.24433/CO.0084803.v1).

Tasaki et al. Page 13

Nat Mach Intell. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/maggiecrow/DEprior
https://doi.org/10.24433/CO.0084803.v1


Code availability

DEcode software and pre-trained models for tissue- and person-specific transcriptomes are 

available at www.differentialexpression.org, https://github.com/stasaki/DEcode, and Code 

Ocean capsule (https://doi.org/10.24433/CO.0084803.v1). DEcode is licensed under the 

BSD 3-Clause license.

Extended Data
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Extended Data Fig. 1. Characterizations of the person-specific models.
(a) The consistency between the predictive contributions of regulators and their expression. 

Spearman’s correlation was used to evaluate the relation between DeepLIFT scores vs log2-

TPMs in each tissue. A relation with the absolute correlation > 0.3 and FDR < 5% was 

defined as significant. (b) The consistency of predictive contributions across tissues. We 

selected the regulators that showed the significant relationships between their DeepLIFT 

scores with log2-TPMs in multiple tissues. Then, the consistency of directions of the 

correlations was assessed and visualized as a histogram. (c) The actual correlation profile 

between DeepLIFT scores and log2-TPMs. We selected 99 regulators that showed consistent 

relationships in more than four tissues. (d) The pairwise similarity of per-gene prediction 

accuracy between tissues. Spearman’s correlation was used for this comparison. (e) The 
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association of per-gene prediction accuracy with the gene status. The gene status indicates 

whether genes are registered in multiple databases (Known) or only in the GENCODE 

database (Novel or Putative). (f) Decomposition of variance in the per-gene prediction 

accuracy. To compare the variances in the per-gene prediction accuracy explained by the 

gene status, the number of promoter features, and RNA features, we used a variance 

decomposition method (lmg) implemented in relaimpo R package.
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Extended Data Fig. 2. The major feature types contributed to the gene co-expression.
We defined the gene pairs with the absolute Spearman’s correlation greater than 0.3 and the 

sign of the correlation matched with one with the ground truth as the successfully predicted 

gene pairs. The successfully predicted gene pairs of the model trained with the full set of 

features were split into three groups based on the performance of the models trained with 

only RNA features or promoter features.
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Extended Data Fig. 3. DEcode predicts the regulatory principles behind frequently DE genes 
across diverse conditions.
(a) The scatter plots showing the relations between predicted and actual DE prior rank. The 

predicted logit of DE prior rank was converted to probability and compared with actual DE 

prior rank with Spearman’s correlation. (b) The performances of the models trained with a 

distinct feature set. ROCs represent the performances of models in predicting genes with 

whose DE prior rank greater than 0.9.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of building and evaluating the DEcode transcriptome prediction model. DEcode 

takes the promoter features and the mRNA features for each gene/transcript as inputs and 

outputs its expression levels under various conditions. We conducted a series of evaluations 

to show that DEcode defines major principles in gene regulation in arbitrary gene expression 

data. This capacity is strongly supported on a comparative basis to alternative methods, and 

on an absolute basis across diverse applications, which include, through predictions of 

transcript-usage, person-specific gene expression, frequently DE genes of multiple external 

disease-related gene sets.
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Figure 2. 
Performance of DEcode for predicting differential expression across 53 tissues. (a) 

Predictive performances on the median absolute expression levels across tissues. The 

predicted log2-TPM values for 2,705 genes and 7,631 transcripts, and the transcript usage 

for 1,485 genes that had multiple transcripts were compared with the actual expression using 

Spearman's rank correlation. (b) Predictive performances on the tissue-specific expression 

profiles. The predicted fold changes of 2,705 genes and 7,631 transcripts were compared 

with the actual data using Spearman's rank correlation. Predictive accuracies of the 

differences in the transcript usage across tissues were also computed for 1,485 genes. The 

colour of the bar indicated the tissue groups based on the similarity of gene expression 

profiles. (c) The heatmap showing pairwise correlations between the predicted and the actual 

tissue-specific expression profiles of 53 tissues for the testing genes. (d) Performance 

comparison of DEcode with ExPecto. The root-mean-square errors (RMSE) of DEcode 

models for expression-levels of 714 genes coded on chromosome 8 was compared with 

those of ExPecto. The relative improvement of DEcode over ExPecto in median RMSE of 

the 10 runs was displayed as a bar plot and the error bar represents median absolute 

deviation.
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Figure 3. 
Identification and characterization of key predictors. (a) The predictive performances of the 

models trained with a different set of features. The performances for the fold-change across 

53 tissues were compared with the paired sample t-test. (b) Comparison of predictive 

contribution among classes of regulators. The regulator’s predictive contribution to the fold-

change across 53 tissues was estimated based on DeepLIFT score. The two-sample 

Wilcoxon test was used to assess the statistical significance of the differential contribution. 

