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Predictive Control of Aerial Swarms in Cluttered Environments 1 

Enrica Soria*, Fabrizio Schiano, and Dario Floreano1  2 
 3 
Abstract. Classical models of aerial swarms often describe global coordinated motion as the 4 
combination of local interactions that happen at the individual level. Mathematically, these 5 
interactions are represented with Potential Fields. Despite their explanatory success, these 6 
models fail to guarantee rapid and safe collective motion when applied to aerial robotic swarms 7 
flying in cluttered environments of the real world, such as forests and urban areas. Moreover, 8 
these models necessitate a tight coupling with the deployment scenarios to induce consistent 9 
swarm behaviors. Here, we propose a predictive model that combines the local principles of 10 
potential field models with the knowledge of the agents’ dynamics. We show that our approach 11 
improves the speed, order, and safety of the swarm, it is independent of the environment 12 
layout, and scalable in the swarm speed and inter-agent distance. Our model is validated with a 13 
swarm of five quadrotors that can successfully navigate in a real-world indoor environment 14 
populated with obstacles. 15 

 16 
 17 

1 Introduction 18 

 19 
From the fluid wavelike movements of starling flocks to the swift turning maneuvers of bee 20 
swarms, nature displays many examples of coordinated flight [1]–[7]. Recent progress in aerial 21 
robotics technologies led to the availability of smart drones at the price of smartphones [8], but 22 
the deployment of drone swarms that autonomously coordinate their local trajectories remains 23 
a challenge. Drone swarms can offer larger area coverage than a single drone for monitoring 24 
and exploration missions [9], [10], and they can collect multi-dimensional sensory data by flying 25 
a diverse set of sensors [11]. Autonomous aerial swarms can also enable functionalities that are 26 
beyond the capabilities of a single drone, such as cooperative transportation of large objects 27 
and aerial construction [12], [13]. Hundreds of drones have been deployed in aerial light shows 28 
by companies such as Intel [14], Ehang [15], and Verity Studios [16], but in those circumstances, 29 
every drone is individually controlled by a central computer to follow a precomputed trajectory. 30 
Instead, the coordinated, synchronized motion of biological swarms is a self-organized behavior 31 
that emerges from local information[4]–[6], [17]–[19], and can thus cope with unforeseen 32 
situations, such as flying through forests or in urban canyons. 33 

 34 
Early work suggested that the collective motion of a biological swarm can be described by the 35 
combination of three behavioral rules that apply to each agent simultaneously [20]. These rules 36 
consist of (a) cohesion, which brings each agent closer to its neighbors, (b) repulsion, which 37 
drives each agent away from its neighbors to avoid collisions, and (c) alignment, which steers 38 
each agent towards the average heading of its neighbors. In goal-directed flight, alignment is 39 
replaced by migration, which steers each agent in a preferred migration direction [21], [22]. For 40 
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navigating environments with obstacles, the addition of a fourth rule, collision avoidance, is 41 
necessary to steer the agents around the obstacles [20], [23], [24]. Mathematically, these rules 42 
can be modeled by virtual forces exerted by the agents on their neighbors and are associated 43 
with Potential Fields (PFs), i.e., vector fields describing how forces act at various positions 44 
in space. PFs encode the desired behaviors of the swarm. They regulate the inter-agent distance 45 
among neighboring individuals similarly to a spring-mass system, adjust the velocity of the 46 
agents, steer them towards a common direction, and regulate their distance to obstacles [23].  47 
 48 
The advantage of PF swarm models is that they are purely reactive, meaning that their decisions 49 
are solely based on the current sensory information and thus have low computational 50 
complexity [20], [23]. For this reason, PF models are convenient for the implementation on real 51 
robotic systems, either in free environments [21], [25], or in environments with convex 52 
obstacles [24]. In the latter case, collision avoidance is obtained by defining virtual repulsive 53 
agents (called shill agents) located along the obstacles’ boundaries. However, these shill agents 54 
present the inconvenience of slowing down the swarm as it approaches the obstacles [20], [26]. 55 
This effect becomes prominent in environments with high obstacle densities, where PF swarms 56 
can significantly slow down. The slowdown can be attenuated by weakening the repulsion 57 
potentials, albeit at the expense of the swam safety, because some agents may collide. 58 
Moreover, to account for the idiosyncrasies of the real world, these models often include a 59 
significant number of parameters that have complex interdependencies [2], [24]. As a 60 
consequence, they often require the adoption of optimization techniques such as evolutionary 61 
algorithms, to identify a viable instantiation of the parameters, and each instantiation is specific 62 
to the swarm’s preferred speed and inter-agent distance and to the environmental layout [21], 63 
[24], [27].  64 

 65 
Here we propose a method to remove those difficulties that consists of endowing swarming 66 
agents with prediction-based control. Specifically, we show that aerial swarms with predictive 67 
control display faster flight while guaranteeing safe navigation in cluttered environments, they 68 
can adapt to diverse obstacle densities, and they are scalable to changes in the inter-agent 69 
distance and swarm’s speed. It has been recently advocated that some form of predictive 70 
control, in the form of an internal model of the actions of their conspecifics, may also be 71 
leveraged by biological swarms where the apparent synchronization of coordinated maneuvers, 72 
such as a flock of starlings or a school of fish, cannot be explained by a purely reactive system 73 
[19]. Inspired by this hypothesis, the method proposed in this paper endows flying agents with a 74 
model of swarm behavior based on Nonlinear Model Predictive Control (NMPC). 75 

