
An automated framework for efficiently designing deep 1

convolutional neural networks in genomics 2

 3

Zijun Zhang1, Christopher Y. Park1, Chandra L. Theesfeld2, Olga G. Troyanskaya1,2,3,* 4

 5

1Flatiron Institute, Simons Foundation, New York City, New York, United States of America 6

2Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, 7

United States of America 8

3Department of Computer Science, Princeton University, Princeton, New Jersey, United States of 9

America 10

* Correspondence to: ogt@cs.princeton.edu 11

 12

 13

Abstract 14

Convolutional neural networks (CNNs) have become a standard for analysis of biological 15

sequences. Tuning of network architectures is essential for CNN’s performance, yet it requires 16

substantial knowledge of machine learning and commitment of time and effort. This process thus 17

imposes a major barrier to broad and effective application of modern deep learning in genomics. 18

Here, we present AMBER, a fully automated framework to efficiently design and apply CNNs 19

for genomic sequences. AMBER designs optimal models for user-specified biological questions 20

through the state-of-the-art Neural Architecture Search (NAS). We applied AMBER to the task 21

of modelling genomic regulatory features and demonstrated that the predictions of the AMBER-22

designed model are significantly more accurate than the equivalent baseline non-NAS models 23

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

and match or even exceed published expert-designed models. Interpretation of AMBER 24

architecture search revealed its design principles of utilizing the full space of computational 25

operations for accurately modelling genomic sequences. Furthermore, we illustrated the use of 26

AMBER to accurately discover functional genomic variants in allele-specific binding and 27

disease heritability enrichment. AMBER provides an efficient automated method for designing 28

accurate deep learning models in genomics. 29

 30

 31

Main 32

Artificial neural networks, or deep learning, have become a state-of-the-art approach to solve 33

diverse problems in biology1,2. Convolutional Neural Networks (CNNs) are especially well-34

suited for identifying high-level features in raw input data with strong spatial structures3 and as 35

such are powerful at modelling raw genomic sequences and extracting functional information 36

from billions of base-pairs in the genome1. CNN-based approaches address the computational 37

challenges of predicting the chromatin state and RNA-binding proteins binding state from 38

sequence4–6, identifying RNA splice sites7, predicting gene expression8, and prioritizing disease 39

relevance of variants9, and many more1. Overall, CNNs have become the de-facto standard for 40

analysis of genomes - a fundamental problem in both basic understanding of biology and for 41

enabling personalized and precision medicine approaches. 42

 43

The successful applications of CNNs have been largely attributed to their corresponding 44

architectures. Indeed, for CNN applications in genomics and biomedicine, numerous efforts have 45

been devoted to the development of architectures, such as in DeepSEA4, Basenji10 and SpliceAI7. 46

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

This is similar to the extensive efforts in architecture designs for tackling computer vision 47

problems, for example VGG11, Inception12, and ResNet13. Each of these architectures is 48

motivated and inspired by deep understanding of machine learning and domain knowledge; and 49

requires substantial effort and time commitment by experts to design and implement by 50

extensive trial-and-error processes. 51

 52

Here, we present Automated Modelling for Biological Evidence-based Research (AMBER), an 53

automatic framework for efficiently designing convolutional neural networks in genomics. To 54

our knowledge, AMBER is the first automated approach specifically designed for modelling 55

genomic sequences. It leverages the groundbreaking idea of Automated Machine Learning (or 56

AutoML), and the related family of algorithms for Neural Architecture Search (NAS) previously 57

developed in the context of computer vision14,15. For a given fixed set of training data, AMBER 58

designs an optimal architecture by NAS in a pre-defined model space. We show that the 59

AMBER-designed models significantly outperformed equivalent non-NAS models, matching or 60

even exceeding published expert-designed models. Finally, we use two well-established 61

benchmarks to demonstrate that the AMBER-designed optimal architectures provided significant 62

advantages in prioritizing functional genomic variants in allele-specific binding and heritability 63

enrichment in Genome-Wide Association Studies (GWAS). We also illustrate the use of 64

AMBER-designed models to discover disease-relevant variants. Thus, AMBER creates accurate 65

and informative deep-learning models that can support functional genomics discoveries by 66

biologists with and without machine learning expertise. AMBER is publicly available at 67

https://github.com/zj-zhang/AMBER. 68

 69

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

 70

 71

Figure 1. Method and workflow overview of AMBER. 72

A) AMBER uses a compendium of training data to design deep learning models in functional 73

genomics. In this application, we applied AMBER to the task of predicting transcriptional 74

regulation on DNA sequences. The features are one-hot encoded reference human genome, and 75

the labels are functional annotations derived from a large set of ChIP-seq data. B) AMBER 76

designs network architecture by searching for optimal combinations of computational operations 77

(blue box) and residual connections (red box) for each layer, to construct a child model that maps 78

training features to training labels. C) Taking the optimal architecture as output, AMBER 79

performs downstream functional analyses. For the transcriptional regulation model, we analyzed 80

the functional variant prioritization by AMBER-designed models to predict allele-specific 81

binding and heritability enrichment in GWAS. 82

 83

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

Overview of methods and workflow 84

The AMBER framework fully automates the process of training and applying deep learning to 85

genomics, including automatic design of neural network architecture from the training data and 86

downstream functional analyses with the AMBER-designed model (Figure 1). Unlike existing 87

approaches that focus on making deep learning more accessible using established model 88

architectures16,17, AMBER automatically designs an optimal architecture for each user-specified 89

problem. 90

 91

In general, to investigate a biological question with AMBER, a biologist would compile a 92

compendium of functional genomics data such as profiles of transcription factor binding or 93

histone marks along the genome. AMBER uses such sets of compiled training features and labels 94

as input to automatically design deep learning models for the biological question or task of 95

interest (Figure 1A). Here, we use AMBER to model transcriptional regulatory activities. For 96

this task, the training features are one-hot encoded matrices that each represent 1000-bp DNA 97

sequences from the reference human genome, and the training labels are binary outcomes 98

derived from a compendium of 919 distinct transcriptional regulatory features. These regulatory 99

features include four main functional categories in diverse tissues and cell lines: transcription 100

factors (TF), polymerases (Pol), histone modifications (Histone), and DNA accessibility 101

