
Predictive Control of Aerial Swarms in Cluttered
Environments
Enrica Soria (enrica.soria@ep�.ch)

EPFL
Fabrizio Schiano

EPFL
Dario Floreano

Ecole Polytechnique Federale de Lausanne https://orcid.org/0000-0002-5330-4863

Article

Keywords: aerial swarms, cluttered environments, potential �elds models, predictive model

Posted Date: September 29th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-82503/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Nature Machine Intelligence on May 17th,
2021. See the published version at https://doi.org/10.1038/s42256-021-00341-y.

https://doi.org/10.21203/rs.3.rs-82503/v1
mailto:enrica.soria@epfl.ch
https://orcid.org/0000-0002-5330-4863
https://doi.org/10.21203/rs.3.rs-82503/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s42256-021-00341-y

Predictive Control of Aerial Swarms in Cluttered Environments 1

Enrica Soria*, Fabrizio Schiano, and Dario Floreano1 2
 3
Abstract. Classical models of aerial swarms often describe global coordinated motion as the 4
combination of local interactions that happen at the individual level. Mathematically, these 5
interactions are represented with Potential Fields. Despite their explanatory success, these 6
models fail to guarantee rapid and safe collective motion when applied to aerial robotic swarms 7
flying in cluttered environments of the real world, such as forests and urban areas. Moreover, 8
these models necessitate a tight coupling with the deployment scenarios to induce consistent 9
swarm behaviors. Here, we propose a predictive model that combines the local principles of 10
potential field models with the knowledge of the agents’ dynamics. We show that our approach 11
improves the speed, order, and safety of the swarm, it is independent of the environment 12
layout, and scalable in the swarm speed and inter-agent distance. Our model is validated with a 13
swarm of five quadrotors that can successfully navigate in a real-world indoor environment 14
populated with obstacles. 15

 16
 17

1 Introduction 18

 19
From the fluid wavelike movements of starling flocks to the swift turning maneuvers of bee 20
swarms, nature displays many examples of coordinated flight [1]–[7]. Recent progress in aerial 21
robotics technologies led to the availability of smart drones at the price of smartphones [8], but 22
the deployment of drone swarms that autonomously coordinate their local trajectories remains 23
a challenge. Drone swarms can offer larger area coverage than a single drone for monitoring 24
and exploration missions [9], [10], and they can collect multi-dimensional sensory data by flying 25
a diverse set of sensors [11]. Autonomous aerial swarms can also enable functionalities that are 26
beyond the capabilities of a single drone, such as cooperative transportation of large objects 27
and aerial construction [12], [13]. Hundreds of drones have been deployed in aerial light shows 28
by companies such as Intel [14], Ehang [15], and Verity Studios [16], but in those circumstances, 29
every drone is individually controlled by a central computer to follow a precomputed trajectory. 30
Instead, the coordinated, synchronized motion of biological swarms is a self-organized behavior 31
that emerges from local information[4]–[6], [17]–[19], and can thus cope with unforeseen 32
situations, such as flying through forests or in urban canyons. 33

 34
Early work suggested that the collective motion of a biological swarm can be described by the 35
combination of three behavioral rules that apply to each agent simultaneously [20]. These rules 36
consist of (a) cohesion, which brings each agent closer to its neighbors, (b) repulsion, which 37
drives each agent away from its neighbors to avoid collisions, and (c) alignment, which steers 38
each agent towards the average heading of its neighbors. In goal-directed flight, alignment is 39
replaced by migration, which steers each agent in a preferred migration direction [21], [22]. For 40

1 The authors are from the Laboratory of Intelligent Systems (LIS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne,
Switzerland.
* Corresponding author: enrica.soria@epfl.ch

https://www.epfl.ch/en/

navigating environments with obstacles, the addition of a fourth rule, collision avoidance, is 41
necessary to steer the agents around the obstacles [20], [23], [24]. Mathematically, these rules 42
can be modeled by virtual forces exerted by the agents on their neighbors and are associated 43
with Potential Fields (PFs), i.e., vector fields describing how forces act at various positions 44
in space. PFs encode the desired behaviors of the swarm. They regulate the inter-agent distance 45
among neighboring individuals similarly to a spring-mass system, adjust the velocity of the 46
agents, steer them towards a common direction, and regulate their distance to obstacles [23]. 47
 48
The advantage of PF swarm models is that they are purely reactive, meaning that their decisions 49
are solely based on the current sensory information and thus have low computational 50
complexity [20], [23]. For this reason, PF models are convenient for the implementation on real 51
robotic systems, either in free environments [21], [25], or in environments with convex 52
obstacles [24]. In the latter case, collision avoidance is obtained by defining virtual repulsive 53
agents (called shill agents) located along the obstacles’ boundaries. However, these shill agents 54
present the inconvenience of slowing down the swarm as it approaches the obstacles [20], [26]. 55
This effect becomes prominent in environments with high obstacle densities, where PF swarms 56
can significantly slow down. The slowdown can be attenuated by weakening the repulsion 57
potentials, albeit at the expense of the swam safety, because some agents may collide. 58
Moreover, to account for the idiosyncrasies of the real world, these models often include a 59
significant number of parameters that have complex interdependencies [2], [24]. As a 60
consequence, they often require the adoption of optimization techniques such as evolutionary 61
algorithms, to identify a viable instantiation of the parameters, and each instantiation is specific 62
to the swarm’s preferred speed and inter-agent distance and to the environmental layout [21], 63
[24], [27]. 64

 65
Here we propose a method to remove those difficulties that consists of endowing swarming 66
agents with prediction-based control. Specifically, we show that aerial swarms with predictive 67
control display faster flight while guaranteeing safe navigation in cluttered environments, they 68
can adapt to diverse obstacle densities, and they are scalable to changes in the inter-agent 69
distance and swarm’s speed. It has been recently advocated that some form of predictive 70
control, in the form of an internal model of the actions of their conspecifics, may also be 71
leveraged by biological swarms where the apparent synchronization of coordinated maneuvers, 72
such as a flock of starlings or a school of fish, cannot be explained by a purely reactive system 73
[19]. Inspired by this hypothesis, the method proposed in this paper endows flying agents with a 74
model of swarm behavior based on Nonlinear Model Predictive Control (NMPC). 75

 76
Model Predictive Control (MPC) is a method that computes the control action of a system as the 77
solution of a constrained optimization problem [28], [29]. MPC leverages a mathematical 78
representation of the system to predict and optimize its future behavior in an iterative process. 79
Differently from PF control, MPC can explicitly handle constraints, such as physical limitations 80
(e.g., flight speed and acceleration ranges of a drone) [30]–[32], and environmental restrictions 81
(e.g., no-flight zones) [32]–[34]. However, the recursive online solution of constrained 82
optimization problems is associated with higher computational costs, and therefore the 83
adoption of predictive controllers in robotics has spread only recently [35]. 84