 76 
Model Predictive Control (MPC) is a method that computes the control action of a system as the 77 
solution of a constrained optimization problem [28], [29]. MPC leverages a mathematical 78 
representation of the system to predict and optimize its future behavior in an iterative process. 79 
Differently from PF control, MPC can explicitly handle constraints, such as physical limitations 80 
(e.g., flight speed and acceleration ranges of a drone) [30]–[32], and environmental restrictions 81 
(e.g., no-flight zones) [32]–[34]. However, the recursive online solution of constrained 82 
optimization problems is associated with higher computational costs, and therefore the 83 
adoption of predictive controllers in robotics has spread only recently [35].  84 
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 85 
MPC has shown promising results in simulation on multi-vehicle systems. Examples include the 86 
stabilization of multiple agents in obstacle-free environments [36], [37], in the presence of 87 
obstacles [33], and the generation of collision-free trajectories for groups of robots with known 88 
target locations [38]–[40]. NMPC is a variant of MPC that can handle the nonlinearities of a 89 
system or its constraints [29]. This advantage comes at the cost of being more computationally 90 
demanding. In simulation, NMPC has been used to control leader-follower formations of drones 91 
without obstacles [41], and to control 2D quadrotor formations in the presence of convex 92 
obstacles [34].  93 
 94 
Less work has been done on the use of MPC with multiple real drones, notably due to the 95 
difficulty of real-time implementation. Linear MPC has been used for trajectory planning in the 96 
presence of virtual obstacles in a leader-follower configuration, where a drone (the follower) 97 
has to keep a constant distance from a virtual agent (the leader), [42]. However, in leader-98 
follower approaches, the leader has the extra knowledge of the group trajectory, which is either 99 
preprogrammed or provided by an external source. This aspect introduces an asymmetry in the 100 
agents’ roles and adds a single point of failure in the swarm [43]. MPC has been used for the 101 
online generation of collision-free trajectories for a group of drones in environments with 102 
obstacles, where every drone is individually assigned an initial position and a target destination 103 
[32]. Instead, the model presented here is meant to coordinate the navigation of the swarm as a 104 
unique entity and guarantee internal order, in lieu of generating the trajectories separately. 105 
Concurrently, we avoid imposing a rigid formation or a fixed topology to the swarm, which may 106 
impact the freedom and fluidity of the agents’ movements. Finally, NMPC has been shown to be 107 
capable of dealing with non-convex collision avoidance constraints in real multi-drone systems 108 
when the agents are assigned intersecting paths, although they were flying in empty 109 
environments [44]. 110 
 111 
In the proposed NMPC model, the objective to be optimized is made of three components 112 
inspired from PF swarm models: (a) separation, which drives the inter-agent distances to a 113 
preferred value, (b) navigation, which makes the agents’ speed approximate a preferred value, 114 
and (c) direction, which steers the swarm along a preferred direction. A fourth rule, (d) control 115 
effort is added to minimize the agents’ accelerations, thereby smoothing flight trajectories and 116 
increasing energy efficiency. Each drone regulates its flight based on the knowledge of its 117 
neighbors and its own state and predicts its own trajectory and those of its neighbors thanks to 118 
a linearized dynamical model. The proposed NMPC model integrates a set of constraints to 119 
ensure safety distances among drones and with obstacles. We compare our NMPC model to a 120 
PF model and show that predictive controllers can safely fly the swarm in cluttered 121 
environments while significantly increasing the flight speed and synchronization of the swarm. 122 
Also, we show that the performance of the proposed NMPC model is independent of the 123 
obstacle density and environmental layout, differently from PF models. Additionally, we test the 124 
scalability of the proposed model to variations of desired inter-agent distance and swarm 125 
speed. We perform systematic experiments in simulation and validate the results with a swarm 126 
of five palm-sized quadrotors. 127 

 128 



 

2 Results  129 

  130 
For the performance assessment of the swarm models, we set up a forest-like environment that 131 
consists of a rectangular flight region populated with cylindrical obstacles (Fig. 1a). At the 132 
experiment onset, we place five drones at random positions within a predefined start area on 133 
one side of the region (Fig. 1a, red zone) and let the swarm fly through the region along the 134 
migration direction (Fig. 1a, orange arrow). The mission is completed when all drones cross the 135 
arrival plane (Fig. 1a, orange plane) on the opposite side of the region.  136 
 137 
We assess the quality of the aerial swarm’s flight considering eight different metrics. The 138 
mission completion time 𝑇 measures the time that the swarm requires to cross the region. The 139 
inter-agent distance error 𝐸𝑑 measures the deviation of the distances that the drones maintain 140 
from each other from the preferred distance 𝑑ref, and the inter-agent distance range 𝑅𝑑 141 
measures the range in which the inter-agent distances vary (defined by the minimum and 142 
maximum inter-agent distance over time). The speed error 𝐸𝑣 measures the deviation of the 143 
agents’ speeds from the preferred migration speed 𝑣ref, and the speed range 𝑅𝑣 measures 144 
the range in which the agents’ speeds vary. 𝐸𝑑 , 𝑅𝑑, 𝐸𝑣 and 𝑅𝑣 take values greater than or 145 
equal to 0 (ideal case). We determine the swarm’s level of synchronization by calculating the 146 
directional correlation of the agents’ movements, expressed by the so-called order Φorder. 147 Φorder takes values between −1 (complete disorder) and 1 (perfect order). Finally, the 148 
agent-agent safety Φagent−safety assesses the ability of the swarm’s agents to avoid collisions 149 

among themselves, and the agent-obstacle safety Φobs−safety assesses the ability of the agents 150 

to avoid collisions with the obstacles. Φagent−safety and Φobs−safety take values between 0 151 

(complete unsafety) and 1 (perfect safety, i.e., zero collisions) (see Supplementary Table 1 for 152 
mathematical formulation). To evaluate the overall performance of the swarm during a mission, 153 
we compute the average and standard deviation of these metrics. For the instantaneous 154 
evaluation of the swarm over time, we additionally plot the inter-agent distance and speed, and 155 
the distance to obstacles, from which we can appreciate their respective errors and ranges, and 156 
the occurrence of collisions. 157 
 158 



 

 159 
 160 
Fig. 1: Experimental setup of drone swarm flight in cluttered environments. (a) Illustration of 161 
the experimental setup and the environment configuration. A ground control station, equipped 162 
with a radio transmitter, computes and sends run-time control commands to the drones. The 163 
swarm flies in the 3D space of an indoor flying arena. The drones take off from initial random 164 
positions within a predefined start area (red zone). Drones swarm along the preferred migration 165 
direction (orange arrow). The mission is completed when all drones cross the arrival plane (Fig. 166 
1a) on the opposite side of the region. (b) Indoor test environment populated with cylindrical 167 
obstacles. (c) Components of the drones used for the hardware experiments. 168 
 169 
We extensively tested the proposed NMPC swarm model in simulation and compared it to a 170 
reactive PF model that has been recently described and validated on 30 real drones [24]. In 171 
addition to the repulsion and obstacle avoidance rules, the PF model includes a friction rule to 172 
reduce velocity oscillations. In order to ensure cohesive goal-directed flight in open 173 
environments, we added the rules of cohesion and migration to the PF model. As in previous 174 
work [21], [24], [27], we used evolutionary optimization to search the large parameter space of 175 
the PF swarm model, and favored swarms with highly ordered flight (Φorder = 1) and a low 176 
number of agent-agent and agent-obstacle collisions (Φagent−safety = 1, Φobs−safety = 1) (see 177 