(DNase). The task aims to predict whether one or more of the 919 transcriptional regulatory 102

features are active for any 1000-bp human DNA sequences. In total, the training dataset spans 103

more than 500 million base-pairs of the human genome, with 4400000, 8000, and 455024 104

samples for training, validation and testing, respectively. Conditioned on this dataset, the target 105

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

model for AMBER to design is a convolutional neural network with multi-tasking consisting of 106

919 individual tasks. 107

 108

To more formally define the neural architecture search problem, the target convolutional neural 109

network architecture can be divided into two interconnected components: the computational 110

operations used in each layer (blue box, Figure 1B), and the residual connections from previous 111

layers (red box, Figure 1B). Residual connections have been demonstrated to enable the training 112

of much deeper neural networks with superior performances13, while greatly expanding the 113

model search space (7.4 × 10!" times more viable architectures in our model space; see 114

Methods). Thus, it’s essential that residual connection search is considered when AMBER 115

searches for architectures, and the search needs to be efficient. AMBER searches for both of the 116

two components jointly using the Efficient Neural Architecture Search (ENAS) controller 117

model15. The controller model is parameterized as a Recurrent Neural Network (or RNN; for 118

details, see Methods). Briefly, for each layer in the model search space, the probability of 119

selecting a computational operation is computed by a multivariate classification dependent on the 120

current RNN hidden state; and the probability of selecting the residual connections from a 121

previous layer is a function of the RNN hidden states of the current layer as well as the previous 122

layer of interest. The RNN hidden states were subsequently updated by the operations or residual 123

connections sampled from the output probabilities. To train the controller RNN, we employed 124

reinforcement learning to maximize a reward of AUROC on the validation dataset. 125

 126

The output of AMBER is an optimized architecture that performs better than architectures 127

uniformly sampled from the same model search space (Methods). Furthermore, we show that 128

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

AMBER-designed models provide significant advantages over baseline models in multiple 129

practical scenarios, including allele-specific binding and heritability enrichment in GWAS. In the 130

following sections, we describe each part of the AMBER pipeline as well as the downstream 131

analyses in detail. 132

 133

 134

AMBER designs accurate and efficient models 135

In our example AMBER application, we defined the model search space of 12 layers, each layer 136

with 7 commonly used computational operations. We chose to use a 12-layer model space 137

because this was the maximum hardware memory limit for a single Nvidia-V100 GPU, and 138

shallower models can be attained by an identity operator that in effect removed one layer. In 139

total, this model space hosts 5.1 × 10#$ distinct model architectures (Methods). 140

 141

We benchmarked the computational efficiency of AMBER by comparing the GPU time used by 142

the AMBER search phase to other architecture search algorithms (Table 1). The time of 143

AMBER search phase is orders of magnitude more efficient than RL-NAS14 and AmoebaNet18 144

and comparable to DARTS19 and ENAS15. 145

 146

To robustly evaluate the accuracy of AMBER-designed models, we performed six independent 147

runs of AMBER architecture search, generating six “searched models”. We compared these 148

searched models with uniformly sampled residual network architectures from the same model 149

space (“sampled models”). Given the architectures, the final training step for AMBER 150

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

architectures and the sampled residual network architectures were identical, with all models 151

trained to convergence (Methods). 152

 153

Table 1. Runtime comparison in GPU hours 154

Method Time (in GPU hours)

AMBER 72

AmoebaNet 75600

DARTS 96

ENAS 10.8

RL-NAS 537600

 155

 156

The average testing AUROC and AUPR for each functional category of 919 regulatory feature 157

prediction tasks (i.e. TF, Pol, DNase and Histone) were compared for the six searched and six 158

sampled model architectures. AMBER-designed architectures significantly outperformed the 159

sampled architectures for all categories (Figure 2A). The prediction accuracies of different 160

models were more alike within a given functional category than across different categories, 161

indicating that the inherent characteristics of the training data play an essential role in the 162

model’s prediction performance, regardless of its model architecture. This is expected, because 163

the training data determined the upper bound of model performance20, while the searched 164

architectures better approximated this bound. Of course, with unlimited time and resources to 165

enable complete sampling, the optimal architecture is theoretically reachable by sampling as 166

well; however, the time and resource consumption will be tremendous in a model space of 167

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

5.1 × 10#$ potential architectures. The AMBER architecture search by far speeds up this process 168

and yields model architectures in a narrow high-performance region. Detailed performances for 169

each model can be found in Supplementary Table 1. Hence, AMBER robustly designs high-170

performance convolutional neural network architectures. 171

 172

 173

Figure 2. AMBER searched architectures outperform sampled architectures. 174

A) The average testing AUROC and AUPR in each functional category were compared for 175

twelve models with distinct architectures either generated by AMBER searched (orange) or 176

uniformly sampled from model space (grey). Each model, represented by a line, was identically 177

trained to convergence. B) An illustration of the optimal model architecture, AMBER-Seq, used 178

for downstream analyses. AMBER-Seq is an AMBER-designed deep convolutional neural 179