https://en.wikipedia.org/wiki/Space

 85
MPC has shown promising results in simulation on multi-vehicle systems. Examples include the 86
stabilization of multiple agents in obstacle-free environments [36], [37], in the presence of 87
obstacles [33], and the generation of collision-free trajectories for groups of robots with known 88
target locations [38]–[40]. NMPC is a variant of MPC that can handle the nonlinearities of a 89
system or its constraints [29]. This advantage comes at the cost of being more computationally 90
demanding. In simulation, NMPC has been used to control leader-follower formations of drones 91
without obstacles [41], and to control 2D quadrotor formations in the presence of convex 92
obstacles [34]. 93
 94
Less work has been done on the use of MPC with multiple real drones, notably due to the 95
difficulty of real-time implementation. Linear MPC has been used for trajectory planning in the 96
presence of virtual obstacles in a leader-follower configuration, where a drone (the follower) 97
has to keep a constant distance from a virtual agent (the leader), [42]. However, in leader-98
follower approaches, the leader has the extra knowledge of the group trajectory, which is either 99
preprogrammed or provided by an external source. This aspect introduces an asymmetry in the 100
agents’ roles and adds a single point of failure in the swarm [43]. MPC has been used for the 101
online generation of collision-free trajectories for a group of drones in environments with 102
obstacles, where every drone is individually assigned an initial position and a target destination 103
[32]. Instead, the model presented here is meant to coordinate the navigation of the swarm as a 104
unique entity and guarantee internal order, in lieu of generating the trajectories separately. 105
Concurrently, we avoid imposing a rigid formation or a fixed topology to the swarm, which may 106
impact the freedom and fluidity of the agents’ movements. Finally, NMPC has been shown to be 107
capable of dealing with non-convex collision avoidance constraints in real multi-drone systems 108
when the agents are assigned intersecting paths, although they were flying in empty 109
environments [44]. 110
 111
In the proposed NMPC model, the objective to be optimized is made of three components 112
inspired from PF swarm models: (a) separation, which drives the inter-agent distances to a 113
preferred value, (b) navigation, which makes the agents’ speed approximate a preferred value, 114
and (c) direction, which steers the swarm along a preferred direction. A fourth rule, (d) control 115
effort is added to minimize the agents’ accelerations, thereby smoothing flight trajectories and 116
increasing energy efficiency. Each drone regulates its flight based on the knowledge of its 117
neighbors and its own state and predicts its own trajectory and those of its neighbors thanks to 118
a linearized dynamical model. The proposed NMPC model integrates a set of constraints to 119
ensure safety distances among drones and with obstacles. We compare our NMPC model to a 120
PF model and show that predictive controllers can safely fly the swarm in cluttered 121
environments while significantly increasing the flight speed and synchronization of the swarm. 122
Also, we show that the performance of the proposed NMPC model is independent of the 123
obstacle density and environmental layout, differently from PF models. Additionally, we test the 124
scalability of the proposed model to variations of desired inter-agent distance and swarm 125
speed. We perform systematic experiments in simulation and validate the results with a swarm 126
of five palm-sized quadrotors. 127

 128

2 Results 129

 130
For the performance assessment of the swarm models, we set up a forest-like environment that 131
consists of a rectangular flight region populated with cylindrical obstacles (Fig. 1a). At the 132
experiment onset, we place five drones at random positions within a predefined start area on 133
one side of the region (Fig. 1a, red zone) and let the swarm fly through the region along the 134
migration direction (Fig. 1a, orange arrow). The mission is completed when all drones cross the 135
arrival plane (Fig. 1a, orange plane) on the opposite side of the region. 136
 137
We assess the quality of the aerial swarm’s flight considering eight different metrics. The 138
mission completion time 𝑇 measures the time that the swarm requires to cross the region. The 139
inter-agent distance error 𝐸𝑑 measures the deviation of the distances that the drones maintain 140
from each other from the preferred distance 𝑑ref, and the inter-agent distance range 𝑅𝑑 141
measures the range in which the inter-agent distances vary (defined by the minimum and 142
maximum inter-agent distance over time). The speed error 𝐸𝑣 measures the deviation of the 143
agents’ speeds from the preferred migration speed 𝑣ref, and the speed range 𝑅𝑣 measures 144
the range in which the agents’ speeds vary. 𝐸𝑑 , 𝑅𝑑, 𝐸𝑣 and 𝑅𝑣 take values greater than or 145
equal to 0 (ideal case). We determine the swarm’s level of synchronization by calculating the 146
directional correlation of the agents’ movements, expressed by the so-called order Φorder. 147 Φorder takes values between −1 (complete disorder) and 1 (perfect order). Finally, the 148
agent-agent safety Φagent−safety assesses the ability of the swarm’s agents to avoid collisions 149

among themselves, and the agent-obstacle safety Φobs−safety assesses the ability of the agents 150

to avoid collisions with the obstacles. Φagent−safety and Φobs−safety take values between 0 151

(complete unsafety) and 1 (perfect safety, i.e., zero collisions) (see Supplementary Table 1 for 152
mathematical formulation). To evaluate the overall performance of the swarm during a mission, 153
we compute the average and standard deviation of these metrics. For the instantaneous 154
evaluation of the swarm over time, we additionally plot the inter-agent distance and speed, and 155
the distance to obstacles, from which we can appreciate their respective errors and ranges, and 156
the occurrence of collisions. 157
 158

 159
 160
Fig. 1: Experimental setup of drone swarm flight in cluttered environments. (a) Illustration of 161
the experimental setup and the environment configuration. A ground control station, equipped 162
with a radio transmitter, computes and sends run-time control commands to the drones. The 163
swarm flies in the 3D space of an indoor flying arena. The drones take off from initial random 164
positions within a predefined start area (red zone). Drones swarm along the preferred migration 165
direction (orange arrow). The mission is completed when all drones cross the arrival plane (Fig. 166
1a) on the opposite side of the region. (b) Indoor test environment populated with cylindrical 167
obstacles. (c) Components of the drones used for the hardware experiments. 168
 169
We extensively tested the proposed NMPC swarm model in simulation and compared it to a 170
reactive PF model that has been recently described and validated on 30 real drones [24]. In 171
addition to the repulsion and obstacle avoidance rules, the PF model includes a friction rule to 172
reduce velocity oscillations. In order to ensure cohesive goal-directed flight in open 173
environments, we added the rules of cohesion and migration to the PF model. As in previous 174
work [21], [24], [27], we used evolutionary optimization to search the large parameter space of 175
the PF swarm model, and favored swarms with highly ordered flight (Φorder = 1) and a low 176
number of agent-agent and agent-obstacle collisions (Φagent−safety = 1, Φobs−safety = 1) (see 177

Supplementary Table 3). The purpose of the experimental comparison between NMPC 178
swarming and PF swarming is to emphasize behavioral differences and performance advantages 179
of the proposed NMPC swarm model. However, the choice of a swarm model for the 180
deployment on physical drones should also consider computational resources, which are 181
significantly larger for NMPC swarming. 182
 183
Below we present three sets of simulation experiments: (i) we compare the performance 184
metrics of the two models in the same environmental conditions, (ii) we investigate the 185
adaptability of the PF and NMPC swarm models to environments with different obstacle 186
density, and (iii) we study the scalability of the NMPC swarm model at different preferred 187
speeds and inter-drone distances. Finally, we experimentally validate the NMPC swarm model 188
with five palm-sized drones (Fig. 1c) flying through a room with cylindrical obstacles (Fig. 1b). 189
 190

2.1 Comparison of PF and NMPC aerial swarms 191

 192

 193
 194
Fig. 2: Comparison of the PF and NMPC aerial swarms in simulation experiments. (a) Top views 195
of the 3D trajectories of five drones flying in a cluttered environment with the PF (top) and the 196
NMPC models (bottom) (see Supplementary Video 1). The circular objects on the map 197
correspond to cylindrical obstacles. (b) Inter-agent distance average (solid line) and range 198
(shaded region). The curve on top (blue) refers to the PF swarm, while the one at the bottom 199

(orange) refers to the NMPC swarm. (c) Swarm speed average (solid line) and range (shaded 200
region). (d) Order metric. (e) Distance to obstacles, min(𝑑𝑖𝑚), expressed as the minimum 201
distance between the swarm’s agents and the set of obstacles. 202