 

Supplementary Table 3). The purpose of the experimental comparison between NMPC 178 
swarming and PF swarming is to emphasize behavioral differences and performance advantages 179 
of the proposed NMPC swarm model. However, the choice of a swarm model for the 180 
deployment on physical drones should also consider computational resources, which are 181 
significantly larger for NMPC swarming. 182 
 183 
Below we present three sets of simulation experiments: (i) we compare the performance 184 
metrics of the two models in the same environmental conditions, (ii) we investigate the 185 
adaptability of the PF and NMPC swarm models to environments with different obstacle 186 
density, and (iii) we study the scalability of the NMPC swarm model at different preferred 187 
speeds and inter-drone distances. Finally, we experimentally validate the NMPC swarm model 188 
with five palm-sized drones (Fig. 1c) flying through a room with cylindrical obstacles (Fig. 1b). 189 
 190 

2.1 Comparison of PF and NMPC aerial swarms 191 

 192 

 193 
    194 
Fig. 2: Comparison of the PF and NMPC aerial swarms in simulation experiments. (a) Top views 195 
of the 3D trajectories of five drones flying in a cluttered environment with the PF (top) and the 196 
NMPC models (bottom) (see Supplementary Video 1). The circular objects on the map 197 
correspond to cylindrical obstacles. (b) Inter-agent distance average (solid line) and range 198 
(shaded region). The curve on top (blue) refers to the PF swarm, while the one at the bottom 199 



 

(orange) refers to the NMPC swarm. (c) Swarm speed average (solid line) and range (shaded 200 
region). (d) Order metric. (e) Distance to obstacles, min(𝑑𝑖𝑚), expressed as the minimum 201 
distance between the swarm’s agents and the set of obstacles. 202 

 203 
Both PF and NMPC swarms navigated around the obstacles without collisions (Fig. 2e), but the 204 
NMPC swarm completed the mission 57% faster than the PF swarm. The reduced mission time is 205 
due to the ability of the NMPC swarm to track the preferred speed 𝑣ref more consistently (𝐸𝑣= 206 0.02 ± 0.02, 𝑅𝑣= 0.08±0.07) than PF swarm (𝐸𝑣=0.39 ± 0.15, 𝑅𝑣= 0.47 ± 0.15) (Fig. 2c). The 207 
NMPC swarm also generated a smaller inter-agent distance error (𝐸𝑑 = 0.11 ± 0.02) and range 208 
(𝑅𝑑 = 0.55 ± 0.18) compared to the PF swarm (𝐸𝑑 = 0.26 ± 0.15, 𝑅𝑑=0.90 ± 0.26) (Fig. 2b). 209 
The NMPC model generated almost perfectly ordered flight maneuvers throughout the entire 210 
flight (Φorder =  0.98 ± 0.02) while the PF model displayed lower and more variable order 211 
(Φorder =  0.78 ± 0.17) (Fig. 2d). Neither the NMPC nor the PF swarm presented agent-agent 212 
or agent-obstacle collisions (Φagent−safety =  1 ± 0, Φobs−safety =  1 ± 0) (Fig. 2e). While 213 

optimizing the swarm’s objectives, the NMPC model reduced the minimum distance to 214 
obstacles of 0.03 𝑚. In comparison, the PF swarm achieved a minimum distance to obstacles of 215 
0.14 m. This difference is due to the fact that in the PF model the obstacles apply a repulsion 216 
force on the agents’ in their proximity, while in the NMPC model there is no penalty for 217 
approaching the obstacles. As a consequence, when implementing the NMPC model on a real-218 
world swarm, the user should carefully choose a safety margin. 219 
 220 

2.2 Environments with different obstacle densities 221 

   222 



 

 223 
 224 

Fig. 3: Comparison of the PF and NMPC swarm deployment in environments with different 225 
obstacle densities. (a, d) Top views of the 3D simulated trajectories of the PF and the NMPC 226 
swarms in environments with three different obstacle densities. The density increases from left 227 
to right (Case A: 0.06, B: 0.12, and C: 0.20) (see Supplementary Video 1). (b, c) Inter-agent 228 
distance and speed of the PF swarm in Case C. (e, f) Inter-agent distance and speed of the NMPC 229 
swarm in Case C. (g) Aggregated results (average and standard deviation) of 10 stochastic 230 
simulations of the PF (blue) and NMPC (orange) swarm models in Cases A, B, and C. The 231 
represented metrics are the mission time 𝑇, the distance error 𝐸𝑑, the distance range 𝑅𝑑, the 232 
speed error 𝐸𝑣, and the speed range 𝑅𝑣 (see Supplementary Table 1). 233 
 234 

Parameter Unit Description Value 

𝑑ref m 
Preferred (or reference) value for 

the inter-agent distance 
0.8 𝑣ref 

m/s 
Preferred (or reference) value for 

the swarm speed 
0.5 𝒖ref - Preferred migration direction (1 0 0) 



 

𝐿map m 
Length of an edge of the square 

flight region (or map) 
10 𝑟obs m Obstacles radius 0.35 𝜌obs 

- /m2 

Obstacle density Case A: 0.06 

Case B: 0.12 

Case C: 0.20 

 235 
Table 1: Swarm and environment configurations of the simulation experiments with different 236 
obstacle densities. The same configurations are used for both the PF and the NMPC swarm 237 
models. 238 