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

networks that outputs a multi-label binary classification for 919 transcriptional regulatory 180

features using 1000-bp DNA sequences as inputs. 181

Statistical significance (t-test) *: p<0.05, **: p<0.01, ***: p<0.001 182

 183

 184

 185

Theoretically, the superior performance from searched model architectures could be achieved by 186

higher relative model complexity. However, no significant differences were observed between 187

the two groups of architectures (p-value=0.69, t-test). When we examined the total number of 188

parameters in each child architecture (dot sizes, Supplementary Figure 1), the average number 189

of parameters is 12.9 million for searched architectures and 13.3 million for sampled 190

architectures, respectively. Furthermore, we did not observe correlations between the model 191

complexities and their testing performances (spearman correlation=0.06, p-value=0.87). This 192

indicates that the superior performance from searched model architectures is not explicitly linked 193

to model complexities, and that AMBER-designed models are parameter-efficient. 194

 195

For the rest of the analyses in this study, we used the AMBER-designed architecture with the 196

best testing performance, referred to as AMBER-Seq (Figure 2B); and compared it to the 197

sampled architecture with the best testing performance, referred to as AMBER-Base 198

(Supplementary Figure 2). Starting with the 1000-bp one-hot encoded input, we use the input 199

stem of one convolutional layer to expand the 4-channel DNA sequence into 64 channels. The 200

input stem is identical for all child networks. Similarly, the output stem flattens the convolutional 201

feature maps, followed by a dense layer of 925 hidden units to predict the 919 regulatory outputs. 202

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

The middle 12 layers are variable and grouped into four blocks, each with 3 layers. The total 203

number of parameters in AMBER-Seq is 13.5 million, which is substantially fewer than the 204

original expert-based implementation (52.8 million) in ref.4 and a model of a similar task (22.8 205

million) in ref.10. With fewer total parameters, AMBER-Seq matched and even exceeded the 206

previously expert-designed implementation in prediction accuracy (AUROC and AUPR; see 207

Supplementary Table 1). 208

 209

 210

Deciphering the logic of AMBER architecture search 211

Unbiased architecture search performed by AMBER provides insight into which computational 212

operations and architectures are most suited for particular problems in genomics. This can 213

diagnose whether the controller RNN model has learned meaningful representations and help 214

design better model search spaces for future applications. 215

 216

For this analysis, we analyzed the average probability of all computational operations in the last 217

step of the AMBER-Seq controller training across the 12 layers (Figure 3A). The likelihood of 218

using convolutions (vanilla and dilated convolution) was the highest in the bottom- to middle- 219

layers; in particular, convolution with kernel size 8 was universally preferred, which is consistent 220

with the choice in expert-based architectures4. Interestingly, in higher layers, the likelihood of 221

max pooling starts to increase as the layers are closer to the output. In light of CNN’s 222

hierarchical representation learning in computer vision21, we speculate this is because more high-223

level features with biological semantic meanings are constituted in the top layers of 224

convolutions, after extensive usage of convolution operations in the bottom layers. Subsequently, 225

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

by using max pooling as the computational operation in top layers, the model performs feature 226

selections that regularizes model complexity and encourages the usage of high-level semantic 227

features in predicting the final regulatory outcomes. We anticipate this AMBER architecture 228

design pattern can be further generalized and transferable to other related tasks22. 229

 230

The controller’s ability to distinguish distinct and similar computational operations is critical for 231

searching high-performance architectures. The differential selection likelihood of operations 232

across layers is a function of previous RNN hidden states and the embedding vectors for each 233

operation, which are learned during the AMBER search phase (Methods). We performed 234

Principal Component Analysis (PCA) on the embedding vectors and analyzed how AMBER 235

distinguishes operations (Figure 3B and Supplementary Figure 3). We found that the first 236

principal component separates identity from all other computational operations, as the identity 237

layer does not involve any computations. In the second principal component, convolution and 238

pooling were separated with dilated convolution as an intermediate between vanilla convolution 239

and pooling layers. Indeed, dilated convolution enlarges the receptive field similar to pooling 240

layers, while also performs convolution computations23. The third principal component further 241

separated computational operations by their corresponding operation types (Supplementary 242

Figure 3). Overall, AMBER controller RNN can distinguish between similar but distinct 243

operations in building the target architecture. 244

 245

 246

 247

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

 248

Figure 3. Illustration of AMBER architecture search logistics. 249

A) Selection probabilities for distinct computational operations in each layer of the AMBER-Seq 250

controller. For this architecture, convolutional operations were preferred in bottom to middle 251

layers, while the likelihood of selecting max pooling increased in top layers. B) Principal 252

component analysis of the embedding vectors for different computational operations. PC1 253

separated identity from computational operations; PC2 separated vanilla convolution, dilated 254

convolution and pooling. 255

Abbreviations: conv8/4: 1D convolution with kernel size 8/4; dconv8/4: dilated convolution with 256

kernel size 8/4; max/avgpool: max/average pooling. 257

 258

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

Variant effect prediction on allele-specific binding 259

A key application of convolutional neural networks in genomics is to predict functional effects of 260

genomic variants, i.e. a variant’s potential to disrupt an existing molecular mechanism or 261

generate a new one. To investigate the variant effect prediction of different neural network 262

architectures, we compared their ability to correctly predict allele-specific binding for 52,413 263

variants in 83 distinct transcription factors generated by ChIP-seq experiments24. These 264

experiments measure the effect of specific alleles on binding of transcription factors, providing 265

an independent evaluation set for our predictions. For comparison, in addition to AMBER-Seq 266

and AMBER-Base, we included a set of commonly used models and motifs for scoring variant 267

effects: expert-designed CNNs DeepSEA4 and DeepBind6, deltaSVM25, Jaspar26 and MEME27 268