 203
Both PF and NMPC swarms navigated around the obstacles without collisions (Fig. 2e), but the 204
NMPC swarm completed the mission 57% faster than the PF swarm. The reduced mission time is 205
due to the ability of the NMPC swarm to track the preferred speed 𝑣ref more consistently (𝐸𝑣= 206 0.02 ± 0.02, 𝑅𝑣= 0.08±0.07) than PF swarm (𝐸𝑣=0.39 ± 0.15, 𝑅𝑣= 0.47 ± 0.15) (Fig. 2c). The 207
NMPC swarm also generated a smaller inter-agent distance error (𝐸𝑑 = 0.11 ± 0.02) and range 208
(𝑅𝑑 = 0.55 ± 0.18) compared to the PF swarm (𝐸𝑑 = 0.26 ± 0.15, 𝑅𝑑=0.90 ± 0.26) (Fig. 2b). 209
The NMPC model generated almost perfectly ordered flight maneuvers throughout the entire 210
flight (Φorder = 0.98 ± 0.02) while the PF model displayed lower and more variable order 211
(Φorder = 0.78 ± 0.17) (Fig. 2d). Neither the NMPC nor the PF swarm presented agent-agent 212
or agent-obstacle collisions (Φagent−safety = 1 ± 0, Φobs−safety = 1 ± 0) (Fig. 2e). While 213

optimizing the swarm’s objectives, the NMPC model reduced the minimum distance to 214
obstacles of 0.03 𝑚. In comparison, the PF swarm achieved a minimum distance to obstacles of 215
0.14 m. This difference is due to the fact that in the PF model the obstacles apply a repulsion 216
force on the agents’ in their proximity, while in the NMPC model there is no penalty for 217
approaching the obstacles. As a consequence, when implementing the NMPC model on a real-218
world swarm, the user should carefully choose a safety margin. 219
 220

2.2 Environments with different obstacle densities 221

 222

 223
 224

Fig. 3: Comparison of the PF and NMPC swarm deployment in environments with different 225
obstacle densities. (a, d) Top views of the 3D simulated trajectories of the PF and the NMPC 226
swarms in environments with three different obstacle densities. The density increases from left 227
to right (Case A: 0.06, B: 0.12, and C: 0.20) (see Supplementary Video 1). (b, c) Inter-agent 228
distance and speed of the PF swarm in Case C. (e, f) Inter-agent distance and speed of the NMPC 229
swarm in Case C. (g) Aggregated results (average and standard deviation) of 10 stochastic 230
simulations of the PF (blue) and NMPC (orange) swarm models in Cases A, B, and C. The 231
represented metrics are the mission time 𝑇, the distance error 𝐸𝑑, the distance range 𝑅𝑑, the 232
speed error 𝐸𝑣, and the speed range 𝑅𝑣 (see Supplementary Table 1). 233
 234

Parameter Unit Description Value

𝑑ref m
Preferred (or reference) value for

the inter-agent distance
0.8 𝑣ref

m/s
Preferred (or reference) value for

the swarm speed
0.5 𝒖ref - Preferred migration direction (1 0 0)

𝐿map m
Length of an edge of the square

flight region (or map)
10 𝑟obs m Obstacles radius 0.35 𝜌obs

- /m2

Obstacle density Case A: 0.06

Case B: 0.12

Case C: 0.20

 235
Table 1: Swarm and environment configurations of the simulation experiments with different 236
obstacle densities. The same configurations are used for both the PF and the NMPC swarm 237
models. 238

 239
We tested the PF and the NMPC swarm models for three different obstacle densities (Case A: 240
0.06, B: 0.12, and C: 0.20) to quantify the impact on the swarms’ performance. The obstacles 241
occupy random positions on the map, but they have a homogenous distribution (Fig. 3a and 3d). 242
The initial positions of the drones are random. For both swarm models, we show the evolution 243
of the inter-agent distance and speed for the scenario with the highest obstacle density (Case 244
C). The results show that the inter-agent distance error is smaller with NMPC swarms (𝐸𝑑 =245 0.11 ± 0.02) than with PF swarms (𝐸𝑑 = 0.27 ± 0.12), and the inter-agent distance range is 246
shorter for NMPC swarms (𝑅𝑑 = 0.56 ± 0.18) than with PF swarms (𝑅𝑑 = 0.90 ± 0.26,). The 247
NMPC swarms tracked the preferred speed 𝑣ref more precisely (𝐸𝑣 = 0.03 ± 0.02) than the PF 248
swarms (𝐸𝑣 = 0.39 ± 0.15), and the speed range was shorter (𝑅𝑣 = 0.08 ± 0.07 and 0.47 ±249 0.15, respectively). The faster speed of NMPC swarms resulted in faster mission completion 250
time than the PF swarms (𝑇 = 21.5 s and 34.1 s, respectively). 251

 252
To assess the reproducibility of the results, we performed ten stochastic simulations for each of 253
the three obstacle densities and for the two swarm models, and we report here aggregated 254
performance results (Fig. 2g). While the speed error in the NMPC swarm is small and constant 255
for all obstacle densities (Case A: Ev = 0.01 ± 0.01, B: 0.01 ± 0.01, C: 0.01 ± 0.01), it is 256
larger and increases with larger obstacles densities in the PF swarm (Case A: Ev = 0.08 ± 0.07, 257
B: 0.21 ± 0.11, C: 0.25 ± 0.11). As a consequence, the mission completion time of the PF 258
swarm is increased when increasing the obstacle density (Case A: 𝑇 = 21.56 ± 0.81 s, B: 259 25.35 ± 2.46 s, C: 27.48 ± 2.43 s), while for the NMPC swarm it is shorter and it stays almost 260
constant across the different densities (Case A: 𝑇 = 20.47 ± 0.22 s, B: 20.54 ± 0.21 s, C: 261 20.72 ± 0.28 s). Also the PF swarm’s order deteriorates when increasing the obstacle density 262
(Case A: Φorder = 0.98 ± 0.03, B: 0.92 ± 0.08, C: 0.81 ± 0.08), while for the NMPC swarm it 263
stays almost constant (Case A: Φorder = 0.99 ± 0.01, B: 0.98 ± 0.02, C: 0.98 ± 0.02). While 264
the NMPC swarm produces collision-free movements in all cases, for the PF swarm we observe 265
some agent-obstacle collisions at high obstacle densities (Case A: Φobs−safety = 1 ± 0, B: 266

(99.98 ± 0.06) 10-2, C: (99.99 ± 0.02) 10-2). The aggregated performance results are 267
summarized in Supplementary Table 5. 268

 269

2.3 Scalability to different inter-agent distances and speeds 270

 271
 272

 273
 274
Fig. 4: Scalability of the NMPC swarm in inter-agent distance and speed. On the left, simulation 275
results on the scalability of the NMPC swarm model in the inter-agent distance for three 276
preferred distance values (Case A: 𝑑ref = 0.5𝑚, B: 1.0𝑚, and C: 1.5𝑚). On the right, 277
simulation results on the scalability in the swarm speed for three preferred speed values (Case 278
A: 𝑣ref = 0.5𝑚/𝑠, B: 1.0𝑚/𝑠, and C: 1.5𝑚/𝑠). (a, d) Top views of the 3D trajectories of the 279
swarm (see Supplementary Video 1). (b, c) Inter-agent distance and speed for the experiment 280
on the inter-agent distance scalability. (e, f) Inter-agent distance and speed for the experiment 281
on the speed scalability. The obstacle size and density are the same for the six cases. 282