 239 
We tested the PF and the NMPC swarm models for three different obstacle densities (Case A: 240 
0.06, B: 0.12, and C: 0.20) to quantify the impact on the swarms’ performance. The obstacles 241 
occupy random positions on the map, but they have a homogenous distribution (Fig. 3a and 3d). 242 
The initial positions of the drones are random. For both swarm models, we show the evolution 243 
of the inter-agent distance and speed for the scenario with the highest obstacle density (Case 244 
C). The results show that the inter-agent distance error is smaller with NMPC swarms (𝐸𝑑 =245 0.11 ± 0.02) than with PF swarms (𝐸𝑑 = 0.27 ± 0.12), and the inter-agent distance range is 246 
shorter for NMPC swarms (𝑅𝑑 = 0.56 ± 0.18) than with PF swarms (𝑅𝑑 = 0.90 ± 0.26,). The 247 
NMPC swarms tracked the preferred speed 𝑣ref more precisely (𝐸𝑣 = 0.03 ± 0.02) than the PF 248 
swarms (𝐸𝑣 = 0.39 ± 0.15), and the speed range was shorter (𝑅𝑣 = 0.08 ± 0.07 and 0.47 ±249 0.15, respectively). The faster speed of NMPC swarms resulted in faster mission completion 250 
time than the PF swarms (𝑇 = 21.5 s and 34.1 s, respectively).   251 

 252 
To assess the reproducibility of the results, we performed ten stochastic simulations for each of 253 
the three obstacle densities and for the two swarm models, and we report here aggregated 254 
performance results (Fig. 2g). While the speed error in the NMPC swarm is small and constant 255 
for all obstacle densities (Case A: Ev = 0.01 ± 0.01, B: 0.01 ± 0.01, C: 0.01 ± 0.01), it is 256 
larger and increases with larger obstacles densities in the PF swarm (Case A: Ev = 0.08 ± 0.07, 257 
B: 0.21 ± 0.11, C: 0.25 ± 0.11). As a consequence, the mission completion time of the PF 258 
swarm is increased when increasing the obstacle density (Case A: 𝑇 = 21.56 ± 0.81 s, B: 259 25.35 ± 2.46 s, C: 27.48 ± 2.43 s), while for the NMPC swarm it is shorter and it stays almost 260 
constant across the different densities (Case A: 𝑇 = 20.47 ± 0.22 s, B: 20.54 ± 0.21 s, C: 261 20.72 ± 0.28 s). Also the PF swarm’s order deteriorates when increasing the obstacle density 262 
(Case A: Φorder = 0.98 ± 0.03, B: 0.92 ± 0.08, C: 0.81 ± 0.08), while for the NMPC swarm it 263 
stays almost constant (Case A: Φorder = 0.99 ± 0.01, B: 0.98 ± 0.02, C: 0.98 ± 0.02). While 264 
the NMPC swarm produces collision-free movements in all cases, for the PF swarm we observe 265 
some agent-obstacle collisions at high obstacle densities (Case A: Φobs−safety = 1 ± 0, B: 266 

(99.98 ± 0.06) 10-2, C: (99.99 ± 0.02) 10-2). The aggregated performance results are 267 
summarized in Supplementary Table 5. 268 

 269 

2.3 Scalability to different inter-agent distances and speeds 270 

 271 
 272 



 

 273 
 274 
Fig. 4: Scalability of the NMPC swarm in inter-agent distance and speed. On the left, simulation 275 
results on the scalability of the NMPC swarm model in the inter-agent distance for three 276 
preferred distance values (Case A: 𝑑ref = 0.5𝑚, B: 1.0𝑚, and C: 1.5𝑚). On the right, 277 
simulation results on the scalability in the swarm speed for three preferred speed values (Case 278 
A: 𝑣ref =  0.5𝑚/𝑠, B: 1.0𝑚/𝑠, and C: 1.5𝑚/𝑠). (a, d) Top views of the 3D trajectories of the 279 
swarm (see Supplementary Video 1). (b, c) Inter-agent distance and speed for the experiment 280 
on the inter-agent distance scalability. (e, f) Inter-agent distance and speed for the experiment 281 
on the speed scalability. The obstacle size and density are the same for the six cases.  282 

 283 
We assess the scalability of the proposed NMPC model to different values of the preferred 284 
inter-agent distance (Case A: 𝑑ref = 0.5 𝑚, B: 1.0 𝑚, and C: 1.5 𝑚, see Fig 4 a-c) and speed 285 
(Case A: 𝑣ref = 0.5 𝑚/𝑠, B: 1.0 𝑚/𝑠 , and C: 1.5 𝑚/𝑠, see Fig 4 d-f) in the same environmental 286 
conditions. We analyze the swarm’s inter-agent distance and speed and quantify their 287 
respective errors and ranges. The results show that at different inter-agent distance levels the 288 
swarm inter-agent distance converged to the preferred value with comparable errors (Case A: 289 𝐸𝑑 = 0.05 ± 0.06, B: 0.01 ± 0.02, C: 0.02 ± 0.03, see Fig. 4b). The swarm’s speed error is 290 
almost zero in the three cases (see Fig. 4c), and it resulted in similar mission times (Case A: T =291 20 𝑠, B: 21 𝑠, and C:  21.2 𝑠). We did not observe collisions. Regarding the experiments on the 292 



 

scalability in speed, the speed error 𝐸𝑣 was close to zero in the three cases (Fig. 4e). However, 293 
the variability of the inter-agent distance in Case C is higher (𝑅𝑑 = 0.46 ± 0.05) than in Cases A 294 
(𝑅𝑑 = 0.13 ± 0.11) and B (𝑅𝑑 = 0.19 ± 0.03) (Fig. 4f). Indeed, when the agents turn around 295 
the obstacle in the middle of the scene, they rearrange and increase their distance. Also in these 296 
experiments, we did not observe collisions. Comparative results on the PF swarm are in 297 
Supplementary Fig. 1. Aggregate results of stochastic simulations for each of the preferred inter-298 
agent distance and speed values, and for both the PF and the NMPC models are in 299 
Supplementary Fig. 2, and in Supplementary Tables 6 and 7. 300 

  301 

2.4 Validation with real drones 302 

 303 



 

 304 
 305 
Fig. 5: Real-world experiment of the NMPC swarm. (a) The swarm, composed of five 306 
commercial palm-sized quadrotors, flies through cylindrical obstacles in a motion capture arena. 307 
The swarm crosses the region from the foreground (𝑡 = 0 𝑠) to the background (𝑡 = 𝑇), while 308 
maintaining cohesion and avoiding the obstacles (see Supplementary Video 2). (b) Top view of 309 
the trajectories of the drones. For the real-world deployment, we selected obstacles with a 310 
smaller radius (𝑟obs =  0.30 𝑚) than in simulation (𝑟obs = 0.55 𝑚), but we used the same safety 311 
distance for collision avoidance as in simulation (𝑑obs−safety = 0.65 𝑚), which introduces a 312 