(Figure 4A). For comparison across different models, variant scores were rank transformed to 269

the range of [-1, 1] and AUROC was computed for each method’s ability to distinguish 270

loss/gain-of-binding alleles versus neutral alleles (Methods). In general, machine learning 271

methods (AMBER, DeepSEA, DeepBind, deltaSVM) predict variant effects significantly better 272

than the motif-based methods (i.e. Jaspar and MEME). Importantly, AMBER-Seq’s performance 273

matched or exceeded all other methods, including expert-designed architectures and the 274

AMBER-Base model, demonstrating the power of automated architecture search (asteroid, 275

Figure 4A). 276

 277

As a biological case study, we focused on the effect of genomic variant rs11658786 on binding 278

of the SPI1 transcription factor (Figure 4B). SPI1 (also known as PU.1) is a transcription 279

activator with important functions in hematopoiesis28, leukemogenesis29, and adipogenesis30,31. 280

AMBER-Seq predicted that the alternative allele at this position reduces SPl1 binding, a 281

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

prediction supported by independent experimental data -- in an independent ChIP-seq dataset, 282

SPI1 predominantly binds to the G allele (85.2%) than the A allele (14.8%; Figure 4B, inset). 283

Interestingly, all other models except DeepSEA predicted that the alternative allele enhances 284

SPl1 binding, contradicting experimental results. Moreover, rs1165876 is an eQTL for its target 285

gene, STARD3 (Supplementary Figure 4A), where the gene expression for the G genotype is 286

the highest and the A genotype is the lowest. The eQTL effect for gene expression is consistent 287

with the AMBER-Seq predicted effect of SPI1 binding and its transcription activation function. 288

Finally, STARD3 is a gene that encodes a member of a subfamily of lipid trafficking proteins 289

that is involved in cholesterol metabolism. By querying GWAS catalog32, we confirmed that 290

rs11658786 is in strong LD with significant GWAS loci in high cholesterol, its interaction terms, 291

as well as smoking status (Supplementary Figure 4B). Overall, this case study illustrates how 292

variant effects accurately predicted by the automatically generated AMBER-Seq model can be 293

useful for prioritizing functional variants of interest. 294

 295

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

 296

 297

Figure 4. Benchmarking variant effect prediction with allele-specific binding. 298

A) Performance of distinguishing loss- and gain-of-binding variants from different models and 299

methods evaluated by AUROC. AMBER-Seq outperformed AMBER-Base on the compendium 300

of allele-specific transcription factor binding sites, matching or even exceeding previous expert-301

designed machine learning methods. In each boxplot, center line marks the median while top and 302

bottom lines mark the first and third quartiles. B) A biological case study of variant effect 303

prediction of human genomic variant rs11658786. This variant was predicted to alter a SPI1 304

binding site in gene STARD3. Among different methods, only AMBER-Seq and DeepSEA 305

predicted the loss-of-binding effect (G>A) of this variant. The A allele significantly reduces SPI1 306

binding, as illustrated by an independent ChIP-seq experiment (inset). 307

Statistical significance of results of AMBER-Seq versus each of the other models (Wilcoxon 308

test) ns: p>0.05, *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001 309

 310

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

Heritability enrichment analysis of genome-wide association studies 311

Finally, we assessed the utility of automatic architecture search by comparing AMBER-Seq with 312

the uniformly sampled AMBER-Base model for explaining disease heritability in GWAS from 313

UK Biobank33. Using AMBER-Seq and AMBER-Base models, variant annotations for each of 314

the 919 transcriptional regulatory features of each model were generated, followed by stratified 315

LD-score regression34 to evaluate their heritability enrichment for a given GWAS (Methods). 316

We analyzed the GWAS summary statistics of disease phenotypes previously reported35 317

(Methods). The union of the significantly enriched variant annotations (FDR<0.05) from both 318

models were used for downstream comparisons and were subsequently examined for overlapping 319

between the AMBER-Seq and AMBER-Base models, or unique to either one of the models 320

(Supplementary Figure 5). Of the six GWAS diseases we studied, five have significantly more 321

enriched heritability in AMBER-Seq variant annotations (Figure 5A; Methods). On average, 322

AMBER-Seq variant annotations were 1.81x more enriched in heritability compared to their 323

counterparts in AMBER-Base across all diseases, indicating that AMBER-designed model 324

produced more informative variant effect predictions for interpreting disease-associated genomic 325

loci. 326

 327

Moreover, the variant annotations from AMBER-Seq were particularly useful where baseline 328

annotations34 fail to explain heritability (Figure 5B). Baseline annotations are a collection of 97 329

functional annotations previously curated34 that cover major known regulatory patterns for 330

human genome. Specifically, to quantify how well the baseline annotations alone explained 331

heritability, we regressed baseline annotations for each GWAS phenotype and calculated the 332

proportion of baseline annotations that were significantly enriched in heritability. We observed a 333

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

significant negative correlation between the median log fold-change of heritability enrichment of 334

annotations from AMBER-Seq over AMBER-Base, versus the proportion of baseline 335

annotations that are significant (Figure 5B). This demonstrates that for disease where only a few 336

baseline annotations were significantly enriched in heritability, AMBER-Seq provides the most 337

improvement over AMBER-Base in variant annotation. Conversely, when AMBER-Seq and 338