 283
We assess the scalability of the proposed NMPC model to different values of the preferred 284
inter-agent distance (Case A: 𝑑ref = 0.5 𝑚, B: 1.0 𝑚, and C: 1.5 𝑚, see Fig 4 a-c) and speed 285
(Case A: 𝑣ref = 0.5 𝑚/𝑠, B: 1.0 𝑚/𝑠 , and C: 1.5 𝑚/𝑠, see Fig 4 d-f) in the same environmental 286
conditions. We analyze the swarm’s inter-agent distance and speed and quantify their 287
respective errors and ranges. The results show that at different inter-agent distance levels the 288
swarm inter-agent distance converged to the preferred value with comparable errors (Case A: 289 𝐸𝑑 = 0.05 ± 0.06, B: 0.01 ± 0.02, C: 0.02 ± 0.03, see Fig. 4b). The swarm’s speed error is 290
almost zero in the three cases (see Fig. 4c), and it resulted in similar mission times (Case A: T =291 20 𝑠, B: 21 𝑠, and C: 21.2 𝑠). We did not observe collisions. Regarding the experiments on the 292

scalability in speed, the speed error 𝐸𝑣 was close to zero in the three cases (Fig. 4e). However, 293
the variability of the inter-agent distance in Case C is higher (𝑅𝑑 = 0.46 ± 0.05) than in Cases A 294
(𝑅𝑑 = 0.13 ± 0.11) and B (𝑅𝑑 = 0.19 ± 0.03) (Fig. 4f). Indeed, when the agents turn around 295
the obstacle in the middle of the scene, they rearrange and increase their distance. Also in these 296
experiments, we did not observe collisions. Comparative results on the PF swarm are in 297
Supplementary Fig. 1. Aggregate results of stochastic simulations for each of the preferred inter-298
agent distance and speed values, and for both the PF and the NMPC models are in 299
Supplementary Fig. 2, and in Supplementary Tables 6 and 7. 300

 301

2.4 Validation with real drones 302

 303

 304
 305
Fig. 5: Real-world experiment of the NMPC swarm. (a) The swarm, composed of five 306
commercial palm-sized quadrotors, flies through cylindrical obstacles in a motion capture arena. 307
The swarm crosses the region from the foreground (𝑡 = 0 𝑠) to the background (𝑡 = 𝑇), while 308
maintaining cohesion and avoiding the obstacles (see Supplementary Video 2). (b) Top view of 309
the trajectories of the drones. For the real-world deployment, we selected obstacles with a 310
smaller radius (𝑟obs = 0.30 𝑚) than in simulation (𝑟obs = 0.55 𝑚), but we used the same safety 311
distance for collision avoidance as in simulation (𝑑obs−safety = 0.65 𝑚), which introduces a 312

safety margin of 0.25 𝑚 from the physical obstacles (see Supplementary Table 4). (c) Average 313
inter-agent distance and range with the real swarm (solid line and shaded region, respectively) 314
and the simulated swarm (dashed and dotted lines, respectively). (d) Average speed and range 315
with the real swarm (solid line and shaded region, respectively) and the simulated swarm 316
(dashed and dotted lines, respectively). (e) Swarm’s order: real (solid line) and simulated 317
(dashed line) swarm. (f) Swarm distance to obstacles. The offset in the real data (solid line) with 318
respect to the simulated data (dashed line) is due to the safety margin. 319
 320
We validated the NMPC swarm on five commercial quadrotors in an indoor motion capture 321
arena where we reconstructed the environment described in Sec. 2.1 (Fig. 5a). We measured 322
the real flight performance, and we compared them with the simulation performance. The real 323
drones achieve the preferred inter-agent distance 𝑑ref = 0.8 𝑚 with an error (𝐸𝑑= 0.12±0.02) 324
comparable to the simulation error (𝐸𝑑= 0.11±0.02) (Fig. 5c). However, the speed error is 325
slightly higher (𝐸𝑣 = 0.07 ± 0.03) than in simulation (𝐸𝑣 = 0.02 ± 0.02) (Fig. 5d). The higher 326
speed error in the real swarm can be explained by small communication delays and air 327
turbulence due to the proximity of the drones to each other and obstacles. The order of the real 328
swarm (Φorder = 0.97 ± 0.04) is comparable to the simulated swarm (Φorder = 0.98 ± 0.02) 329
(Fig. 5e), and in both cases we did not observe collisions (Φagent−safety = 1 ± 0, Φobs−safety =330 1 ± 0) (Fig. 5f). 331

 332

3 Discussion 333

 334
This article shows that a Nonlinear Model Predictive Control (NMPC) model achieves a faster 335
and more synchronized flight in cluttered environments as compared to state-of-the-art models 336
based on potential fields (PFs). NMPC swarms report no collisions in cluttered environment, 337
they better attain and maintain target speeds, and they remain more ordered and cohesive. The 338
benefits brought by predictive controllers to robotic aerial swarms confirm a parallel with 339
biological systems, where individuals are thought to enhance their synchronization by future 340
state projection [19]. 341
 342
In robotics, the advantages of the NMPC method are promising for applications that require 343
navigation in crowded scenarios, such as the exploration of urban environments, collapsed 344
buildings, or forests [45], [46]. Also vision-based swarms could benefit from all these features 345
since the reliability of reciprocal visual detection of the drones strongly depends on their 346
distance, and NMPC swarms showed that they can better maintain target inter-agent distances 347
[22], [47]. Overall, predictive methods can improve the autonomy of swarm operations as well 348
as the safety of the swarm and the environment, which are both essential elements to build 349
public confidence in the use of swarms [48]. 350
 351
For our experiments, we relied on a central computing node that generates the motion of the 352
agents at run time according to local interactions only. This assumption simplifies the 353
implementation since it requires only one computer, acting as a ground control station, instead 354
of several onboard computers that the agents would carry. However, the NMPC model requires 355
a higher amount of computational resources than the PF model, and scale worse with the 356

swarm size. It will be interesting to develop a decentralized NMPC model where the 357
computational costs are independent of the number of agents. Work in this direction will allow 358
to scale our approach to swarms of larger size. 359
 360
Finally, our results motivate future works to address research questions in the design of robust 361
swarm models in dynamic environments. Thanks to their recursive structure, MPC controllers 362
offer a promising method to allow navigation in scenarios with moving obstacles. However, a 363
generalization of the proposed model to dynamic environments would require theoretical and 364
numerical investigation on the conditions for stability, as well as reliable estimation of the 365
obstacles’ motion [49]. 366

 367

4 Methods 368

 369
In this work, we consider a swarm of 𝑁 agents labeled by 𝑖 ∈ {1, … , 𝑁}. The position, velocity, 370
and control input of the 𝑖-th agent are denoted by 𝒑𝑖, 𝒗𝑖 , 𝒖𝑖 ∈ ℝ3, respectively. Let 𝑑𝑖𝑗 =∥371 𝒑𝑗 − 𝒑𝑖 ∥ represent the distance between the center of two agents 𝑖 and 𝑗, where ∥⋅∥ 372

denotes the Euclidean norm. We model the swarm with a directed sensing graph 𝒢 = (𝒱, ℰ), 373
where the vertex set 𝒱 = {1, … , 𝑁} represents the agents, and the edge set ℰ ⊆ 𝒱 × 𝒱 374
contains the pairs of agents (𝑖, 𝑗) ∈ ℰ for which agent 𝑖 can sense agent 𝑗. We denote as 375 𝒩𝑖 = {𝑗 ∈ 𝒱| (𝑖, 𝑗) ∈ ℰ} ⊂ 𝒱 the set of neighbors of an agent 𝑖 in 𝒢, and | ⋅ | indicates the 376
cardinality of a set. To keep the |𝒩𝑖| constant, we define the neighbors set utilizing a 377
topological distance, a reasonable hypothesis also for natural systems [7]. Therefore, the set 𝒩𝑖 378
contains the |𝒩𝑖| nearest neighbors of agent 𝑖. To reproduce a forest-like environment, we 379
introduce 𝑀 cylindrical obstacles labeled by 𝑚 ∈ {1, … , 𝑀}. We denote as 𝑑𝑖𝑚 the distance 380
between an agent 𝑖 and the symmetry axis of cylinder 𝑚. In our simulations, the dynamics of 381
the agents is reproduced in discrete time. We let 𝒑𝑖(𝑘), 𝒗𝑖(𝑘), 𝒖𝑖(𝑘) ∈ ℝ3 be the position, 382
velocity, and control input of the 𝑖-th agent at the time 𝑡(𝑘) = 𝑘 𝑑𝑡, respectively. 383