 

safety margin of 0.25 𝑚 from the physical obstacles (see Supplementary Table 4). (c) Average 313 
inter-agent distance and range with the real swarm (solid line and shaded region, respectively) 314 
and the simulated swarm (dashed and dotted lines, respectively). (d) Average speed and range 315 
with the real swarm (solid line and shaded region, respectively) and the simulated swarm 316 
(dashed and dotted lines, respectively). (e) Swarm’s order: real (solid line) and simulated 317 
(dashed line) swarm. (f) Swarm distance to obstacles. The offset in the real data (solid line) with 318 
respect to the simulated data (dashed line) is due to the safety margin. 319 
 320 
We validated the NMPC swarm on five commercial quadrotors in an indoor motion capture 321 
arena where we reconstructed the environment described in Sec. 2.1 (Fig. 5a). We measured 322 
the real flight performance, and we compared them with the simulation performance. The real 323 
drones achieve the preferred inter-agent distance 𝑑ref = 0.8 𝑚 with an error (𝐸𝑑= 0.12±0.02) 324 
comparable to the simulation error (𝐸𝑑= 0.11±0.02) (Fig. 5c). However, the speed error is 325 
slightly higher (𝐸𝑣 = 0.07 ± 0.03) than in simulation (𝐸𝑣 = 0.02 ± 0.02) (Fig. 5d). The higher 326 
speed error in the real swarm can be explained by small communication delays and air 327 
turbulence due to the proximity of the drones to each other and obstacles. The order of the real 328 
swarm (Φorder =  0.97 ± 0.04) is comparable to the simulated swarm (Φorder =  0.98 ± 0.02) 329 
(Fig. 5e), and in both cases we did not observe collisions (Φagent−safety =  1 ± 0, Φobs−safety =330  1 ± 0) (Fig. 5f). 331 

 332 

3 Discussion 333 

 334 
This article shows that a Nonlinear Model Predictive Control (NMPC) model achieves a faster 335 
and more synchronized flight in cluttered environments as compared to state-of-the-art models 336 
based on potential fields (PFs). NMPC swarms report no collisions in cluttered environment, 337 
they better attain and maintain target speeds, and they remain more ordered and cohesive. The 338 
benefits brought by predictive controllers to robotic aerial swarms confirm a parallel with 339 
biological systems, where individuals are thought to enhance their synchronization by future 340 
state projection [19].  341 
 342 
In robotics, the advantages of the NMPC method are promising for applications that require 343 
navigation in crowded scenarios, such as the exploration of urban environments, collapsed 344 
buildings, or forests [45], [46]. Also vision-based swarms could benefit from all these features 345 
since the reliability of reciprocal visual detection of the drones strongly depends on their 346 
distance, and NMPC swarms showed that they can better maintain target inter-agent distances 347 
[22], [47]. Overall, predictive methods can improve the autonomy of swarm operations as well 348 
as the safety of the swarm and the environment, which are both essential elements to build 349 
public confidence in the use of swarms [48].  350 
 351 
For our experiments, we relied on a central computing node that generates the motion of the 352 
agents at run time according to local interactions only. This assumption simplifies the 353 
implementation since it requires only one computer, acting as a ground control station, instead 354 
of several onboard computers that the agents would carry. However, the NMPC model requires 355 
a higher amount of computational resources than the PF model, and scale worse with the 356 



 

swarm size. It will be interesting to develop a decentralized NMPC model where the 357 
computational costs are independent of the number of agents. Work in this direction will allow 358 
to scale our approach to swarms of larger size.  359 
 360 
Finally, our results motivate future works to address research questions in the design of robust 361 
swarm models in dynamic environments. Thanks to their recursive structure, MPC controllers 362 
offer a promising method to allow navigation in scenarios with moving obstacles. However, a 363 
generalization of the proposed model to dynamic environments would require theoretical and 364 
numerical investigation on the conditions for stability, as well as reliable estimation of the 365 
obstacles’ motion [49].   366 

 367 

4 Methods 368 

 369 
In this work, we consider a swarm of 𝑁 agents labeled by 𝑖 ∈ {1, … , 𝑁}. The position, velocity, 370 
and control input of the 𝑖-th agent are denoted by 𝒑𝑖, 𝒗𝑖 , 𝒖𝑖 ∈ ℝ3, respectively. Let 𝑑𝑖𝑗 =∥371 𝒑𝑗 − 𝒑𝑖 ∥ represent the distance between the center of two agents 𝑖 and 𝑗, where ∥⋅∥ 372 

denotes the Euclidean norm. We model the swarm with a directed sensing graph 𝒢 = (𝒱, ℰ), 373 
where the vertex set 𝒱 = {1, … , 𝑁} represents the agents, and the edge set ℰ ⊆ 𝒱 × 𝒱 374 
contains the pairs of agents (𝑖, 𝑗) ∈ ℰ for which agent 𝑖 can sense agent 𝑗. We denote as 375 𝒩𝑖 = {𝑗 ∈ 𝒱| (𝑖, 𝑗) ∈ ℰ} ⊂ 𝒱 the set of neighbors of an agent 𝑖 in 𝒢, and | ⋅ | indicates the 376 
cardinality of a set. To keep the |𝒩𝑖| constant, we define the neighbors set utilizing a 377 
topological distance, a reasonable hypothesis also for natural systems [7]. Therefore, the set 𝒩𝑖 378 
contains the |𝒩𝑖| nearest neighbors of agent 𝑖. To reproduce a forest-like environment, we 379 
introduce 𝑀 cylindrical obstacles labeled by 𝑚 ∈ {1, … , 𝑀}. We denote as 𝑑𝑖𝑚 the distance 380 
between an agent 𝑖 and the symmetry axis of cylinder 𝑚. In our simulations, the dynamics of 381 
the agents is reproduced in discrete time. We let 𝒑𝑖(𝑘), 𝒗𝑖(𝑘), 𝒖𝑖(𝑘)   ∈ ℝ3 be the position, 382 
velocity, and control input of the 𝑖-th agent at the time 𝑡(𝑘) = 𝑘  𝑑𝑡, respectively. 383 