AMBER-Base heritability enrichment was comparable, the majority of the heritability was 339

largely explained by baseline annotations. Therefore, the automated model design pipeline of 340

AMBER is able to deliver more informative variant annotations in the cases where they are 341

arguably most needed, i.e. for diseases that are poorly annotated by baseline annotations. 342

 343

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

 344

 345

 346

Figure 5. Benchmarking heritability enrichment in disease GWAS. 347

A) Comparison of heritability enrichment of AMBER-Seq and AMBER-Base’s variant 348

annotations for six disease GWAS. On average, AMBER-Seq annotations were 1.81x more 349

enriched in disease heritability than the annotations of AMBER-Base. In each boxplot, center 350

line marks the median while top and bottom lines mark the first and third quartiles. B) The 351

median magnitude of enrichment fold-change between AMBER-Seq and AMBER-Base was 352

negatively correlated with the proportion of enriched baseline annotations in various diseases, 353

indicating that AMBER can deliver more informative variant annotations in diseases with poor 354

baseline annotations. 355

 356

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

 357

 358

Discussion 359

The past decade has witnessed a revolutionary transformation in genomics and exponential 360

accumulation of high-throughput sequencing data. These data enable the study of diverse 361

molecular mechanisms and biological systems through a quantitative lens. Deep learning models 362

have been especially powerful in modeling biological sequences, transforming our ability to 363

interpret genomes4–6. These methods generally employ convolutional neural networks to extract 364

features from raw genomic sequences, but such an approach comes with a price: a convolutional 365

layer has more hyperparameters than a regular fully connected layer, making the hyperparameter 366

tuning a significantly harder problem. To date, the vast majority (if not all) of the deep learning 367

models are manually tuned by computational biologists through trial-and-error, which is time 368

consuming and imposes a substantial barrier for applications of such models by biomedical 369

researchers. To address this challenge, we developed an automatic architecture search 370

framework, AMBER, for efficiently designing optimal deep learning models in genomics. In this 371

study, we have applied AMBER to predicting genomic regulatory features, including 372

downstream analyses such as variant effect prediction and heritability enrichment in GWAS. We 373

found that AMBER matched or exceeded performance of baseline models, including both 374

expert-designed and uniformly sampled architectures, and is computationally efficient. We 375

anticipate that AMBER will provide a useful tool for biomedical researchers, with and without 376

machine learning expertise, to rapidly develop deep learning models for their specific biological 377

questions. 378

 379

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

An important additional application of AMBER is for upgrading existing models with advanced 380

model architectures or updating models when additional data become available. Compared to the 381

original implementation of DeepSEA in 2015, it is interesting to observe that all six runs of 382

AMBER searched models performed better (Supplementary Table 1). This is especially 383

relevant as new and powerful architectures are being developed continuously (e.g. residual 384

connections13 that likely contribute to AMBER-Seq’s high performance), yet it is non-trivial to 385

adapt models with the latest deep learning techniques, and such adoption is time- and effort-386

consuming. AMBER enables readily integrating such modern approaches into existing expert-387

designed models. With AMBER, researchers can easily build and apply modern deep learning 388

techniques to find the optimal neural architecture, thereby accelerating the scientific discoveries 389

in biology. 390

 391

Finally, an important future direction for architecture search in biology is to jointly optimize the 392

prediction accuracy as well as model interpretability. For example, elucidating the decision logic 393

behind variant prediction can help identify molecular pathways that likely led to the predicted 394

effects, shedding new light on molecular mechanisms of transcriptional regulation36. In general, 395

an interpretable model is particularly desirable when practitioners need explicit evidence for 396

decision making and/or for knowledge discovery, such as in hypothesis testing and variant 397

prioritization in genetics studies. Moving forward, we hope frameworks like AMBER can be 398

further developed to identify neural network architectures that are balanced in predictive power 399

and interpretability. 400

 401

Methods 402

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

 403

Designing model search space 404

The AMBER neural architecture search framework consists of two components to design a child 405

model for specific tasks: 1) a model search space with a large number of different child model 406

architectures; and 2) a controller model that samples architectures from the model search space. 407

For simplicity, we start by illustrating the design of model search space. 408

 409

The model search space is a sequential collection of layers for the child model, where each layer 410

has a number of candidate computational operations. More concretely, in this study, we aimed to 411

design a 1D-convolutional neural network with 12 candidate convolutional layers. Each layer 412

had 6 distinct computational operations: 1D convolution with filter size 4 or 8 (conv4, conv8), 413

dilated 1D convolution with rate 10 and filter size 4 or 8 (dconv4, dconv8), max-pooling or 414

average pooling with size 4 (maxpool, avgpool). These hyperparameters for computational 415

operations were selected based on previous works4,10. Moreover, we added an identity mapping 416

to each layer that maps input identically to output without any computations (identity), for 417

potentially reducing the child model complexity. The twelve convolutional layers were 418

connected to fixed input and output stem layers for inputs and outputs, respectively. We divided 419

the 12 convolutional layers into 4 blocks of layers, where each block had doubled the number of 420

filters from the previous block while reduced the size of the feature map by a factor of four. 421

Layers within each block had identical number of filters. We set the first block to have 32 filters 422

for searching architectures. 423

 424

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

Formally, let the model space of T=12 layers be 𝛺	 = {𝛺!, 𝛺%, … , 𝛺&}, where 𝛺' is the t-th layer. 425

Under the current setup, 𝛺' = {conv8, conv4, dconv8, dconv4, maxpool, avgpool, identity}, ∀	𝑡. 426