 384

4.1 PF swarm model 385

 386
The PF model we present is inspired by a state-of-the-art model that allows drone swarm 387
navigation in confined environments [24]. From the original model, we include the rule of 388
repulsion to prevent inter-drone collisions, friction to reduce velocity oscillations, and obstacle 389
avoidance to avoid collisions with obstacles. For the mathematical definition of these rules, we 390
refer the reader to [24]. To ensure goal-directed flight in open environments, we added two 391
rules: migration to provide a preferred velocity vector, and cohesion to keep agents together. 392
We denote the migration velocity with 𝒗ref = 𝑣ref𝒖ref, where 𝑣ref is the preferred speed and 393 𝒖ref is the preferred direction. Then, the migration term, equal for every agent, corresponds to: 394

 𝒗mig = 𝑣ref𝒖ref (1) 395

If the repulsion is active when neighboring agents are closer than the preferred distance 𝑑ref 396
and push them further apart, the cohesion is active when they are father than 𝑑ref to bring 397
them closer. Repulsion and cohesion are inactive when two agents are precisely at the distance 398 𝑑ref. The cohesion exerted on an agent 𝑖 from a neighbor 𝑗 is: 399

 𝒗coh,𝑖𝑗 = {𝑐coh(𝑑𝑖𝑗 − 𝑑ref) 𝒑𝑗−𝒑𝑖𝑑𝑖𝑗 if 𝑑ij < 𝑑ref0 otherwise (2) 400

where we choose the pairwise gain of cohesion equal to the repulsion gain 𝑐coh = 𝑐rep and the 401

cutoff for the minimum cohesion range equal to the repulsion range 𝑑ref. The total cohesion 402
effect calculated for agent 𝑖 with respect to its neighbors is: 403

 𝒗coh,𝑖 = ∑𝑗∈𝒩𝑖 𝒗coh,𝑖𝑗 (3) 404

At any instant, the velocity for agent 𝑖 resulting from the contributions above is: 405
 �̃�𝑖 = 𝒗mig + 𝒗coh,𝑖 + 𝒗rep,𝑖 + 𝒗fric,𝑖 + ∑𝑠∈𝑀𝑖 𝒗obstacle,𝑖𝑠 (4) 406

 407
After summing the contributions, we apply a cutoff on the acceleration at 𝑎max according to: 408

 𝒂𝑖 = �̃�𝑖‖�̃�𝑖‖ min(‖�̃�𝑖‖, 𝑎max) (5) 409

where �̃�𝑖(𝑘 + 1) = (�̃�𝑖 (𝑘 + 1) − �̃�𝑖(𝑘))/𝑑𝑡. Then, we apply a cutoff on the speed at 𝑣max, 410
and get the velocity command 𝒗𝑖 of the 𝑖-th agent: 411

 𝒗𝑖 = �̃�𝑖‖�̃�𝑖‖ min(‖�̃�𝑖‖, 𝑣max) (6) 412

 413
To search the large parameter space of the PF swarm model, we used evolutionary optimization 414
for highest-order flight and lowest number of collisions. The evaluation of the swarm behavior is 415
based on a single fitness that sums three independent values (Φorder, Φagent−safety, and 416 Φobs−safety) smaller or equal to 1 (ideal case). The fitness is determined in simulation where the 417

swarm initialized with random positions in an environment where obstacles are randomly 418
placed. The parameter values and their description are detailed in the Supplementary Materials. 419
 420

4.2 Agents’ dynamics 421
 422

The NMPC swarm model supposes the availability of the agents’ dynamic model. We assume 423
that every drone of the swarm obeys a discrete linear system, given by: 424

 𝒙𝑖(𝑘 + 1) = 𝐴𝑖𝒙𝑖(𝑘) + 𝐵𝑖𝒖𝑖(𝑘) (7) 425
 where 𝐴𝑖 and 𝐵𝑖 are constant matrices. In this article, we consider the system to represent a 426
quadrotor with an underlying acceleration controller. The input 𝒖𝑖 is an acceleration command 427
and the state 𝒙𝑖 = [𝒑𝑖 , 𝒗𝑖] ∈ ℝ6 is a vector containing the position and velocity. 428
 429
We assume that the velocities and acceleration inputs of the agents are bounded by constant 430
vectors 𝒗min, 𝒗max and 𝒖min, 𝒖max respectively. This translates into the inequalities 431

 𝒗min ≤ 𝒗𝑖(𝑘) ≤ 𝒗max (8) 432
 𝒖min ≤ 𝒖𝑖(𝑘) ≤ 𝒖max (9) 433

 434
Let 𝒙 = [𝒙1, 𝒙2, ⋯ 𝒙𝑁] ∈ ℝ6𝑁 the positions and velocities of the agents of the swarm, and 435 𝒖 = [𝒖1, 𝒖2, ⋯ 𝒖𝑁] ∈ ℝ3𝑁. The system defining the motion of the swarm can be written as: 436

 𝒙(𝑘 + 1) = 𝐴𝒙(𝑘) + 𝐵𝒖(𝑘) (10) 437
 where 𝐴 and 𝐵 are block diagonal matrices with blocks 𝐴1, … , 𝐴𝑁 and 𝐵1, … , 𝐵𝑁, 438
respectively. 439
 440

4.3 NMPC swarm model 441
 442

For our NMPC swarm model, we defined behavioral rules similar to those of the PF model. 443
These rules are encoded as four terms of a cost function, including separation, navigation, 444
direction, and control effort. At each time step, the evolution of the agents’ movements is 445
predicted over a constant time window, called the prediction horizon, with the dynamic model 446
introduced in Sec. 4.2. These predictions are fed into the cost function, and the solution of the 447
constrained optimization problem gives the control inputs for the swarm over the so-called 448
control horizon (see Fig. 6). The prediction and control horizons are finite and shift forward at 449
every time step. In the following, they will be denoted as 𝑇𝑃 = 𝑃 𝑑𝑡 and 𝑇𝐶 = 𝐶 𝑑𝑡 450
respectively, with 𝑃 ≥ 𝐶 and 𝑃, 𝐶 ∈ ℕ+. 451
 452
We let (⋅)(𝑘 + 𝑙|𝑘) represent the predicted value of (⋅)(𝑘 + 𝑙) with the information 453
available at time 𝑡(𝑘) and 𝑙 ∈ {0, … , 𝑃}. We formulated a centralized version of the model2, 454
where the swarm rules are defined locally and every agent is only influenced by its neighbors. 455
The separation term for agent 𝑖 and time 𝑡(𝑘) is: 456

 𝐽sep,𝑖(𝑘) = ∑𝑗∈𝒩𝑖 ∑𝑃𝑙=1 𝑤sep|𝒩𝑖| (∥ 𝒑𝑗(𝑘 + 𝑙|𝑘) − 𝒑𝑖(𝑘 + 𝑙|𝑘) ∥2− 𝑑ref2)2
 (11) 457

The navigation term is: 458

 𝐽nav,𝑖(𝑘) = ∑𝑃𝑙=1 𝑤nav(∥ 𝒗𝑖(𝑘 + 𝑙|𝑘) ∥2− 𝑣ref2)2
 (12) 459

The direction term: 460

 𝐽dir,𝑖(𝑘) = ∑𝑃𝑙=1 𝑤dir (1 − (𝒗𝑖(𝑘+𝑙|𝑘)⋅𝒖ref)2∥𝒗𝑖(𝑘+𝑙|𝑘)∥2)2
 (13) 461

The combined action of the navigation (6) and direction (7) terms contribute to the so-called 462
migration behavior of the swarm. The control effort is: 463

