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Abstract12

Accurate prediction of the individualized survival benefit of adjuvant therapy is key to making in-13

formed therapeutic decisions for patients with early invasive breast cancer. Here, we use a state-of-14

the-art automated and interpretable machine learning algorithm to develop a breast cancer prog-15

nostication and treatment benefit prediction model — Adjutorium — using data from large-scale16

cohorts of nearly 1 million women captured in the national cancer registries of the United Kingdom17

and the United States. We trained and internally validated the Adjutorium model on 395,862 patients18

from the UK National Cancer Registration and Analysis Service (NCRAS); we then externally19

validated the model among 571,635 patients from the US Surveillance, Epidemiology, and End20

Results (SEER) Program. Adjutorium exhibited significantly improved accuracy compared to the21

major prognostic tool in current clinical use (PREDICT v2.1) in both internal and external validation22

(AUC-ROC for 5-year survival prediction in NCRAS was 0.835, 95% CI: 0.833–0.837 and 0.755,23

95% CI: 0.753–0.757 for Adjutorium and PREDICT v2.1. In SEER, the AUC-ROC performance24

was 0.815, 95% CI: 0.813–0.817 and 0.775, 95% CI: 0.772–0.778 for Adjutorium and PREDICT25

v2.1, respectively). Importantly, our model substantially improved accuracy in specific subgroups26

known to be under-served by existing models. Adjutorium is currently implemented as a web-based27

decision support tool (vanderschaar-lab.com/adjutorium/) to aid decisions on adjuvant therapy in28

women with early breast cancer, and can be publicly accessed by patients and clinicians worldwide1.29

1The website is currently password protected and the online tool Adjutorium can be activated by entering password

12321 each time it is accessed.
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Main30

Breast cancer is the most common cancer among women globally, with incidence rates varying from31

19.3 per 100,000 women in Eastern Africa to 89.7 per 100,000 women in Western Europe.1, 2 While32

prognosis of early-stage breast cancer has improved substantially since the introduction of adjuvant33

endocrine and chemotherapies,3 these treatments need to be used judiciously, with careful balancing34

of risks and benefits, particularly in patients’ subgroups where their utility is as yet unclear.4, 5 Over35

the years, various breast cancer prognostication models have been developed to enable tailored36

post-surgical therapeutic decisions by predicting the survival profiles of individual patients on the37

basis of their clinicopathological features. Of these, PREDICT v2.1 (https://predict.nhs.uk) has been38

the most commonly used worldwide;6, 7, 8 it was recently endorsed by the American Joint Committee39

on Cancer (AJCC),9 was accessed through more than 1 million sessions from 100 cities all over the40

world in the period spanning from 2011 to 2020 (https://breast.predict.nhs.uk/statistics.html), and is41

the recommended tool for adjuvant therapy planning in the current NICE guidelines.10
42

However, despite its widespread use, PREDICT v2.1 has been shown to under-perform in specific43

subgroups of patients, including older patients, patients with tumours over 50mm, small ER-positive44

tumours, or larger ER negative tumours.11 Over or under-estimation of the survival rates within45

specific patient subgroups could lead to under or over-treatment, thereby, negatively impacting46

patient outcomes.12, 13, 14, 15 We hypothesize that the limitations of existing tools arise from: (1) the47

lack of flexibility in the underlying Cox regression method predominantly used to develop prognostic48

models,16, 7 and (2) the derivation of models using outdated and relatively modest-sized cohorts49

where certain subgroups of patients may not be sufficiently represented. Machine learning (ML)50

technologies that can readily infer complex patterns from data, supported with big data resources51

provide the opportunity to address the aforementioned limitations.17, 18
52

Here, we use a state-of-the-art automated ML algorithm, AutoPrognosis,19 to develop and validate53

Adjutorium; a breast cancer prognostication model that predicts patient survival and adjuvant54

treatment benefit in order to guide personalized therapeutic decisions. AutoPrognosis is an (open-55

source) software (https://bitbucket.org/mvdschaar/mlforhealthlabpub) that we have developed to56

automate the deployment of machine learning in clinical prognostic modeling. The AutoPrognosis57

algorithm automatically generates a bespoke machine learning model for the data set at hand by58

optimizing an ensemble of machine learning models (e.g., neural networks, random forests, etc.)59

using an advanced Bayesian optimization algorithm, and then uses a symbolic regression algorithm20
60
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Figure 1: Schematic depiction of the AutoPrognosis framework. Given patient data, AutoPrognosis uses a Bayesian

optimization algorithm to search for the optimal parameters of a collection of machine learning models and the optimal

weight assigned to each model in an ensemble. (Here, we depict random forests, gradient boosting and neural network

models as exemplary elements of the ensemble.) After fitting the ensemble model, a symbolic regression algorithm is

used to convert the fitted model into a mathematical equation that maps patient variables to predicted risk. The end

result is a mathematical equation that computes an individual patient’s survival curve with and without a given therapy.

to convert the optimized ensemble into a transparent risk equation that is interpretable to clinicians61

(Fig. 1). We developed and validated Adjutorium through the AutoPrognosis software using data for62

nearly 1 million women in large-scale cohorts that are representative of the UK and US populations.63

We trained Adjutorium to predict breast cancer and all-cause mortality without adjuvant therapies64

by fitting 10 binary classification ensemble models (optimized via AutoPrognosis), where each65

model was trained to predict patient survival at 10 distinct time horizons spanning from 1 to 1066

years from baseline, with 1-year increments. The effects of four adjuvant therapies (chemotherapy,67

hormone therapy, bisphosphonates and trastuzumab) were incorporated into the model using their68

estimated relative risk reduction rates from the EBCTCG meta-analysis.21, 22 The input to the model69

is a set of features for an individual patient, and the outputs are the patient’s predicted (breast70

cancer-specific and all-cause) survival curves under no adjuvant therapy and any combination of the71

four adjuvant therapies under consideration (inputs and outputs for Adjutorium are visualized in72

the following web application: https://adjutorium-breastcancer.herokuapp.com/). Technical details73

for the implementation of AutoPrognosis have been described previously.20, 23, 24 A brief discussion74

of AutoPrognosis and a detailed explanation of the training procedure for Adjutorium are provided75

in Methods and Supplementary Information.76
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Through internal and external validation, we compared the accuracy of Adjutorium in predicting77

all-cause and breast cancer-specific mortality at 3, 5 and 10 years from baseline with the commonly78

used PREDICT v2.1 score,7 in addition to an in-house Cox proportional hazards (PH) regression79

model fitted to the same training cohort used to derive the Adjutorium model. We assessed the80

discriminative accuracy of all models using the time-dependent area under receiver operating81

characteristic curve25 (AUC-ROC), Harrell’s concordance index26 (C-index), and Uno’s C-index.27
82