 384 

4.1 PF swarm model 385 

 386 
The PF model we present is inspired by a state-of-the-art model that allows drone swarm 387 
navigation in confined environments [24]. From the original model, we include the rule of 388 
repulsion to prevent inter-drone collisions, friction to reduce velocity oscillations, and obstacle 389 
avoidance to avoid collisions with obstacles. For the mathematical definition of these rules, we 390 
refer the reader to [24]. To ensure goal-directed flight in open environments, we added two 391 
rules: migration to provide a preferred velocity vector, and cohesion to keep agents together. 392 
We denote the migration velocity with 𝒗ref = 𝑣ref𝒖ref, where 𝑣ref is the preferred speed and 393 𝒖ref is the preferred direction. Then, the migration term, equal for every agent, corresponds to:  394 

 𝒗mig = 𝑣ref𝒖ref (1) 395 

If the repulsion is active when neighboring agents are closer than the preferred distance 𝑑ref 396 
and push them further apart, the cohesion is active when they are father than 𝑑ref to bring 397 
them closer. Repulsion and cohesion are inactive when two agents are precisely at the distance 398 𝑑ref. The cohesion exerted on an agent 𝑖 from a neighbor 𝑗 is:  399 



 

 𝒗coh,𝑖𝑗 = {𝑐coh(𝑑𝑖𝑗 − 𝑑ref) 𝒑𝑗−𝒑𝑖𝑑𝑖𝑗 if  𝑑ij < 𝑑ref0 otherwise  (2) 400 

where we choose the pairwise gain of cohesion equal to the repulsion gain 𝑐coh = 𝑐rep and the 401 

cutoff for the minimum cohesion range equal to the repulsion range 𝑑ref. The total cohesion 402 
effect calculated for agent 𝑖 with respect to its neighbors is:  403 

 𝒗coh,𝑖 = ∑𝑗∈𝒩𝑖 𝒗coh,𝑖𝑗 (3) 404 

At any instant, the velocity for agent 𝑖 resulting from the contributions above is:  405 
 �̃�𝑖 = 𝒗mig + 𝒗coh,𝑖 + 𝒗rep,𝑖 + 𝒗fric,𝑖 + ∑𝑠∈𝑀𝑖 𝒗obstacle,𝑖𝑠 (4) 406 

 407 
After summing the contributions, we apply a cutoff on the acceleration at 𝑎max according to:  408 

 𝒂𝑖 =  �̃�𝑖‖�̃�𝑖‖ min(‖�̃�𝑖‖, 𝑎max) (5) 409 

where �̃�𝑖(𝑘 + 1) = (�̃�𝑖 (𝑘 + 1) − �̃�𝑖(𝑘))/𝑑𝑡. Then, we apply a cutoff on the speed at 𝑣max, 410 
and get the velocity command 𝒗𝑖 of the 𝑖-th agent: 411 

 𝒗𝑖 =  �̃�𝑖‖�̃�𝑖‖ min(‖�̃�𝑖‖, 𝑣max) (6) 412 

 413 
To search the large parameter space of the PF swarm model, we used evolutionary optimization 414 
for highest-order flight and lowest number of collisions. The evaluation of the swarm behavior is 415 
based on a single fitness that sums three independent values (Φorder, Φagent−safety, and 416 Φobs−safety) smaller or equal to 1 (ideal case). The fitness is determined in simulation where the 417 

swarm initialized with random positions in an environment where obstacles are randomly 418 
placed. The parameter values and their description are detailed in the Supplementary Materials. 419 
 420 

4.2 Agents’ dynamics 421 
 422 

The NMPC swarm model supposes the availability of the agents’ dynamic model. We assume 423 
that every drone of the swarm obeys a discrete linear system, given by:  424 

 𝒙𝑖(𝑘 + 1) = 𝐴𝑖𝒙𝑖(𝑘) + 𝐵𝑖𝒖𝑖(𝑘) (7) 425 
 where 𝐴𝑖  and 𝐵𝑖 are constant matrices. In this article, we consider the system to represent a 426 
quadrotor with an underlying acceleration controller. The input 𝒖𝑖 is an acceleration command 427 
and the state 𝒙𝑖 = [𝒑𝑖 , 𝒗𝑖] ∈ ℝ6 is a vector containing the position and velocity. 428 
 429 
We assume that the velocities and acceleration inputs of the agents are bounded by constant 430 
vectors 𝒗min, 𝒗max and 𝒖min, 𝒖max respectively. This translates into the inequalities 431 

 𝒗min ≤ 𝒗𝑖(𝑘) ≤ 𝒗max (8) 432 
 𝒖min ≤ 𝒖𝑖(𝑘) ≤ 𝒖max (9) 433 

 434 
Let 𝒙 = [𝒙1, 𝒙2, ⋯ 𝒙𝑁] ∈ ℝ6𝑁 the positions and velocities of the agents of the swarm, and 435 𝒖 = [𝒖1, 𝒖2, ⋯ 𝒖𝑁] ∈ ℝ3𝑁. The system defining the motion of the swarm can be written as:  436 

 𝒙(𝑘 + 1) = 𝐴𝒙(𝑘) + 𝐵𝒖(𝑘) (10) 437 
 where 𝐴 and 𝐵 are block diagonal matrices with blocks 𝐴1, … , 𝐴𝑁 and 𝐵1, … , 𝐵𝑁, 438 
respectively. 439 
 440 



 

4.3 NMPC swarm model 441 
 442 

For our NMPC swarm model, we defined behavioral rules similar to those of the PF model. 443 
These rules are encoded as four terms of a cost function, including separation, navigation, 444 
direction, and control effort. At each time step, the evolution of the agents’ movements is 445 
predicted over a constant time window, called the prediction horizon, with the dynamic model 446 
introduced in Sec. 4.2. These predictions are fed into the cost function, and the solution of the 447 
constrained optimization problem gives the control inputs for the swarm over the so-called 448 
control horizon (see Fig. 6). The prediction and control horizons are finite and shift forward at 449 
every time step. In the following, they will be denoted as 𝑇𝑃 = 𝑃  𝑑𝑡 and 𝑇𝐶 = 𝐶  𝑑𝑡 450 
respectively, with 𝑃 ≥ 𝐶 and 𝑃, 𝐶 ∈ ℕ+.  451 
 452 
We let (⋅)(𝑘 + 𝑙|𝑘) represent the predicted value of (⋅)(𝑘 + 𝑙) with the information 453 
available at time 𝑡(𝑘) and 𝑙 ∈ {0, … , 𝑃}. We formulated a centralized version of the model2, 454 
where the swarm rules are defined locally and every agent is only influenced by its neighbors. 455 
The separation term for agent 𝑖 and time 𝑡(𝑘) is:  456 