 𝐽𝑢,𝑖(𝑘) = ∑𝑃−1𝑙=0 𝑤𝑢 ∥ 𝒖𝑖(𝑘 + 𝑙|𝑘) ∥2 (14) 464

where 𝑤sep, 𝑤nav, 𝑤dir, and 𝑤𝑢 represent the constant weights associated with the cost 465

function terms. 466
 467

To prevent the agents from colliding with their neighbors or the obstacles, we associated with 468
the cost function two sets of collision avoidance constraints: 469

 𝑑𝑖𝑗(𝑘 + 𝑙|𝑘)2 ≥ 𝑑agent−safety2 𝑖 ∈ {1, … , 𝑁}, 𝑗 ∈ 𝒩𝑖 (15) 470

 𝑑𝑖𝑚(𝑘 + 𝑙|𝑘)2 ≥ 𝑑obs−safety2 𝑖 ∈ {1, … , 𝑁}, 𝑚 ∈ {1, … , 𝑀} (16) 471

where 𝑑agent−safety is the safety distance between two agents’ positions and 𝑑obs−safety is 472

the safety distance that an agent should keep from the obstacle’s position. 473
 474

We let 𝑿(𝑘) ∈ ℝ6𝑁𝑃 the stacked sequence of the predicted states 𝒙(𝑘 + 𝑙|𝑘) over the 475
horizon 𝑙 ∈ {1, … , 𝑃} and 𝑼(𝑘) ∈ ℝ3𝑁𝑃 the stacked sequence of the predicted control inputs 476 𝒖(𝑝|𝑘) over the horizon 𝑙 ∈ {0, … , 𝑃 − 1}. Then, the cost function and constraints define the 477
following non-convex optimization problem: 478

2 The cost function sums the contributions of every agent and the optimization process is run by a centralized software.

min𝑿(𝑘),𝑼(𝑘) ∑𝑁𝑖=1 (𝐽sep,𝑖(𝑘) + 𝐽nav,𝑖(𝑘) + 𝐽dir,𝑖(𝑘) + 𝐽u,𝑖(𝑘))subject to 𝒙(𝑘 + 𝑙 + 1|𝑘) = 𝐴𝒙(𝑘 + 𝑙|𝑘) + 𝐵𝒖(𝑘 + 𝑙|𝑘) 𝒙(𝑘|𝑘) = 𝒙(𝑘) 𝒗min ≤ 𝒗𝑖(𝑘 + 𝑙|𝑘) ≤ 𝒗max 𝒖min ≤ 𝒖𝑖(𝑘 + 𝑙|𝑘) ≤ 𝒖max 𝑑𝑖𝑗(𝑘 + 𝑙|𝑘)2 ≥ 𝑑agent−safety2 𝑑𝑖𝑚(𝑘 + 𝑙|𝑘)2 ≥ 𝑑obs−safety2
 (17) 479

with 𝑙 ∈ {1, … , 𝑃}, 𝑖 ∈ {1, … , 𝑁}, 𝑗 ∈ 𝒩𝑖, and 𝑚 ∈ {1, … , 𝑀}. 480
 481

Fig. 6: Predictive swarm algorithm workflow. The proposed NMPC swarm algorithm optimizes 482
four local rules: the separation incentivizes neighboring drones to stay at the preferred inter-483
agent distance 𝑑ref, the navigation incentivizes constant migration speed 𝑣ref, the direction 484
drives the agents towards a preferred direction 𝒖ref, and the control effort incentivizes small 485
acceleration values. For each agent, the algorithm selects the nearest neighbors and feed their 486
states into the optimization problem. The optimization problem, solved at discrete time 487
instants, minimizes a cost function over the prediction horizon 𝑇𝑃 and yields an optimal 488
temporal sequence of control actions over the command horizon 𝑇𝐶. Only the first action is 489
sent to the drones, which perform their motion accordingly. This procedure is repeatedly 490
applied throughout the control process. 491

 492

4.4 Simulation setup 493

 494
We implemented our NMPC model in MATLAB with the help of acados [50], an open-source 495
library for fast nonlinear optimal control. This software relies on C code generation for speeding 496
up the computation in real-time applications. The system dynamics and the constraints of the 497
problem are discretized by the library over the prediction horizon to obtain a structured 498
Nonlinear Program (NLP). Then, the NLP is approximated through Sequential Quadratic 499
Programming (SQP) that iteratively solves convex Quadratic Program (QP) sub-problems. After 500
applying a condensing step, a linear algebra solver, IPOPT, based on the Interior Point (IP) 501
method finds the solution of the sub-problems [51]. We run our simulations on a DELL Precision 502
Tower with a 3.6 GHz Intel Core i7-7700 processor and 16 GB 2400 MHz RAM, where we set the 503
maximum number of SQP to 7 and the maximum number of QP iterations to 7. 504

 505

4.5 Drone experimental setup 506
 507

In our experiments, we used five Bitcraze Crazyflie 2.1 quadrotors (Fig. 1c). Each quadrotor is 508
equipped with a 3-axis accelerometer, a 3-axis gyroscope, a pressure sensor, and a marker deck 509
for hosting passive reflective markers. The microcontroller is a STM32F4 running at 168MHz, on 510
which both state estimation and low-level control are running. An OptiTrack motion capture 511
system was used to track the position of the robots. All the acceleration commands for the 512
drones were computed on a single computer with our NMPC model, integrated into position 513
commands and broadcast to the swarm through a radiolink, alongside the estimated position of 514
each drone. The estimated positions were used by the drones to perform the lower-level 515
control loops and track the commands sent. The positions and velocities used by the swarm 516
model were predicted with the agents’ dynamic model. To guarantee the transferability of the 517
NMPC swarm model to hardware experiments, we decreased the number of maximum SQP to 518
4. This was sufficient to compute converging solutions of the NLP in less than 0.1 𝑠. 519
 520

Data and materials availability 521

 522
The data needed to reproduce the experiments are present in the paper or in the 523
Supplementary Materials. The data collected during simulation and hardware experiments can 524
be downloaded from http://doi.org/10.5281/zenodo.4018870. 525
 526

Code availability 527

 528
The code that supports the findings of this study are available from the corresponding author 529
upon reasonable request. 530

 531

References 532

 533
[1] I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin, “Effective leadership and decision- 534