Details on the mathematical definitions of each of these metrics can be found in Supplementary83

Information. For all evaluations, 95% confidence intervals on the estimated performance metrics84

were obtained via bootstrapped re-sampling of the validation data.85

Data resources and study cohorts86

Patient data for the study were obtained from two cohorts: the UK National Cancer Registration and87

Analysis Service (NCRAS, n=620,249), and the US Surveillance, Epidemiology and End Results88

program28 (SEER, n=588,735). NCRAS is the population-based cancer registry for England; the89

SEER program at the National Cancer Institute collects data on cancer diagnoses, treatment and90

survival for approximately 30% of the US population. The two databases combined hold data for91

over 1.2 million cases diagnosed between 2000 and 2016. Data was extracted for early breast cancer92

patients — patients with metastatic cancer were excluded. We extracted patient-level data: patients93

with multiple primary tumors were represented through their first diagnosis only. The extracted94

patient-level data comprised standard prognostic factors used in existing prognostic models,7, 29, 30
95

including age at diagnosis, mode of detection (screen-detected/symptomatic), estrogen receptor96

(ER) status, human epidermal growth factor receptor 2 (HER2) status, number of lymph nodes97

involved, tumour size and histological tumour grade. As this was a large population-based study,98

with full anonymisation of all data, informed consent and ethical approval was not sought.99

A total of 395,862 and 571,635 patients met the inclusion criteria in NCRAS and SEER, respectively100

(Supplementary Fig. 1). Missing data was imputed using the multiple chained equations31 (MICE)101

method. Details on the patient inclusion criteria and the steps involved in missing data imputation102

are provided in Methods and Supplementary Information; patient characteristics are provided in103

Supplementary Table 1. Patient samples from the NCRAS database were randomly split into two104

mutually exclusive cohorts: a training cohort of 316,690 patients used for model derivation, and105

an internal validation cohort of 79,172 patients used to evaluate model accuracy. The entire SEER106

cohort (571,635 patients) was reserved for external validation. The primary outcome of our study107
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Figure 2: Illustration for the machine learning model underlying Adjutorium. a, The ensemble model learned

by the AutoPrognosis software. The ensemble comprises four basic machine learning models: random forest, neural

network, gradient boosting, and AdaBoost. The prediction issued by Adjutorium is a weighted combination of the

predictions of the four members of the ensemble. Each model in the ensemble has a set of parameters (listed between

brackets), and an assigned weight α(t) determining its contribution in the final prediction. Both the model parameters

and its weight change depending on the prediction horizon t. Separate ensembles are trained to predict breast cancer-

specific survival Pbc(t) and other cause survival Pnbc(t). b, The predicted survival curve for an exemplary patient

(with and without adjuvant therapy). Here, each prediction horizon (1 to 10 years since diagnosis, with 1-year steps)

corresponds to a knot in the survival curve, and each knot is associated with a distinct set of model parameters and

contribution weights in the ensemble in a. c, Risk equations underlying Adjutorium as learned by the symbolic

regression module in AutoPrognosis. Given the individual-level variables of a patient, the risk equation evaluates the

probability of survival at future time horizons. The log odds ratio for survival at time t comprises two components: (1)

a population-level term that models non-linear effects of age and number of lymph nodes, in addition to interactions

between different variables through six coefficients that are fixed for all patients, and (2) a tumour grade and ER-specific

term that evaluates the linear effects of all prognostic factors with coefficients that are specific to every group of patients

with the same grade and ER status. Here we show an exemplary patient with ER negative cancer and tumour grade 2

and. The risk equation is a mathematical abstraction for the predictions issued by the machine learning model in a.
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was survival from all-cause mortality at 3, 5 and 10 years after surgery for breast cancer. All-cause108

mortality was further subdivided into breast cancer-specific mortality, which was assessed as a109

secondary outcome, and mortality due to other causes. Breast cancer-specific mortality was defined110

as ICD-10 code C.50 listed on the death certificate as a cause of death.111

Development of the Adjutorium model for breast cancer prognostication112

A high-level illustration for the machine learning model generated by AutoPrognosis when fitted to113

the development cohort (n=316,690) is provided in Fig. 2. The overall model is based on two ensem-114

bles, each comprising four binary classification models:32 random forest, neural network, gradient115

boosting, and AdaBoost. One ensemble was trained to predict the risk of breast cancer-specific mor-116

tality Pbc(t) at a time horizon t based on all prognostic variables, and the other ensemble was trained117

to predict the risk of other cause mortality Pnbc(t) based on age. All-cause survival was computed118

as PHR
bc (t) ·Pnbc(t), where HR is the risk reduction rate ratio (hazard ratio) of the selected adjuvant119

therapy (HR = 1 if no treatment is administered). The values of HR for chemotherapy, hormone120

therapy, bisphosphonates and trastuzumab were obtained from the EBCTCG meta-analyses.21, 22
121

Through the symbolic regression module in AutoPrognosis (Fig. 1), the ensemble model for122

Pbc(t) was mathematically represented in the form of a risk equation that maps patient variables123

to breast-cancer-specific survival functions (See Fig. 2(c) for a visual depiction of this equation).124