(c) GO enrichment map for key predictors. GO enrichment analysis for key predictors for 

the fold-change across 53 tissues was conducted using the pre-ranked GSEA. The significant 

associations (FDR<0.05) were visualized with green/blue node colours representing certain 
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classes of regulators. (d) Key predictors for the tissue-specific transcriptomes. DeepLIFT 

scores of the top 5 key predictors in each tissue were displayed as a heatmap. (e) Example 

relationships between the predictive contributions of a regulator and its expression levels 

across tissues. A line of best fit based on linear regression was depicted with 95 percent 

confidence intervals. (f) The overlap between the key predictors for the fold-change across 

53 tissues and LoF intolerant genes, OMIM genes, lethal genes in mice, essential genes in 

cell lines, hub proteins in protein-protein interaction networks.
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Figure 4. 
Performance of the person-specific models. (a) The predictive performances of the person-

specific models for the actual data from the same individuals and unrelated random 

individuals. (b) The person-specific models predicted person-specific expressions shared 

across tissues. (c) The performances of the models trained with a distinct feature set. (d) Per-

person key predictive regulators for the hippocampus transcriptome. We selected the top 5 

key predictors of the hippocampus transcriptome for each individual and their DeepLIFT 

scores were displayed as a heatmap. (e) Comparison of per-gene predictive accuracy 

between DEcode and PrediXcan. The number of genes that showed a positive Pearson’s 

correlation between predicted and actual gene expression levels at FDR 5% was calculated 
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for each method. The testing genes on chromosome 1 were used in this comparison. (f) Per-

gene prediction accuracy is associated with the number of features present in RNAs and 

promoters. The histogram represents Pearson’s correlations between the predicted and the 

actual expression for each gene. The line plot shows the average number of RNA and 

promoter features of genes in each bin of the histogram. Spearman’s correlation between the 

number of features and per-gene correlations is displayed in the line plot. The error bars 

indicate standard errors.
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Figure 5. 
Application of the person-specific models to analyze phenotype-related gene signatures. (a) 

The scatter plots showing the relations between the associations of genes with age and sex 

using predicted expression and those using the actual expression. Spearman’s correlation 

between t-statistics based on the predicted and the actual gene expression is displayed in the 

scatter plot. (b) The pairwise Spearman’s correlations between the predicted and the actual 

associations of genes with age and sex in all tissues. The numbers in diagonal elements of 

the heatmap indicate the ranks of similarity of the predictions with the actual observations in 

the corresponding tissues. (c) The regulators whose DeepLIFT scores were associated with 

age or sex. The Benjamini–Hochberg procedure was used to control the false discovery rate 

at 5% for each phenotype.
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Figure 6. 
Regulatory basis of gene co-expression relationships. (a) Co-expression relationships in the 

predicted gene expression. We defined the ground truth co-expression relationships as gene 

pairs with the absolute Spearman’s correlation greater than 0.7 in the actual testing data. The 

density of Spearman’s correlation between the co-expressed gene pairs in the predicted gene 

expression data was estimated based on the Gaussian kernel. (b) Inter-tissue gene co-

expression relationships in the predicted gene expression. We defined the ground truth co-

expression relationships as gene pairs with the absolute Spearman’s correlation greater than 

0.5 in the actual test data. The violin plots show Spearman’s correlation of the inter-tissue 

co-expressed gene pairs based on the predictions from all models or the models whose 

performances on validation data were greater than 50% percentile in each tissue. (c) The 

effect of the binding site removal on co-expression between LAPTM5 and CD53. (d) The 

key regulators for the co-expression between LAPTM5 and CD53. (e) Percent of the co-

expression relationship explained by the expression levels of the key regulators. The white 

diamond and the error bars in the bar indicated the average and 95% percentile of the 

percent of variance explained by randomly picked regulators, respectively. The scatter plots 

and linear regression lines show the effect of the key regulators on the co-expression.
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