making in animal groups on the move”, Nature, vol. 433, pp. 513-516, 2005 535
[2] H. Hildenbrandt, C. Carere, and C. K. Hemelrijk, “Self-organized aerial displays of 536
thousands of starlings: a model”, Behav. Ecol., vol. 21, no. 6, pp. 1349–1359, 2010 537
[3] G. F. Young, L. Scardovi, A. Cavagna, I. Giardina, and N. E. Leonard, “Starling Flock 538
Networks Manage Uncertainty in Consensus at Low Cost”, PLOS Comput. Biol., vol. 9, no. 1, p. 539
e1002894, 2013 540
[4] G. Dell’Ariccia, G. Dell’Omo, D. P. Wolfer, and H.-P. Lipp, “Flock flying improves pigeons’ 541
homing: GPS track analysis of individual flyers versus small groups”, Anim. Behav., vol. 76, no. 4, 542
pp. 1165–1172, 2008 543
[5] M. Nagy, Z. Ákos, D. Biro, and T. Vicsek, “Hierarchical group dynamics in pigeon flocks,” 544
Nature, vol. 464, no. 7290, pp. 890–893, 2010 545
[6] M. Yomosa, T. Mizuguchi, G. Vásárhelyi, and M. Nagy, “Coordinated Behaviour in Pigeon 546
Flocks,” PLOS ONE, vol. 10, no. 10, p. e0140558, 2015 547
[7] M. Ballerini et al., “Interaction ruling animal collective behavior depends on topological 548
rather than metric distance: Evidence from a field study,” Proc. Natl. Acad. Sci., vol. 105, no. 4, 549
pp. 1232–1237, 2008 550
[8] D. Floreano and R. J. Wood, “Science, technology and the future of small autonomous 551
drones,” Nature, vol. 521, no. 7553, pp. 460–466, 2015 552
[9] T. Stirling, J. Roberts, J.-C. Zufferey, and D. Floreano, “Indoor navigation with a swarm of 553
flying robots”, IEEE Int. Conf. Rob. Autom. (ICRA), pp. 4641–4647, 2012 554
[10] K. N. McGuire, C. D. Wagter, K. Tuyls, H. J. Kappen, and G. C. H. E. de Croon, “Minimal 555
navigation solution for a swarm of tiny flying robots to explore an unknown environment,” Sci. 556
Robot., vol. 4, no. 35, p. eaaw9710, 2019 557
[11] A. T. Erman, L. van Hoesel, P. Havinga, and J. Wu, “Enabling mobility in heterogeneous 558
wireless sensor networks cooperating with UAVs for mission-critical management”, IEEE Wirel. 559
Commun., vol. 15, no. 6, pp. 38–46, 2008 560
[12] A. Tagliabue, M. Kamel, R. Siegwart, and J. Nieto, “Robust collaborative object 561
transportation using multiple MAVs,” Int. J. Robot. Res., vol. 38, no. 9, pp. 1020–1044, 2019 562
[13] F. Augugliaro et al., “The Flight Assembled Architecture installation: Cooperative 563
construction with flying machines”, IEEE Control Syst. Mag., vol. 34, no. 4, pp. 46–64, 2014 564
[14] “Intel Drone Light Show: Intel’s 50th Anniversary”, 565
https://www.intel.com/content/www/us/en/technology-innovation/videos/drone-light-show-566
50th-anniversary-video.html, 21 Nov. 2019 567
[15] “EHang Egret’s 1374 drones dancing over the City Wall of Xian, achieving a Guinness 568
World Records title”, https://www.ehang.com/news/365.html, 02 May 2018 569
[16] “The Globe and Mail: Mini-drone use on the rise to light up big concerts like Celine Dion 570
and Drake”, https://veritystudios.com/news/globe-and-mail-celine, 06 Dec. 2019 571
[17] D. Chen, X. Liu, B. Xu, and H.-T. Zhang, “Intermittence and connectivity of interactions in 572
pigeon flock flights”, Sci. Rep., vol. 7, no. 1, 2017 573
[18] A. Berdahl, C. J. Torney, C. C. Ioannou, J. J. Faria, and I. D. Couzin, “Emergent sensing of 574
complex environments by mobile animal groups”, Science, vol. 339, no. 6119, pp. 574–576, 2013 575
[19] I. D. Couzin, “Synchronization: The Key to Effective Communication in Animal 576
Collectives”, Trends Cogn. Sci., vol. 22, no. 10, pp. 844–846, 2018 577
[20] C. W. Reynolds, “Flocks, Herds, and Schools: A Distributed Behavioral Model”, Comput. 578

Graph., vol. 21, pp. 25–43, 1987. 579
[21] S. Hauert et al., “Reynolds Flocking in Reality with Fixed-Wing Robots: Communication 580
Range vs. Maximum Turning Rate”, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), pp. 5015-5020, 581
2011 582
[22] F. Schilling, J. Lecoeur, F. Schiano, and D. Floreano, “Learning Vision-based Flight in 583
Drone Swarms by Imitation”, IEEE Robot. Autom. Lett., vol. 4, pp. 4523–4530, 2019 584
[23] R. Olfati-Saber, “Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory,” 585
IEEE Trans. Autom. Control, vol. 51, no. 3, pp. 401–420, 2006 586
[24] G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A. E. Eiben, and T. Vicsek, “Optimized 587
flocking of autonomous drones in confined environments”, Sci. Rob., vol. 3, no. 20, p. eaat3536 588
2018 589
[25] G. Vasarhelyi et al., “Outdoor flocking and formation flight with autonomous aerial 590
robots”, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), pp. 3866–3873, 2014 591
[26] Y. Koren and J. Borenstein, “Potential field methods and their inherent limitations for 592
mobile robot navigation”, IEEE Int. Conf. Rob. Autom. (ICRA), pp. 1398–1404, 1991 593
[27] E. Soria, D. Floreano, and F. Schiano, “The influence of limited visual sensing on the 594
Reynolds flocking algorithm”, Int. Conf. Rob. Comp. (IRC), pp. 138–145, 2019 595
[28] F. Borrelli, A. Bemporad, and M. Morari, “Predictive Control for Linear and Hybrid 596
Systems”, 1st ed. Cambridge University Press, 2017 597
[29] L. Grune and J. Pannek, “Nonlinear Model Predictive Control. Theory and Algorithms”, 598
Springer London, 2011 599
[30] T. Baca, D. Hert, G. Loianno, M. Saska, and V. Kumar, “Model Predictive Trajectory 600
Tracking and Collision Avoidance for Reliable Outdoor Deployment of Unmanned Aerial 601
Vehicles”, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), pp. 6753–6760, 2018 602
[31] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “PAMPC: Perception-Aware Model 603
Predictive Control for Quadrotors”, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), pp. 1-8, 2018 604
[32] C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online Trajectory Generation With 605
Distributed Model Predictive Control for Multi-Robot Motion Planning”, IEEE Robot. Autom. 606
Lett., vol. 5, no. 2, pp. 604–611, 2020 607
[33] T. Keviczky, F. Borrelli, K. Fregene, D. Godbole, and G. J. Balas, “Decentralized Receding 608
Horizon Control and Coordination of Autonomous Vehicle Formations”, IEEE Trans. Control Syst. 609
Technol., vol. 16, no. 1, pp. 19–33, 2008 610
[34] Ruben Van Parys, “Distributed MPC for multi-vehicle systems moving in formation”, 611
Robot. Auton. Syst., 2017 612
[35] U. Eren, A. Prach, B. B. Koçer, S. V. Raković, E. Kayacan, and B. Açıkmeşe, “Model 613
Predictive Control in Aerospace Systems: Current State and Opportunities”, J. Guid. Control 614
Dyn., vol. 40, no. 7, pp. 1541–1566, 2017 615
[36] W. B. Dunbar and R. M. Murray, “Distributed receding horizon control for multi-vehicle 616
formation stabilization”, Automatica, vol. 42, no. 4, pp. 549–558, 2006 617
[37] R. L. Raffard, C. J. Tomlin, and S. P. Boyd, “Distributed optimization for cooperative 618
agents: application to formation flight”, IEEE Conf. Decision Control (CDC), vol. 3, pp. 2453-2459 , 619
2004 620
[38] T. Schouwenaars, J. How, and E. Feron, “Decentralized Cooperative Trajectory Planning 621
of Multiple Aircraft with Hard Safety Guarantees”, AIAA Guid. Nav. and Cont. Conf., 2004 622