The risk equation for Pbc(t) can be described as follows. For a given patient, breast-cancer-related125

survival probability is given by Pbc(t) = 1/(1+exp(−λbc(t))), where t is the time horizon at which126

the survival probability is evaluated. The term λbc(t) can be interpreted as the log odds ratio for127

survival at time t, and it comprises the following two components:128

λbc(t) = λ̄bc(t)
︸ ︷︷ ︸

Population-level

+ λ̄G,ER

bc (t),
︸ ︷︷ ︸

Grade-ER-specific

where the first term λ̄bc(t) comprises coefficients shared among all patients in the population, and129

includes the non-linear effects of the age and number of lymph nodes variables, in addition to130

interaction terms between age, mode of detection, tumour size and number of lymph nodes (Fig.131

2(c)). These interaction terms reflect the impact of the implemented screening policy on patients’132

risks, i.e., the coefficients (α3, α5, α6) in Fig. 2(c) quantify the risk reduction (by early detection of133

cancer via screening) as a function of the patient’s age and tumor spread at diagnosis time. The134

second term, λ̄G,ER

bc (t), includes linear contributions of all prognostic variables, with coefficients135
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specific to subgroups of patients with every possible combination of tumour grade and ER status.136

The numerical values of the coefficients of λbc(t) are provided in the Supplementary Information.137

The breast cancer-specific mortality risk equation learned by AutoPrognosis demonstrates that138

our machine learning approach identified new interactions that were not incorporated in previous139

models7, namely the interactions between tumour grade and all other variables. These results are140

in agreement with new approaches to molecular subtyping that use both receptor status and tumor141

grade to categorize breast cancer into several conceptual molecular classes (e.g., Luminal A and B142

subtypes) that have different prognoses and (potentially) different responses to specific therapies.33
143

Thus, the interpretable risk equation learned by AutoPrognosis not only ensures model transparency,144

but also provides insights into the discovery of new breast cancer subtypes.145

For benchmark purposes, the PREDICT v2.1 score and a standard Cox PH model fit on the same146

training data as Adjutorium were also assessed for comparison. Consistent with previous studies,7147

we fitted two separate Cox models, with different baseline hazards for ER positive and ER negative148

cancer to capture the interactions between ER status and other prognostic variables. We included149

an age squared term to allow for non-linear effects of baseline age at diagnosis on breast cancer150

mortality. Tumor size and number of lymph nodes were both coded as continuous variables.151

Coefficients of the fitted Cox PH model are provided in Supplementary Table 2.152

Accuracy of the Adjutorium model153

Of 395,862 eligible patients in NCRAS, the mean age of breast cancer diagnosis was 61 years, with154

2 million person-years of total follow-up (median follow-up time of 5.2 years) within the cohort.155

The SEER cohort included 571,635 eligible patients with a mean age of diagnosis of 61 years,156

and a total 3.2 million person-years of follow-up (median follow-up time of 5.7 years). During157

follow-up, 83,139 and 139,225 deaths were recorded in NCRAS and SEER, respectively, of which158

53,143 (64%) and 59,585 (43%) cases were breast cancer-related. Overall 5-year survival from159

breast cancer were 90% and 86% in SEER and NCRAS, respectively.160

Discriminative accuracy. Adjutorium uniformly outperformed PREDICT v2.1 and the conven-161

tional Cox PH model in predicting all-cause and breast cancer-specific mortality, both when validated162

internally within NCRAS, and externally within the SEER cohort (Table 1). The improvements163

were achieved with respect to all discriminative accuracy metrics and all time horizons under study.164
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0.738  

(0.734–0.742) 

AUC-ROC 
0.790  

(0.787–0.793) 

0.778  

(0.771–0.785) 

0.756  

(0.753–0.759) 

0.803  

(0.800–0.806) 

0.775  

(0.770–0.780) 

0.744  

(0.741–0.747) 

Table 1: Discriminative accuracy with respect to the primary and secondary outcomes.
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In internal validation, Adjutorium predicted 10-year all-cause mortality with an AUC-ROC accuracy165

of 0.815 (95% CI: 0.813-0.817), compared with 0.777 (95% CI: 0.768-0.772) by PREDICT v2.1,166

and 0.775 (95% CI: 0.773-0.777) by the Cox PH model. Similar performance gains were achieved167

over the other time horizons, and with respect to the C-index statistic (Table 1). The improvements168

in accuracy achieved by Adjutorium were even more significant in predicting breast cancer-specific169

mortality, with an AUC-ROC of 0.825 (95% CI: 0.823-0.827) for 10-year outcomes, compared with170

0.730 (95% CI: 0.727-0.733) by PREDICT v2.1, and 0.783 (95% CI: 0.781-0.785) by the Cox PH171

model. The fact that the accuracy improvements were more significant in the secondary outcome is172

not surprising since all of the variables included in the model were breast cancer-related.173

Adjutorium generalized well to the external validation cohort, with similar accuracy improvements174

for both the primary and secondary outcomes (Table 4). With respect to 10-year all-cause mortality,175

Adjutorium achieved an AUC-ROC of 0.790 (95% CI: 0.787-0.793), compared to 0.756 (95% CI:176

0.753-0.759) by PREDICT, 0.631 (95% CI: 0.628-0.634) by NPI, and 0.778 (95% CI: 0.771-0.785)177

by the Cox PH model. Similar gains were achieved over the other time horizons (Table 4). For178

prediction of 10-year breast cancer-specific mortality, Adjutorium achieved an AUC-ROC of 0.803179

(95% CI: 0.800-0.806), compared to 0.744 (95% CI: 0.741-0.747) by PREDICT, 0.768 (95% CI:180

0.765-0.771) by NPI, and 0.775 (95% CI: 0.770-0.780) by the Cox PH model.181

Importantly, Adjutorium outperformed the Cox PH model fitted to the same development cohort,182

reflecting the gain from modeling, i.e., the gain achieved by using flexible machine learning models183

instead of standard regression. On the other hand, the gain achieved by the Cox PH model compared184

to PREDICT v2.1 in external validation reflects the gain from information, i.e., the gain achieved by185

using large-scale, representative data that enhance the accuracy and generalizability of the fitted186

models to other cohorts that might entail different demographic structure and outcomes.187