Let the selection of computational operations at t-th layer be a sparse categorical encoder, i.e. 427

𝑎'(∈ 	 {1, 2, … , |𝛺'|}. For example, 𝑎%(= 1 describes the operation for the second hidden layer of 428

the child model is conv8. Therefore, child model computational operations are fully specified by 429

a sequence of integers {𝑎!(, 𝑎%(, … , 𝑎!%(}; in total, different combinations of computational 430

operations constitutes 8!% ≈ 6.9 × 10!$ viable child models in the model space. The task of 431

finding the child model computational operations can be subsequently considered as a multi-432

class classification problem with auto-regressive characteristics. 433

 434

In addition to searching operations, we also incorporated the residual connections in the model 435

search space. For the t-th layer, the residual connections from layers 1, 2, ..., t-1 are binary 436

encoded by 𝑎',*+ , ∀	𝑘 ∈ 	 {1,2, . . , 𝑡 − 1}. If 𝑎',*+ = 1, the residual connection is added from the 437

output of the k-th layer to the t-th layer13. Having residual connections are essential for training 438

deeper neural networks, but also significantly increases the complexity in architecture searching. 439

For our 12-layer model space, residual connection search increased the search space by around 440

2!%×!!/% ≈ 7.4 × 10!". Now with the residual connections, a full child model can be specified 441

by a sequence of integers {𝑎!(, … , 𝑎'(, 𝑎',!+ , … , 𝑎','.!+ , … }; for brevity, we use 𝑎' to denote both the 442

operations and residual connections in the same layer and use {𝑎!, … , 𝑎'} to represent the child 443

model architecture. 444

 445

 446

Efficient neural architecture search 447

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

We adopted Efficient Neural Architecture Search (ENAS) as the optimization method for 448

searching the child network architectures in the model space15. ENAS employs a Recurrent 449

Neural Network (RNN) as the controller model to sequentially predict the child model 450

architecture from the model space. Briefly, the controller RNN, parameterized by 𝜃, generates 451

the child model architectures a with log-likelihood 𝜋(𝑎; 𝜃) and is trained by REINFORCE37. The 452

policy gradient to maximize the reward 𝑅* over a batch of m sampled architectures is obtained 453

by: 454

1
𝑚B(𝑅* − 𝑏)

/

*0!

⋅B𝛻1𝑙𝑜𝑔𝑃J𝑎('.!):!; 𝜃K
&

'0!

= 455

1
𝑚B𝛻1𝜋(𝑎; 𝜃) ⋅ (𝑅* − 𝑏)

/

*0!

 456

 457

We set the reward 𝑅* to be the validation AUROC of the k-th child model architecture; b is an 458

exponential moving average of previous rewards to reduce the high variance of the policy 459

gradient. 460

 461

Another important feature that enables efficiently sampling of child architectures is the 462

parameter sharing scheme among child models15. The computational graph for a child model is a 463

Directed Acyclic Graph (DAG). Under the parameter sharing scheme, we build a large 464

computational graph, named child DAG with parameters 𝜔, which hosts all possible 465

combinations of child model architectures. The key observation of ENAS is that each child 466

model architecture is a subgraph of the child DAG, therefore the training of child model 467

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

parameters is shared and significantly faster. The gradient for the child model parameters 𝜔 is 468

obtained though Monte Carlo estimate: 469

𝛻5𝐸6∼8(6;1)[𝐿(𝜔; 𝑎)] =
1
𝑀B𝛻5𝐿(𝜔; 𝑎)

:

;0!

 470

 471

In this study, we made the following specifications and modifications in training the controller 472

RNN parameters 𝜃	and the child DAG parameters 𝜔. The controller RNN was parameterized as 473

a 1-layer LSTM of 64 hidden units. Following the original ENAS implementation15, we set M=1 474

for updating 𝜔; and regularized the proportion of residual connections if it deviated from 0.4. 475

The child DAG was set according to the model space described in the previous section. The child 476

DAG was first trained for a whole pass of the training data with a batch size of 1000 as a warm-477

up process. Next, the controller RNN sampled 100 child architectures from the child DAG and 478

evaluated their rewards. The child architectures and the rewards were used to train the controller 479

RNN parameters 𝜃. Then we trained the child DAG with architectures sampled from updated 480

𝜋(𝑎; 𝜃). Both controller and child models were trained by Adam optimizer with a learning rate 481

of 0.001. These two training processes were alternated for 300 iterations, and the child 482

architecture with the best reward in the last controller step was extracted. 483

 484

Sampled architectures were generated by sampling the computational operations uniformly and 485

sampling the residual connections at the proportion of 0.4 as used in searched models. Finally, 486

the child models of searched and sampled were trained from scratch to convergence using 487

identical setup to facilitate downstream comparisons. Convergence was defined as validation 488

AUROC not increasing for at least 10 epochs. To more robustly measure the accuracy of 489