[39] A. Richards and J. How, “Implementation of Robust Decentralized Model Predictive 623
Control”, AIAA Guid. Nav. and Cont. Conf., 2005 624
[40] Y. Kuwata and J. P. How, “Robust Cooperative Decentralized Trajectory Optimization 625
using Receding Horizon MILP,” in American Cont. Conf., pp. 522–527, 2007 626
[41] I. Kagan Erunsal, A. Martinoli, and R. Ventura, “Decentralized Nonlinear Model Predictive 627
Control for 3D Formation of Multirotor Micro Aerial Vehicles with Relative Sensing and 628
Estimation”, Int. Symp. on Multi-Robot and Multi-Agent Syst. (MRS), pp. 176–178, 2019 629
[42] W. Zhao and T. H. Go, “Quadcopter formation flight control combining MPC and robust 630
feedback linearization”, J. Frankl. Inst., vol. 351, no. 3, pp. 1335–1355, 2014 631
[43] W. Ren and N. Sorensen, “Distributed coordination architecture for multi-robot 632
formation control”, Robot. Auton. Syst., vol. 56, no. 4, pp. 324–333, 2008 633
[44] M. Kamel, J. Alonso-Mora, R. Siegwart, and J. Nieto, “Robust collision avoidance for 634
multiple micro aerial vehicles using nonlinear model predictive control”, IEEE/RSJ Int. Conf. 635
Intell. Robots Syst. (IROS), pp. 236–243, 2017 636
[45] V. Kumar and N. Michael, “Opportunities and challenges with autonomous micro aerial 637
vehicles,” Int. J. Robot. Res., vol. 31, no. 11, pp. 1279–1291, 2012 638
[46] M. Petrlík, T. Báča, D. Heřt, M. Vrba, T. Krajník, and M. Saska, “A Robust UAV System for 639
Operations in a Constrained Environment”, IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2169–640
2176, 2020 641
[47] K. R. Sapkota et al., “Vision-based Unmanned Aerial Vehicle detection and tracking for 642
sense and avoid systems,” IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), pp. 1556–1561, 2016 643
[48] E. R. Hunt and S. Hauert, “A checklist for safe robot swarms,” Nat. Mach. Intell., vol. 2, 644
no. 8, pp. 420–422, 2020 645
[49] B. Lindqvist, S. S. Mansouri, A. Agha-mohammadi, and G. Nikolakopoulos, “Nonlinear 646
MPC for Collision Avoidance and Control of UAVs With Dynamic Obstacles,” IEEE Robot. Autom. 647
Lett., vol. 5, no. 4, pp. 6001–6008, 2020 648
[50] R. Verschueren et al., “Towards a modular software package for embedded 649
optimization”, IFAC-Pap., vol. 51, no. 20, pp. 374–380, 2018 650
[51] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-651
search algorithm for large-scale nonlinear programming”, Math. Program., vol. 106, no. 1, pp. 652
25–57, 2006 653
 654

Acknowledgments 655

 656
We thank Fabian Schilling and Anthony De Bortoli for their valuable contributions. This work 657
was supported by the Swiss National Science Foundation with grant number 200020_188457. 658
 659

Author contributions 660

 661
All authors contributed to the conception of the project and were involved in the analysis of the 662
results. E.S. has designed, implemented, and performed software and hardware experiments of 663
the NMPC algorithm for the navigation of drone swarms in cluttered environments. All authors 664
contributed to the writing of the manuscript. 665

 666

Competing interests 667

 668
The authors declare that they have no competing interests. 669
 670

Figures

Figure 1

Experimental setup of drone swarm �ight in cluttered environments. (a) Illustration of the experimental
setup and the environment con�guration. A ground control station, equipped with a radio transmitter,
computes and sends run-time control commands to the drones. The swarm �ies in the 3D space of an
indoor �ying arena. The drones take off from initial random positions within a prede�ned start area (red
zone). Drones swarm along the preferred migration direction (orange arrow). The mission is completed
when all drones cross the arrival plane (Fig. 1a) on the opposite side of the region. (b) Indoor test
environment populated with cylindrical obstacles. (c) Components of the drones used for the hardware
experiments.

Figure 2

Comparison of the PF and NMPC aerial swarms in simulation experiments. (a) Top views of the 3D
trajectories of �ve drones �ying in a cluttered environment with the PF (top) and the NMPC models
(bottom) (see Supplementary Video 1). The circular objects on the map correspond to cylindrical
obstacles. (b) Inter-agent distance average (solid line) and range (shaded region). The curve on top (blue)
refers to the PF swarm, while the one at the bottom (orange) refers to the NMPC swarm. (c) Swarm speed
average (solid line) and range (shaded region). (d) Order metric. (e) Distance to obstacles, min(),
expressed as the minimum distance between the swarm’s agents and the set of obstacles.

Figure 3

Comparison of the PF and NMPC swarm deployment in environments with different obstacle densities.
(a, d) Top views of the 3D simulated trajectories of the PF and the NMPC swarms in environments with
three different obstacle densities. The density increases from left to right (Case A: 0.06, B: 0.12, and C:
0.20) (see Supplementary Video 1). (b, c) Inter-agent distance and speed of the PF swarm in Case C. (e, f)
Inter-agent distance and speed of the NMPC swarm in Case C. (g) Aggregated results (average and
standard deviation) of 10 stochastic simulations of the PF (blue) and NMPC (orange) swarm models in
Cases A, B, and C. The represented metrics are the mission time , the distance error , the distance range
, the speed error , and the speed range (see Supplementary Table 1).

Figure 4

Scalability of the NMPC swarm in inter-agent distance and speed. On the left, simulation results on the
scalability of the NMPC swarm model in the inter-agent distance for three preferred distance values (Case
A: ref=0.5, B: 1.0, and C: 1.5). On the right, simulation results on the scalability in the swarm speed for
three preferred speed values (Case A: ref= 0.5/, B: 1.0/, and C: 1.5/). (a, d) Top views of the 3D
trajectories of the swarm (see Supplementary Video 1). (b, c) Inter-agent distance and speed for the
experiment on the inter-agent distance scalability. (e, f) Inter-agent distance and speed for the experiment
on the speed scalability. The obstacle size and density are the same for the six cases.

Figure 5

Real-world experiment of the NMPC swarm. (a) The swarm, composed of �ve commercial palm-sized
quadrotors, �ies through cylindrical obstacles in a motion capture arena. The swarm crosses the region
from the foreground (=0) to the background (=), while maintaining cohesion and avoiding the
obstacles (see Supplementary Video 2). (b) Top view of the trajectories of the drones. For the real-world
deployment, we selected obstacles with a smaller radius (obs= 0.30) than in simulation (obs=0.55),

but we used the same safety distance for collision avoidance as in simulation (obs−safety=0.65),
which introduces a safety margin of 0.25 from the physical obstacles (see Supplementary Table 4). (c)
Average inter-agent distance and range with the real swarm (solid line and shaded region, respectively)
and the simulated swarm (dashed and dotted lines, respectively). (d) Average speed and range with the
real swarm (solid line and shaded region, respectively) and the simulated swarm (dashed and dotted
lines, respectively). (e) Swarm’s order: real (solid line) and simulated (dashed line) swarm. (f) Swarm
distance to obstacles. The offset in the real data (solid line) with respect to the simulated data (dashed
line) is due to the safety margin.

Figure 6

Predictive swarm algorithm work�ow. The proposed NMPC swarm algorithm optimizes four local rules:
the separation incentivizes neighboring drones to stay at the preferred inter-agent distance ref, the
navigation incentivizes constant migration speed ref, the direction drives the agents towards a preferred
direction ref, and the control effort incentivizes small acceleration values. For each agent, the algorithm
selects the nearest neighbors and feed their states into the optimization problem. The optimization
problem, solved at discrete time instants, minimizes a cost function over the prediction horizon and
yields an optimal temporal sequence of control actions over the command horizon . Only the �rst
action is sent to the drones, which perform their motion accordingly. This procedure is repeatedly applied
throughout the control process.

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

movies1.mp4

movies2.mp4

supplementarymaterials.pdf

https://assets.researchsquare.com/files/rs-82503/v1/movies1.mp4
https://assets.researchsquare.com/files/rs-82503/v1/movies2.mp4
https://assets.researchsquare.com/files/rs-82503/v1/supplementarymaterials.pdf