Subgroup analysis. The accuracy improvements achieved by Adjutorium were consistent across188

all subgroups of patients stratified by age, HER2 status, ER status and tumour grade (Table 2).189

Improvements were greater in subgroups that are poorly served by current prognostic tools; the190

accuracy gains achieved by Adjutorium relative to PREDICT v2.1 were higher in elderly patients191

(age > 65 yrs at diagnosis), patients with ER negative and HER2 negative breast cancer. This is192

likely due to the fact that our machine learning-based risk equation captured nuanced interactions193

and non-linear patterns that were not incorporated in existing prognostic tools (Fig. 2(c)).194
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Adjutorium PREDICT v2.1 

No. of cases Observed 
deaths 

AUC-ROC TP FP AUC-ROC TP FP 

Age at diagnosis 

ER positive 

30 – 65 years 74,732 18,374 0.798 14,286 20,034 0.799 14,941 19,544 

> 65 years 38,226 14,290 0.806 10,527 6,174 0.800 10,688 6,212 

ER negative 

30 – 65 years 61,070 17,594 0.768 11,552 11,138 0.727 10,829 12,948 

> 65 years 25,812 11,564 0.797 7,894 3,378 0.766 9,053 4,571 

HER2 positive 

30 – 65 years 1,467 1,467 ___ ___ ___ ___ ___ ___ 

> 65 years 958 958 ___ ___ ___ ___ ___ ___ 

HER2 negative 

30 – 65 years 134,335 34,501 0.766 24,155 33,485 0.745 23,441 27,704 

> 65 years 63,080 24,896 0.791 17,383 9,978 0.769 16,206 8,243 

Grade I 

30 – 65 years 18,073 1,517 0.736 1,025 4,139 0.725 960 5,575 

> 65 years 10,643 1,850 0.740 1,110 2,146 0.700 983 1,849 

Grade II 

30 – 65 years 68,596 13,180 0.718 9,691 12,477 0.712 6,736 11,387 

> 65 years 63,009 13,397 0.700 9,433 21,828 0.700 7,584 12,329 

Grade III 

30 – 65 years 62,560 21,157 0.728 13,754 12,029 0.730 13,456 11,885 

> 65 years 30,630 10,531 0.700 6,360 7,829 0.720 7,724 7,820 

* FP and TP denote false positive and true positive cases, respectively. 

Adjutorium PREDICT v2.1 

No. of cases Observed 
deaths 

AUC-ROC TP FP AUC-ROC TP FP 

Age at diagnosis 

ER positive 

30 – 65 years 21,302 2,314 0.791 1,658 5,142 0.773 1,607 5,171 

> 65 years 13,115 3,774 0.824 3,026 2,767 0.779 2,915 2,937 

ER negative 

30 – 65 years 10,417 2,440 0.729 1,615 2,634 0.666 1,595 3,043 

> 65 years 4,861 2,090 0.785 1,458 730 0.700 1,626 1,202 

HER2 positive 

30 – 65 years 11,894 2,390 0.717 1,563 3,157 0.682 1,535 3,299 

> 65 years 4,388 1,940 0.767 1,370 733 0.671 1,449 1,131 

HER2 negative 

30 – 65 years 19,825 2,363 0.816 1,749 4,286 0.797 1,749 4,898 

> 65 years 13,588 3,924 0.825 2,970 2,443 0.763 3,088 3,433 

Grade I 

30 – 65 years 4,942 146 0.752 101 1,262 0.739 103 1,580 

> 65 years 2,608 382 0.816 273 423 0.758 290 683 

Grade II 

30 – 65 years 6,472 1,772 0.753 1,218 1,286 0.720 1,291 1,754 

> 65 years 6,920 2,891 0.693 2,120 1,737 0.684 2,165 1,824 

Grade III 

30 – 65 years 5,935 2,820 0.730 2,061 1,210 0.630 1,785 1,249 

> 65 years 4,503 2,577 0.662 1,921 942 0.613 1,370 652 
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Table 2: Subgroup-level discrimination with respect to breast cancer-specific 10-year outcomes.
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Sensitivity analyses and calibration performance. We conducted various tests to evaluate the ro-195

bustness of our results. First, we tested the robustness of Adjutorium to time-cohort effects; internal196

validation on sub-cohorts stratified by diagnosis dates from 2005 to 2016 showed that the accuracy197

gains by Adjutorium are achieved for all diagnosis years, except for 10-year all-cause mortality in198

more recent diagnosis years where both models perform similarly (Fig. 3). (This is mainly because199

recent cohorts do not have sufficient follow-up.) Moreover, we applied internal and external valida-200

tion on sub-cohorts with complete data and missing data to test the robustness of Adjutorium to data201

missingness; the model performed well in cases with complete and missing data, outperforming202

other models by similar margins in both analyses (Supplementary Information). When validated on203

21,164 patients (in the internal validation cohort) with complete data on all variables, the AUC-ROC204

accuracy of Adjutorium with respect to 10-year breast cancer-specific mortality was 0.811 (95% CI:205

0.0.808-0.814), and 0.783 (95% CI: 0.780-0.786) for PREDICT v2.1. When validated on 57,996206

patients with missing data on one or more variables, the AUC-ROC accuracy of Adjutorium was207

0.829 (95% CI: 0.0.827-0.831), and 0.728 (95% CI: 0.725-0.731) for PREDICT v2.1.208

Adjutorium was well-calibrated across study cohorts, displaying better calibration with observed209

outcomes than PREDICT v2.1 (Supplementary Information). In internal validation, we found that210

PREDICT v2.1 substantially over-estimated the risk of both all-cause and breast cancer related211

mortality at 10-year follow up. In external validation, PREDICT v2.1 over-estimated the risk of212

breast cancer related mortality, but was relatively more conservative in predicting all-cause mortality.213