 𝐽sep,𝑖(𝑘) = ∑𝑗∈𝒩𝑖 ∑𝑃𝑙=1 𝑤sep|𝒩𝑖| (∥ 𝒑𝑗(𝑘 + 𝑙|𝑘) − 𝒑𝑖(𝑘 + 𝑙|𝑘) ∥2− 𝑑ref2 )2
 (11) 457 

The navigation term is:  458 

 𝐽nav,𝑖(𝑘) = ∑𝑃𝑙=1 𝑤nav(∥ 𝒗𝑖(𝑘 + 𝑙|𝑘) ∥2− 𝑣ref2 )2
 (12) 459 

The direction term:  460 

 𝐽dir,𝑖(𝑘) = ∑𝑃𝑙=1 𝑤dir (1 − (𝒗𝑖(𝑘+𝑙|𝑘)⋅𝒖ref)2∥𝒗𝑖(𝑘+𝑙|𝑘)∥2 )2
 (13) 461 

The combined action of the navigation (6) and direction (7) terms contribute to the so-called 462 
migration behavior of the swarm. The control effort is:  463 

 𝐽𝑢,𝑖(𝑘) = ∑𝑃−1𝑙=0 𝑤𝑢 ∥ 𝒖𝑖(𝑘 + 𝑙|𝑘) ∥2 (14) 464 

where 𝑤sep, 𝑤nav, 𝑤dir, and 𝑤𝑢 represent the constant weights associated with the cost 465 

function terms.  466 
 467 

To prevent the agents from colliding with their neighbors or the obstacles, we associated with 468 
the cost function two sets of collision avoidance constraints:  469 

 𝑑𝑖𝑗(𝑘 + 𝑙|𝑘)2 ≥ 𝑑agent−safety2    𝑖 ∈ {1, … , 𝑁}, 𝑗 ∈ 𝒩𝑖  (15) 470 

 𝑑𝑖𝑚(𝑘 + 𝑙|𝑘)2 ≥ 𝑑obs−safety2    𝑖 ∈ {1, … , 𝑁}, 𝑚 ∈ {1, … , 𝑀} (16) 471 

where 𝑑agent−safety is the safety distance between two agents’ positions and 𝑑obs−safety is 472 

the safety distance that an agent should keep from the obstacle’s position. 473 
 474 

We let 𝑿(𝑘) ∈ ℝ6𝑁𝑃 the stacked sequence of the predicted states 𝒙(𝑘 + 𝑙|𝑘) over the 475 
horizon 𝑙 ∈ {1, … , 𝑃} and 𝑼(𝑘) ∈ ℝ3𝑁𝑃 the stacked sequence of the predicted control inputs 476 𝒖(𝑝|𝑘) over the horizon 𝑙 ∈ {0, … , 𝑃 − 1}. Then, the cost function and constraints define the 477 
following non-convex optimization problem:  478 

                                                      
2 The cost function sums the contributions of every agent and the optimization process is run by a centralized software. 



 

 

min𝑿(𝑘),𝑼(𝑘)       ∑𝑁𝑖=1 (𝐽sep,𝑖(𝑘) + 𝐽nav,𝑖(𝑘) + 𝐽dir,𝑖(𝑘) + 𝐽u,𝑖(𝑘))subject to      𝒙(𝑘 + 𝑙 + 1|𝑘) = 𝐴𝒙(𝑘 + 𝑙|𝑘) + 𝐵𝒖(𝑘 + 𝑙|𝑘)      𝒙(𝑘|𝑘) = 𝒙(𝑘)      𝒗min ≤ 𝒗𝑖(𝑘 + 𝑙|𝑘) ≤ 𝒗max      𝒖min ≤ 𝒖𝑖(𝑘 + 𝑙|𝑘) ≤ 𝒖max      𝑑𝑖𝑗(𝑘 + 𝑙|𝑘)2 ≥ 𝑑agent−safety2      𝑑𝑖𝑚(𝑘 + 𝑙|𝑘)2 ≥ 𝑑obs−safety2
 (17) 479 

with 𝑙 ∈ {1, … , 𝑃}, 𝑖 ∈ {1, … , 𝑁}, 𝑗 ∈ 𝒩𝑖, and 𝑚 ∈ {1, … , 𝑀}. 480 
    481 

Fig. 6: Predictive swarm algorithm workflow. The proposed NMPC swarm algorithm optimizes 482 
four local rules: the separation incentivizes neighboring drones to stay at the preferred inter-483 
agent distance 𝑑ref, the navigation incentivizes constant migration speed 𝑣ref, the direction 484 
drives the agents towards a preferred direction 𝒖ref, and the control effort incentivizes small 485 
acceleration values. For each agent, the algorithm selects the nearest neighbors and feed their 486 
states into the optimization problem. The optimization problem, solved at discrete time 487 
instants, minimizes a cost function over the prediction horizon 𝑇𝑃 and yields an optimal 488 
temporal sequence of control actions over the command horizon 𝑇𝐶. Only the first action is 489 
sent to the drones, which perform their motion accordingly. This procedure is repeatedly 490 
applied throughout the control process. 491 



 

 492 

4.4 Simulation setup 493 

 494 
We implemented our NMPC model in MATLAB with the help of acados [50], an open-source 495 
library for fast nonlinear optimal control. This software relies on C code generation for speeding 496 
up the computation in real-time applications. The system dynamics and the constraints of the 497 
problem are discretized by the library over the prediction horizon to obtain a structured 498 
Nonlinear Program (NLP). Then, the NLP is approximated through Sequential Quadratic 499 
Programming (SQP) that iteratively solves convex Quadratic Program (QP) sub-problems. After 500 
applying a condensing step, a linear algebra solver, IPOPT, based on the Interior Point (IP) 501 
method finds the solution of the sub-problems [51]. We run our simulations on a DELL Precision 502 
Tower with a 3.6 GHz Intel Core i7-7700 processor and 16 GB 2400 MHz RAM, where we set the 503 
maximum number of SQP to 7 and the maximum number of QP iterations to 7. 504 