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

AMBER, we ran the search and sample processes for six times, respectively. Throughout the 490

manuscript, all processing and analysis of searched and sampled models were strictly identical, 491

except for how we derived their corresponding architectures. We referred to the searched model 492

with best testing performance as AMBER-Seq and referred to the sampled model with best 493

testing performance as AMBER-Base. 494

 495

 496

Dataset for transcriptional regulatory activity prediction 497

The generic tasks of interest in this study were to predict transcriptional regulatory activity for a 498

given DNA sequence. We aimed to design an end-to-end convolutional neural network model 499

that takes raw one-hot encoded DNA as input. Following the previous work4, we used the pre-500

compiled training, validation and testing dataset downloaded from 501

http://deepsea.princeton.edu/help/ . The inputs were one-hot encoded matrices of DNA 502

sequences built on hg19 reference human genome assembly. The training labels were compiled 503

from a large compendium of publicly available ChIP-seq datasets, which measure the genome-504

wide molecular profiles such as protein binding or chemical modifications using high-throughput 505

sequencing. In total, there are 919 distinct labels for ChIP-seq profiles of transcription factor 506

binding, histone modification, and DNase accessibility assays in diverse human cell lines and 507

tissues; and there are 4400000 training samples, 8000 validation samples and 455024 testing 508

samples, each of 1000 bp (1000 x 4 when one-hot encoded) in length. 509

 510

 511

Allele-specific binding analysis 512

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

A compendium of allele-specific transcription factor binding sites reported previously24 were 513

compiled for benchmarking the variant effect predictions of the AMBER searched models. 514

Briefly, ChIP-seq data were collected that measured genome-wide binding profiles for 83 unique 515

transcription factors. For each binding site, binomial test was performed to test allelic imbalance 516

and Benjamini-Hochberg False Discovery Rate (FDR) was used to correct for multiple testing. 517

The baseline machine learning methods and the motif scorings were computed previously24. We 518

further divided the variants into loss-of-binding alleles (reference reads ratio>0.6 and 519

FDR<0.01), gain-of-binding alleles (reference reads ratio<0.4 and FDR<0.01), and neutral 520

alleles (FDR>0.9). 521

 522

The transcription factors were then mapped to the corresponding cell lines in the multi-tasking 523

model. To benchmark the models of AMBER-Seq and AMBER-Base with other baseline 524

models, we computed the variant effect scores as the log fold-change between reference allele 525

prediction and alternative allele prediction, as previously described4. Then the AUROCs for 526

distinguishing loss-of-function and gain-of-function alleles against the neural alleles were 527

computed for each transcription factor from each model/motif, respectively. To compare the 528

variant effect scores across different methods, we further rank-transformed the scores to the 529

range of [-1, 1] while preserving scores at 0 for each method. 530

 531

For the biological case study of variant effect prediction on SNP rs11658786, we reported its 532

variant effect predictions from AMBER-Seq and AMBER-Base along with available baseline 533

variant scoring methods24. Variants in high LD with the allele-specific variant of interest were 534

queried from LDlink webserver38 (https://ldlink.nci.nih.gov/) using the EUR/CEU population and 535

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

R2>0.9. Then the set of variants were processed by plink39 (v1.90) and plotted by R package 536

gaston40. The eQTLs for allele-specific variants were queried using the GTEx web portal41 537

(https://www.gtexportal.org/home/). 538

 539

 540

GWAS analysis 541

To evaluate the informativeness of the variant annotations from different model architectures, we 542

used stratified LD-score regression34 to assess the heritability enrichment for variant annotations. 543

First, we downloaded the summary statistics files from UK Biobank for disease phenotypes 544

reported previously35. Selene17 (v0.4.2) was employed to process the genome-wide variant effect 545

predictions for SNPs from the 1000 Genome Project (European cohort) for each transcriptional 546

regulatory feature in both AMBER-designed AMBER-Seq model and uniformly-sampled 547

AMBER-Base model. Then the variant effect predictions were subsequently converted to LD 548

scores and regressed on the 𝜒% statistics using ldsc v1.0.1 Python implementation 549

(https://github.com/bulik/ldsc), conditioned on a set of 97 baseline LD annotations from 550

baselineLD v2.2 (https://data.broadinstitute.org/alkesgroup/LDSCORE/). We restricted our 551

analyses for phenotypes with the ratio statistics less than 10% to avoid potential model 552

misspecifications34. The enrichment P-values were computed by ldsc and corrected for multiple 553

testing by Benjamini-Hochberg FDR. Regulatory features whose variant annotations were 554

significant (FDR<0.05) in either the searched AMBER-Seq or the sampled AMBER-Base 555

models were analyzed for their overlapping statistics and enrichment fold-changes across 556

models. 557

 558

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

 559

Data Availability 560

All data used in this study are publicly available and the URLs are provided in the corresponding 561

sections in Methods. 562

 563

Code Availability 564

The AMBER package is available at GitHub: https://github.com/zj-zhang/AMBER ; the analysis 565

presented in this study is available at https://github.com/zj-zhang/AMBER-Seq 566

 567

 568

 569

References 570

1. Eraslan, G., Avsec, Ž., Gagneur, J. & Theis, F. J. Deep learning: new computational 571

modelling techniques for genomics. Nat. Rev. Genet. 1 (2019). doi:10.1038/s41576-019-572

0122-6 573

2. Ching, T. et al. Opportunities and obstacles for deep learning in biology and medicine. J. 574

R. Soc. Interface 15, 20170387 (2018). 575

3. Bengio, Y. Convolutional Networks for Images, Speech, and Time-Series. (1997). 576

4. Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep 577

learning–based sequence model. Nat. Methods 12, 931–934 (2015). 578

5. Kelley, D. R., Snoek, J. & Rinn, J. L. Basset: learning the regulatory code of the 579

accessible genome with deep convolutional neural networks. Genome Res. 26, 990–9 580