While Adjutorium was noted to under-estimate mortality in patients who were at high risk for214

breast cancer and all cause mortality, this is unlikely to impact clinical decision making as these215

individuals are likely to be well beyond the decision threshold for improvement with treatment.216

Moreover, patients in this risk subgroup comprised only 6% of the overall population.217

Impact on adjuvant therapy decisions218

To assess the clinical benefit of using Adjutorium for supporting decisions regarding adjuvant219

therapies, we compared Adjutorium predictions of treatment benefit to PREDICT v2.1, and the220

observed decisions of multidisciplinary teams (MDT) obtained from the NCRAS database. To this221

end, we followed decision thresholds currently used for decision-making with PREDICT within222

the UK, recommending chemotherapy if a patient’s 10-year net survival benefit from treatment is223

predicted to be greater than 5%34 and no adjuvant chemotherapy if treatment benefit is <3%. The224

decisions when survival benefit is predicted as 3-5% are made on a case by case basis, and no225
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a  Discriminative accuracy with respect to all-cause mortality 

 

 

b  Discriminative accuracy with respect to breast cancer-specific mortality 

 

Figure 3: Discriminative accuracy evaluated in sub-cohorts of patients stratified by diagnosis date.
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formal guidelines exist regarding these at present. We compared 5- and 10-year survival among226

patients where MDT decision-making regarding treatment (extracted from the registry data) had227

been concordant with Adjutorium, with survival among patients where this had been discordant. We228

also conducted a similar comparison with PREDICT v2.1 examining average survival of patients229

with discordant predictions of treatment benefit between the algorithms. Finally, we assessed how230

many additional patients who had died of breast cancer within 10 years would have been assigned231

to treatment by Adjutorium relative to treatment assignment by MDTs and PREDICT v2.1.232

The average benefit of chemotherapy predicted by Adjutorium and PREDICT v2.1 in all study co-233

horts were found to be significantly different (t-test, p < 0.001). Fig. 4 visualizes the disconcordance234

between treatment decisions informed by Adjutorium and PREDICT v2.1, in addition to the ob-235

served MDT decisions in light of the patients’ 10-year outcomes. In both the internal and external236

validation cohorts, Adjutorium and PREDICT v2.1 disagreed on treatment decisions for 19% of237

the patient population (Fig. 4(a)). The population of patients that were recommended a treatment238

by Adjutorium but not by PREDICT or MDTs (Population P2 and P4 in Fig. 4) had a higher than239

average mortality rate at 10 years. An average 10-year mortality of 28% is consistent with a benefit240

of >5%, suggesting that on average, this treatment subgroup would have benefited from treatment.241

On the contrary, the population of patients that were not recommended a treatment by Adjutorium,242

but were recommended a chemotherapy by PREDICT or the MDT decisions exhibited a 10-year243

mortality rate less than that of the populational average. A 10-year mortality of 18% in the group244

discordantly assigned to treatment by PREDICT suggests average treatment benefit in the range245

of 2.4%. This indicates that treatment decisions informed by Adjutorium are less likely to over or246

under treat patients. Compared to historical decisions made by multidisciplinary teams (MDT),247

Adjutorium can potentially improve treatment decisions for 25% of the patient population (13%248

who are under-treated, and 12% who are potentially over-treated).249

Discussion250

We developed and validated Adjutorium — a machine learning-based tool for predicting the251

individualized benefit of adjuvant therapies in breast cancer. Involving data from nearly 1 million252

individuals with breast cancer from the UK and US, this is one of the largest studies of its kind. We253

found that Adjutorium substantially outperforms one of the most widely used standards for clinical254

decision making, and critically is generalisable to distinct clinical settings. To our knowledge this is255
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 a  Disconcordance between different models 

 

 

 

 

 

 

 

 

 

 

 

b  Characteristics of patients in disconcordant cases 

 

Adjutorium 

Predicted survival benefit of adjuvant therapy (%) 

Age Lymph  
nodes 

Tumour 
size 

Tumour 
grade I 

ER  
positive 

HER2 
positive  

Screen-
detected 

NCRAS (n=9,904) 55.7 2.5 22 10% 69% 41% 65% 

SEER (n=73,866) 57.7 1.9 22 18% 80% 13% ___ 

Population P1: untreated by Adjutorium, treated by MDT. MR*: NCRAS=0.85, SEER=0.88.  
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P4 
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P2 

Population P2: treated by Adjutorium, untreated by MDT. MR: NCRAS=1.13, SEER=1.08.  

Population P3: untreated by Adjutorium, treated by PREDICT. MR: NCRAS=0.92, SEER=0.75.  

Population P4: treated by Adjutorium, untreated by PREDICT. MR: NCRAS=1.20, SEER=1.60  

Age Lymph  
nodes 

Tumour 
size 

Tumour 
grade I 

ER  
positive 

HER2 
positive  

Screen-
detected 

NCRAS (n=10,345) 63.0 5.6 28 2.7% 59% 37% 16.7% 

SEER (n=101,861) 57.3 1.2 24 1.8% 41% 3% ___ 

Age Lymph  
nodes 

Tumour 
size 

Tumour 
grade I 

ER  
positive 

HER2 
positive  

Screen-
detected 

NCRAS (n=5,096) 60.0 7.9 23 6% 43% 47% 34% 

SEER (n=12,105) 60.0 5.9 37 2% 29% 15% ___ 

Age Lymph  
nodes 

Tumour 
size 

Tumour 
grade I 

ER  
positive 

HER2 
positive  

Screen-
detected 

NCRAS (n=9,285) 58.2 1.9 25 1.9% 66% 20% 41% 

SEER (n=99,389) 55.4 0.7 20 2.5% 54% 3.5% ___ 
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* MR stands for “mortality ratio”, defined as the ratio between the 10-year mortality rate in the selected population and that of the overall population. 