 505 

4.5 Drone experimental setup 506 
 507 

In our experiments, we used five Bitcraze Crazyflie 2.1 quadrotors (Fig. 1c). Each quadrotor is 508 
equipped with a 3-axis accelerometer, a 3-axis gyroscope, a pressure sensor, and a marker deck 509 
for hosting passive reflective markers. The microcontroller is a STM32F4 running at 168MHz, on 510 
which both state estimation and low-level control are running. An OptiTrack motion capture 511 
system was used to track the position of the robots. All the acceleration commands for the 512 
drones were computed on a single computer with our NMPC model, integrated into position 513 
commands and broadcast to the swarm through a radiolink, alongside the estimated position of 514 
each drone. The estimated positions were used by the drones to perform the lower-level 515 
control loops and track the commands sent. The positions and velocities used by the swarm 516 
model were predicted with the agents’ dynamic model. To guarantee the transferability of the 517 
NMPC swarm model to hardware experiments, we decreased the number of maximum SQP to 518 
4. This was sufficient to compute converging solutions of the NLP in less than 0.1 𝑠. 519 
 520 

Data and materials availability 521 

 522 
The data needed to reproduce the experiments are present in the paper or in the 523 
Supplementary Materials. The data collected during simulation and hardware experiments can 524 
be downloaded from http://doi.org/10.5281/zenodo.4018870. 525 
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Code availability 527 
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The code that supports the findings of this study are available from the corresponding author 529 
upon reasonable request. 530 
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Figures

Figure 1

Experimental setup of drone swarm �ight in cluttered environments. (a) Illustration of the experimental
setup and the environment con�guration. A ground control station, equipped with a radio transmitter,
computes and sends run-time control commands to the drones. The swarm �ies in the 3D space of an
indoor �ying arena. The drones take off from initial random positions within a prede�ned start area (red
zone). Drones swarm along the preferred migration direction (orange arrow). The mission is completed
when all drones cross the arrival plane (Fig. 1a) on the opposite side of the region. (b) Indoor test
environment populated with cylindrical obstacles. (c) Components of the drones used for the hardware
experiments.



Figure 2

Comparison of the PF and NMPC aerial swarms in simulation experiments. (a) Top views of the 3D
trajectories of �ve drones �ying in a cluttered environment with the PF (top) and the NMPC models
(bottom) (see Supplementary Video 1). The circular objects on the map correspond to cylindrical
obstacles. (b) Inter-agent distance average (solid line) and range (shaded region). The curve on top (blue)
refers to the PF swarm, while the one at the bottom (orange) refers to the NMPC swarm. (c) Swarm speed
average (solid line) and range (shaded region). (d) Order metric. (e) Distance to obstacles, min(),
expressed as the minimum distance between the swarm’s agents and the set of obstacles.



Figure 3

Comparison of the PF and NMPC swarm deployment in environments with different obstacle densities.
(a, d) Top views of the 3D simulated trajectories of the PF and the NMPC swarms in environments with
three different obstacle densities. The density increases from left to right (Case A: 0.06, B: 0.12, and C:
0.20) (see Supplementary Video 1). (b, c) Inter-agent distance and speed of the PF swarm in Case C. (e, f)
Inter-agent distance and speed of the NMPC swarm in Case C. (g) Aggregated results (average and
standard deviation) of 10 stochastic simulations of the PF (blue) and NMPC (orange) swarm models in
Cases A, B, and C. The represented metrics are the mission time , the distance error , the distance range
, the speed error , and the speed range  (see Supplementary Table 1).



Figure 4

Scalability of the NMPC swarm in inter-agent distance and speed. On the left, simulation results on the
scalability of the NMPC swarm model in the inter-agent distance for three preferred distance values (Case
A: ref=0.5, B: 1.0, and C: 1.5). On the right, simulation results on the scalability in the swarm speed for
three preferred speed values (Case A: ref= 0.5/, B: 1.0/, and C: 1.5/). (a, d) Top views of the 3D
trajectories of the swarm (see Supplementary Video 1). (b, c) Inter-agent distance and speed for the
experiment on the inter-agent distance scalability. (e, f) Inter-agent distance and speed for the experiment
on the speed scalability. The obstacle size and density are the same for the six cases.



Figure 5

Real-world experiment of the NMPC swarm. (a) The swarm, composed of �ve commercial palm-sized
quadrotors, �ies through cylindrical obstacles in a motion capture arena. The swarm crosses the region
from the foreground (=0 ) to the background (=), while maintaining cohesion and avoiding the
obstacles (see Supplementary Video 2). (b) Top view of the trajectories of the drones. For the real-world
deployment, we selected obstacles with a smaller radius (obs= 0.30 ) than in simulation (obs=0.55 ),



but we used the same safety distance for collision avoidance as in simulation (obs−safety=0.65 ),
which introduces a safety margin of 0.25  from the physical obstacles (see Supplementary Table 4). (c)
Average inter-agent distance and range with the real swarm (solid line and shaded region, respectively)
and the simulated swarm (dashed and dotted lines, respectively). (d) Average speed and range with the
real swarm (solid line and shaded region, respectively) and the simulated swarm (dashed and dotted
lines, respectively). (e) Swarm’s order: real (solid line) and simulated (dashed line) swarm. (f) Swarm
distance to obstacles. The offset in the real data (solid line) with respect to the simulated data (dashed
line) is due to the safety margin.

Figure 6

Predictive swarm algorithm work�ow. The proposed NMPC swarm algorithm optimizes four local rules:
the separation incentivizes neighboring drones to stay at the preferred inter-agent distance ref, the
navigation incentivizes constant migration speed ref, the direction drives the agents towards a preferred
direction ref, and the control effort incentivizes small acceleration values. For each agent, the algorithm
selects the nearest neighbors and feed their states into the optimization problem. The optimization
problem, solved at discrete time instants, minimizes a cost function over the prediction horizon  and
yields an optimal temporal sequence of control actions over the command horizon . Only the �rst
action is sent to the drones, which perform their motion accordingly. This procedure is repeatedly applied
throughout the control process.
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