(2016). 581

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

6. Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence 582

specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 583

831–838 (2015). 584

7. Jaganathan, K. et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell 585

176, 535-548.e24 (2019). 586

8. Zhou, J. et al. Deep learning sequence-based ab initio prediction of variant effects on 587

expression and disease risk. Nat. Genet. 50, 1171–1179 (2018). 588

9. Zhou, J. et al. Whole-genome deep-learning analysis identifies contribution of noncoding 589

mutations to autism risk. Nat. Genet. 51, 973–980 (2019). 590

10. Kelley, D. R. et al. Sequential regulatory activity prediction across chromosomes with 591

convolutional neural networks. Genome Res. 28, 739–750 (2018). 592

11. Simonyan, K. & Zisserman, A. Very Deep Convolutional Networks for Large-Scale 593

Image Recognition. Int. Conf. Learn. Represent. 1–14 (2014). 594

12. Chollet, F. Xception: Deep learning with depthwise separable convolutions. in 595

Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 596

2017 2017-January, 1800–1807 (Institute of Electrical and Electronics Engineers Inc., 597

2017). 598

13. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. in 599

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern 600

Recognition 2016-December, 770–778 (IEEE Computer Society, 2016). 601

14. Zoph, B. & Le, Q. V. Neural Architecture Search with Reinforcement Learning. (2016). 602

15. Pham, H., Guan, M. Y., Zoph, B., Le, Q. V. & Dean, J. Efficient Neural Architecture 603

Search via Parameter Sharing. (2018). 604

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

16. Avsec, Ž. et al. The Kipoi repository accelerates community exchange and reuse of 605

predictive models for genomics. Nature Biotechnology 37, 592–600 (2019). 606

17. Chen, K. M., Cofer, E. M., Zhou, J. & Troyanskaya, O. G. Selene: a PyTorch-based deep 607

learning library for sequence data. Nat. Methods 16, 315–318 (2019). 608

18. Real, E., Aggarwal, A., Huang, Y. & Le, Q. V. Regularized Evolution for Image Classifier 609

Architecture Search. Proc. AAAI Conf. Artif. Intell. 33, 4780–4789 (2019). 610

19. Liu, H., Simonyan, K. & Yang, Y. DARTS: Differentiable Architecture Search. (2018). 611

20. He, X., Zhao, K. & Chu, X. AutoML: A Survey of the State-of-the-Art. (2019). 612

21. Lee, H., Grosse, R., Ranganath, R. & Ng, A. Y. Convolutional deep belief networks for 613

scalable unsupervised learning of hierarchical representations. in Proceedings of the 26th 614

International Conference On Machine Learning, ICML 2009 609–616 (ACM Press, 615

2009). doi:10.1145/1553374.1553453 616

22. Zoph, B., Vasudevan, V., Shlens, J. & Le, Q. V. Learning Transferable Architectures for 617

Scalable Image Recognition. (2017). 618

23. Yu, F. & Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. 4th Int. 619

Conf. Learn. Represent. ICLR 2016 - Conf. Track Proc. (2015). 620

24. Wagih, O., Merico, D., Delong, A. & Frey, B. J. Allele-specific transcription factor 621

binding as a benchmark for assessing variant impact predictors. bioRxiv 253427 (2018). 622

doi:10.1101/253427 623

25. Lee, D. et al. A method to predict the impact of regulatory variants from DNA sequence. 624

Nat. Genet. 47, 955–961 (2015). 625

26. Bryne, J. C. et al. JASPAR, the open access database of transcription factor-binding 626

profiles: new content and tools in the 2008 update. Nucleic Acids Res. 36, D102-6 (2008). 627

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

27. Machanick, P. & Bailey, T. MEME-ChIP: motif analysis of large DNA datasets. 628

Bioinformatics (2011). 629

28. Zhang, P. et al. Negative cross-talk between hematopoietic regulators: GATA proteins 630

repress PU.1. Proc. Natl. Acad. Sci. U. S. A. 96, 8705–8710 (1999). 631

29. Metcalf, D. et al. Inactivation of PU.1 in adult mice leads to the development of myeloid 632

leukemia. Proc. Natl. Acad. Sci. U. S. A. 103, 1486–1491 (2006). 633

30. Wang, F. & Tong, Q. Transcription factor PU.1 is expressed in white adipose and inhibits 634

adipocyte differentiation. Am. J. Physiol. Physiol. 295, C213–C220 (2008). 635

31. Lin, L. et al. Adipocyte expression of PU.1 transcription factor causes insulin resistance 636

through upregulation of inflammatory cytokine gene expression and ROS production. Am. 637

J. Physiol. - Endocrinol. Metab. 302, E1550 (2012). 638

32. Buniello, A., MacArthur, J. & … M. C. The NHGRI-EBI GWAS Catalog of published 639

genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic 640

Acids Res (2019). 641

33. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. 642

Nature 562, 203–209 (2018). 643

34. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-644

wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015). 645

35. Loh, P. R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed-model association 646

for biobank-scale datasets. Nature Genetics 50, 906–908 (2018). 647

36. Zhang, Z., Zhou, L., Gou, L. & Wu, Y. N. Neural Architecture Search for Joint 648

Optimization of Predictive Power and Biological Knowledge. (2019). 649

37. Williams, R. J. Simple Statistical Gradient-Following Algorithms for Connectionist 650

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

Reinforcement Learning. Springer 8, (1992). 651

38. Machiela, M. & Chanock, S. LDlink: a web-based application for exploring population-652

specific haplotype structure and linking correlated alleles of possible functional variants. 653

Bioinformatics (2015). 654

39. Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based 655

linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). 656

40. Package ‘gaston’ Type Package Title Genetic Data Handling (QC, GRM, LD, PCA) & 657

Linear Mixed Models. (2020). doi:10.1159/000488519 658

41. Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nature Genetics 45, 659

580–585 (2013). 660

 661

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.18.251561