Figure 4: Comparison between therapeutic decisions informed by Adjutorium and PREDICT v2.1.
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the first application of a machine learning model for prognostication in breast cancer, that has been256

shown to be generalisable across multiple nationally representative cohorts.257

While several prognostication methods are available for supporting clinical decisions regarding258

adjuvant therapies in breast cancer, they have well recognized limitations particularly in terms259

of their accuracy in certain subgroups and their generalisability to other populations. We find260

that Adjutorium outperforms existing clinical decision support tools in terms of accuracy, and261

calibration to observed outcomes, across all patient groups. Additionally, it shows substantially262

improved performance in subgroups where existing clinical decision support tools are known263

perform poorly (e.g., older women with early cancer, and ER negative breast cancer) suggesting264

that using Adjutorium to support clinical decisions may lead to better treatment decisions, and265

potentially better outcomes in these subgroups. By contrast with other existing tools, Adjutorium266

is robust to missing data, and is able to make accurate predictions even when information on267

some of the prognostic factors is not available. This is an important advance, making our model268

more generalisable to settings where data on patients may be incomplete. Importantly, we observe269

lower 10-year mortality among patients where MDT decisions are concordant with Adjutorium270

predictions; this has important implications for clinical decision support, and highlights the utility271

of tools such as Adjutorium for prognostication to potentially drive better patient outcomes.272

We find that Adjutorium not only outperforms PREDICT v2.1, but also a Cox proportional hazards273

model fit on the same training cohort. This suggests that gains in performance are achieved not274

only due to a larger representative set for training the models, but also due to the flexible nature of275

the machine learning algorithms applied. Our fitted model does not make any assumptions about276

the linearity of the patient risks as function of prognostic factors, or the proportionality of hazards277

over time. Additionally it is able to infer interactions, and non-linear associations in a data-driven278

fashion, as evident through the interpretable risk equations describing the machine learning model.279

In order to improve accessibility and general use, we also provide an easy-to-use online tool for280

breast cancer prediction (http://www.vanderschaar-lab.com/adjutorium/) based on the Adjutorium281

model, where patient feature can be easily input to a visualization tool that depicts the patient282

survival time under different treatment options. This portal allows clinicians to work with patients283

to make important decisions regarding adjuvant therapy treatments in a personalized context. We,284

therefore, provide an important clinical tool for breast cancer treatment management to be used285

within the UK, and globally. Moreover, we provide an open-source software for the AutoPrognosis286
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system, which enables other researchers to easily re-fit the model as more data becomes available.287

Because our approach is automated, it would help clinical researchers update the model as different288

aspects of the health care system change over time (e.g., introduction of novel adjuvant therapies),289

without the need to involve experts in making new modeling choices and decisions repeatedly for290

every new update. Moreover, the symbolic regression module can communicate these model updates291

with clinicians by highlighting changes in model coefficients and newly discovered interactions and292

non-linearity, which makes the entire process transparent.293

We acknowledge limitations of our model, which include the retrospective nature of our study which294

makes it difficult to assess changes in patient outcomes when using Adjutorium relative to existing295

tools. Another limitation is that our model does not predict outcomes such as recurrence, and cur-296

rently does not incorporate multigene assays or other gene expression-based predictive information.297

However, these can be easily incorporated into our model. Also, Adjutorium does not explicitly298

derive treatment effects in a data-driven fashion, rather using estimates from meta-analyses on299

clinical trials. We also acknowledge limitations of the data used to derive our model, which include300

the lack of complete information on bisphosphonates and trastuzumab in the NCRAS derivation301

cohort, lack of information on treatments other than chemotherapy in SEER and incomplete coding302

of chemotherapy variables in SEER. Using our automated algorithm, the model can be easily303

updated once complete information on these treatments become available.304

In summary, we have developed and validated Adjutorium, a flexible and generalizable machine305

learning-based tool for clinical decision support in breast cancer treatment. Our work suggests that306

using Adjutorium to support decisions made by multidisciplinary teams around adjuvant therapy307

could potentially improve patient outcomes relative to existing decision support tools, across distinct308

clinical settings. Further work in prosective longitudinal cohort studies will be needed to quantify309

and realise these benefits in practice.310
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Methods311

Data sources and patient inclusion criteria312

From NCRAS, we included patients who were diagnosed after January 1st 2005. This extra inclusion criteria313

in NCRAS was necessary as the missingness of HER2 status variable was predictive of the outcome (i.e.,314

patients who have HER2 missing has worse outcomes on average). Because the missingness rate of HER2315

prior to 2005 was very high, including patients with complete HER2 information who were diagnoses dates316

prior to 2005 would cause a bias in the survival outcomes. From both datasets, we included patients who317

were aged 30 to 90 years at diagnosis. Specific age data were not available on patients less than 30 years of318

age in NCRAS; hence, these were excluded. Furthermore, we excluded patients with missing data on more319

than 4 variables (<10% of all participants), and a small number of patients who were outliers for tumour size320

(>90 mm tumour), and number of positive lymph nodes (>50). A total of 395,862 and 571,635 patients met321

the inclusion criteria in NCRAS and SEER, respectively. We did not include Ki67 as it was not available for322

the vast majority of patients in NCRAS, and has already been shown to have poor predictive power.35, 36
323

The extracted NCRAS dataset contained complete information on which patients where treated with324

chemotherapy and hormone therapy, but did not include information on other adjuvant therapies, such325

as targeted anti-HER2 agents. Release of complete treatment information was in violation of the data326

anonymisation constraints imposed by the NCRAS data sharing policy; in addition, information on other327

adjuvant therapies was only routinely recorded for patients diagnosed in more recent years. Thus, to validate328

our model on data with complete treatment information, we acquired an anonymised supplementary NCRAS329

dataset of 17,804 patients diagnosed in 2013, with complete information on chemotherapy, hormone therapy,330

immunotherapy, CDK4/6 inhibitors, PARP inhibitors, Trastuzumab and Bisphosphonates. We denote this331

dataset as NCRAS-2; details on the patient characteristics and validation results on the NCRAS-2 sub-cohort332

is provided in Supplementary Information. The NCRAS-2 sub-cohort (including all patients diagnosed in333

2013 within the NCRAS data set) comprised a total of 17,804 eligible patients with a median follow-up time334

of 5.38 years. Among these, 84.72% received chemotherapy, 19.49% received hormone therapy, 22.43%335

received trastuzumab and 3% received bisphosphonates.336

Missing data imputation337

A limitation of existing models has been their dependence on complete case analysis, and lack of flexibility338

to incorporate missing variables. Our analysis suggested that missingness was highly informative;37 (log-339

rank test for difference in 5-year survival between patients with complete data and one or more missing340

variable, p < 0.001). In this context, including only patients with complete data is likely to affect model341

generalisability. Therefore, in the interest of generalisability, we opted to impute any missing data using data342
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available on other variables. For all study cohorts, we imputed missing data using the model-based multiple343

chained equations31 (MICE) method. We create 10 imputed datasets and pool the predictions of all models344

under study using Rubin’s rule.38 Details regarding imputation are provided in Supplementary Information.345

Model development346

Automated machine learning. We derived the Adjutorium model using the AutoPrognosis19 framework, an347

(open-source) software (https://bitbucket.org/mvdschaar/mlforhealthlabpub) that we have developed to auto-348

mate the deployment of machine learning in clinical prognostic modeling. As it is automated, AutoPrognosis349

can be used by clinical researchers to build prognostic models tailored to a given dataset without the need for350

in-depth knowledge of machine learning, clearing one of the most important hurdles to using these approaches351

in routine clinical practice.39 Furthermore, this framework overcomes the “black-box” nature of machine352

learning models by converting the trained model into an interpretable and transparent risk equation.353

AutoPrognosis automatically constructs an optimized prognostic model fit to the dataset at hand by tuning354

the parameters of an ensemble of state-of-the-art machine learning pipelines; each pipeline comprises an355

imputation algorithm, a feature processing algorithm, a machine learning prediction model, and a calibration356

algorithm. (Here, we deactivate the feature pre-processing module as the number of prognostic variables357

involved in model development is relatively small.) The overall Adjutorium model was constructed by fitting358

10 binary classification ensemble models (optimized via AutoPrognosis) to predict outcomes at 10 distinct359

knots (time horizons spanning from 1 to 10 years from baseline, with 1-year increments). The AutoPrognosis360

algorithm creates this ensemble by tuning the parameters of the ML models using an advanced Bayesian361

optimization technique, and combining these tuned models using Bayesian model averaging.19
362

In order to convert the ML ensemble (created through Bayesian optimization) into a transparent model of risk,363

AutoPrognosis uses a symbolic regression methodology to automatically convert the trained ensemble model364

into an understandable mathematical equation that links patient variables to predicted outcomes. It does so365

using a search technique that optimizes parameterized symbolic expressions comprising combinations of366

uni-variate Meijer G-functions.20 Survival curves were created by smoothing the coefficients for the symbolic367

expressions describing the model predictions at the 10 knots via cubic spline interpolation.368

Cox model. A standard Cox proportional hazards (PH) model fit on the same data as Adjutorium was also369

assessed for comparison. Consistent with previous methods,7 we applied two separate models, with different370

baseline hazards for ER positive and ER negative cancer. We included an age squared term to allow for371

non-linear effects of baseline age at diagnosis on breast cancer mortality. Tumor size and number of lymph372

nodes were both coded as continuous variables. Separate models where fit to each of the 10 imputed datasets,373
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and the resulting predictions of the 10 models (evaluated on validation data) where pooled using Rubin’s rule.374

The coefficients of the Cox PH model fitted to the training cohort (with breast cancer-specific outcomes)375

and averaged over the 10 imputed data sets are provided in Supplementary Table 1. The in-sample Harrell’s376

concordance index of the pooled predictions for ER negative cancer was 0.72, whereas that for ER positive377

cancer was 0.80. HER2 status qualitatively interacts with ER status to modify risk of breast cancer mortality378

(HR for HER2 positive tumours is 0.73, 95% CI: 0.69-0.77 for patients with ER positive tumours, and379

1.24, 95% CI: 1.20-1.28 for patients with ER negative tumours). This indicates that HER2 positive status380

is associated with reduced risk for mortality in ER negative cancer, but associates with relatively worse381

prognosis in ER positive cancer.382

Model training. Patient samples from the NCRAS database were randomly split into two mutually exclusive383

cohorts: a training cohort of 316,690 patients used for model derivation, and an internal validation cohort of384

79,172 patients used to evaluate model accuracy. The entire SEER cohort (571,635 patients) was reserved385

for external validation. We trained Adjutorium using the NCRAS data to predict breast cancer and all-386

cause mortality without adjuvant therapies by adjusting survival times for treatment effects, to create a387

counterfactual “untreated” survival cohort. Estimated survival time in absence of treatments was calculated as:388

389

ST=0

bc = ST=1

bc ×HR, (1)

where Sbc represents the uncensored survival time for each individual, T is the indicator for treatment, and390

HR is the hazard ratio associated with a specific treatment based on the EBCTCG meta-analysis.21, 22 This391

is consistent with previous approaches used to create adjusted counterfactual survival times in cross-over392

trials.40 The same procedure was applied to the Cox PH model. The Adjutorium model incorporates four393

treatments: chemotherapy, hormone therapy, bisphosphonates and trastuzumab. Other therapies, such as394

immunotherapy, targeted PARP and CDK4/6 inhibitors are primarily used for patients with metastatic cancer395

with no sufficient data on their usage as adjuvant therapies, hence we did not include them in our model.41
396

Model validation. We conducted internal and external validation of Adjutorium within the NCRAS validation397

cohort (n=79,172) and the SEER cohort (n=571,635), respectively. In addition, we also validate our model in398

the NCRAS-2 sub-cohort, which comprised 3,560 patients with complete treatment information. We vali-399

dated predicted outcomes in the original unadjusted cohort, incorporating treatment effects for patients that400

had received therapy. Using this approach allowed us to evaluate the predictive accuracy of overall survival401

without treatment, and improvement of survival with treatment. As breast cancer mortality and mortality from402

other causes are competing causes, overall survival probability from all causes was calculated as follows:403

Pall(t) = Pbc(t)× Pnbc(t). (2)
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Here, Pall(t), Pbc(t) and Pnbc(t) represent overall survival, survival from breast cancer, and survival from404

other non-breast cancer related causes at time horizon t, respectively. For individuals on adjuvant therapy,405

Pbc(t) was calculated as a function of survival without treatment P T=0

bc (t) (as predicted by the trained model),406

and the effect of treatment, as follows:407

P T=1

bc (t) =
(
P T=0

bc (t)
)HR

. (3)

Statistical analysis408

Discriminative Accuracy. We compared the discriminative accuracy of Adjutorium in predicting all-cause409

and breast cancer-specific mortality at 3, 5 and 10 years from baseline relative to PREDICT v2.17 and the410

in-house Cox PH model fitted to the NCRAS training cohort. For the NCRAS-2 cohort, we only evaluated411

discriminative accuracy for 3- and 5-year outcomes since patients in this cohort were diagnosed in 2013, hence412

the maximum follow-up time in this cohort was less than 6 years. We assessed the discriminative accuracy413

of Adjutorium using the time-dependent area under receiver operating characteristic curve25 (AUC-ROC),414

Harrell’s concordance index26 (C-index), and Uno’s C-index.27 Details on the mathematical definitions of each415

of these metrics can be found in Supplementary Information. For all evaluations, 95% confidence intervals416

were obtained using bootstrapped re-sampling of the validation data.417

Calibration Accuracy. We evaluated the calibration curves of Adjutorium by comparing predicted risk of418

mortality with observed risk at the time horizons of interest. For each time horizon, we divided the risk ranges419

predicted by Adjutorium into 10 quantiles, and within each quantile, we estimated the observed risk in the cor-420

responding patient samples using a Kaplan-Meier estimator.43 Calibration curves were evaluated by plotting421

the predicted risks by Adjutorium on the x-axis, and the corresponding observed risk on the y-axis.422

Sensitivity analyses. In order to examine the robustness of Adjutorium to missingness, we validated its423

performance separately on individuals with complete data and those with at least one missing variable.424

(In Supplementary Information, we also validate Adjutorium on individuals with different numbers of425

missing variables, and individuals with each variables missing.) Moreover, in order to assess the robustness426

of Adjutorium to time-cohort effects, due to changes in patient management and survival over time, we427

compared its discriminative accuracy with that of PREDICT in subsets of patients diagnosed within 1-year428

windows spanning from 2005 to 2016.429

Subgroup analyses. We validated Adjutorium within specific patient subgroups stratified by age, ER status,430

HER2 status, tumour size and tumour grade. We specifically assessed the performance of Adjutorium relative431

to PREDICTv2.1 in patients aged more than 65 years, patients with larger tumours (>50 mm), and patients432

with negative ER status. Error counts (true positive and false positive cases, corresponding to the number of433
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cases misclassified) in each subgroup were obtained through decision thresholds that maximize the Youden434

J-statistic for each model.435

Data and code availability436

The data set used to derive and internally validate the model was obtained from the National Cancer437

Registration and Analysis Service. These data are held by Public Health England, and information on438

how to access these data can be found at http://ncin.org.uk/collecting_and_using_data/data_access.439

The data set used for external validation was obtained from the Surveillance, Epidemiology and Re-440

sults program, which can be accessed at https://seer.cancer.gov/seertrack/data/request/. The code441

for the AutoPrognosis software is available at https://bitbucket.org/mvdschaar/mlforhealthlabpub.442
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Figures

Figure 1

Schematic depiction of the AutoPrognosis framework. Given patient data, AutoPrognosis uses a
Bayesian optimization algorithm to search for the optimal parameters of a collection of machine learning
models and the optimal weight assigned to each model in an ensemble. (Here, we depict random forests,
gradient boosting and neural network models as exemplary elements of the ensemble.) After �tting the
ensemble model, a symbolic regression algorithm is used to convert the �tted model into a mathematical
equation that maps patient variables to predicted risk. The end result is a mathematical equation that
computes an individual patient’s survival curve with and without a given therapy.



Figure 2

Illustration for the machine learning model underlying Adjutorium. a, The ensemble model learned by the
AutoPrognosis software. The ensemble comprises four basic machine learning models: random forest,
neural network, gradient boosting, and AdaBoost. The prediction issued by Adjutorium is a weighted
combination of the predictions of the four members of the ensemble. Each model in the ensemble has a
set of parameters (listed between brackets), and an assigned weight ฀(t) determining its contribution in
the �nal prediction. Both the model parameters and its weight change depending on the prediction
horizon t. Separate ensembles are trained to predict breast cancerspeci�c survival Pbc(t) and other cause
survival Pnbc(t). b, The predicted survival curve for an exemplary patient (with and without adjuvant
therapy). Here, each prediction horizon (1 to 10 years since diagnosis, with 1-year steps) corresponds to a
knot in the survival curve, and each knot is associated with a distinct set of model parameters and
contribution weights in the ensemble in a. c, Risk equations underlying Adjutorium as learned by the
symbolic regression module in AutoPrognosis. Given the individual-level variables of a patient, the risk



equation evaluates the probability of survival at future time horizons. The log odds ratio for survival at
time t comprises two components: (1) a population-level term that models non-linear effects of age and
number of lymph nodes, in addition to interactions between different variables through six coe�cients
that are �xed for all patients, and (2) a tumour grade and ER-speci�c term that evaluates the linear effects
of all prognostic factors with coe�cients that are speci�c to every group of patients with the same grade
and ER status. Here we show an exemplary patient with ER negative cancer and tumour grade 2 and. The
risk equation is a mathematical abstraction for the predictions issued by the machine learning model in
a.

Figure 3

Discriminative accuracy evaluated in sub-cohorts of patients strati�ed by diagnosis date.



Figure 4

Comparison between therapeutic decisions informed by Adjutorium and PREDICT v2.1.
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