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Abstract 

Monoclonalization refers to the isolation and expansion of a single cell derived from a cultured 
population. This is a valuable step in cell culture so as to minimize a cell line’s technical variability 
downstream of cell-altering events, such as reprogramming or gene editing, as well as for 
processes such as monoclonal antibody development. However, traditional methods for verifying 
clonality do not scale well, posing a critical obstacle to studies involving large cohorts. Without 
automated, standardized methods for assessing clonality post-hoc, methods involving 
monoclonalization cannot be reliably upscaled without exacerbating the technical variability of 
cell lines. We report the design of a deep learning workflow that automatically detects colony 
presence and identifies clonality from cellular imaging. The workflow, termed Monoqlo, integrates 
multiple convolutional neural networks and, critically, leverages the chronological directionality 
of the cell culturing process. Our algorithm design provides a fully scalable, highly interpretable 
framework, capable of analyzing industrial data volumes in under an hour using commodity 
hardware. In the present study, we focus on monoclonalization of human induced pluripotent stem 
cells (HiPSCs) as a case example. Monoqlo standardizes the monoclonalization process, enabling 
colony selection protocols to be infinitely upscaled while minimizing technical variability.  
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Introduction 
The isolation and subsequent expansion of a single cell derived from a cultured population 
establishes monoclonality and is frequently considered an essential step in developing high-quality 
cell lines (Kwakkenbos et al., 2010). This procedure is intended to minimize or eliminate genomic 
and phenotypic heterogeneity in an attempt to maximize uniformity of cell lines. For instance, a 
newly genome-engineered cell population may comprise an admixture of cells with divergent 
alleles, zygosity, and epigenetic characteristics (Wang et al., 2017). A homogenous cell line can 
thus only be reestablished by ensuring all cells in the population are descendent from a single 
ancestral cell which was isolated downstream of any event with a high proclivity to introduce 
variations. This step is referred to as monoclonalization. 

An example of a cell culturing process in which monoclonalization is often considered critical is 
in that of human induced pluripotent stem cells (iPSCs). Due to the capacity for unlimited self-
renewal and ability to differentiate via any lineage, this cell type offers immense promise for 
modelling disease states in vitro, enabling non-invasive genetic association studies, particularly as 
they relate to drug responses. Such efforts necessarily entail large, population-level cohorts 
(Vischer et al., 2017). Cell-line derivation throughput is therefore the paramount limiting factor in 
unlocking the vast promise that iPSC technology holds in relation to fields such as functional 
genomics and precision medicine. The iPSC reprogramming process exerts a large amount of 
stress on cells, resulting in a population which is highly heterogeneous with regards to variables 
such as residual load of viral reprogramming vector (Seki et al., 2012) and introduced 
chromosomal aberrations (Chen et al., 2018), eliciting the need to monoclonalize. Although Paull 
et al. (2015) described fully automated methods for iPSC production, the need for 
monoclonalization workflows in iPSC production remain, particularly when using viral vectors for 
iPSC vectors (Seki et al., 2012). As this step has historically incurred a critical bottleneck during 
automated and high-throughput derivation of iPSCs, we focus on this cell type as a case example 
for investigating monoclonalization methodologies. 

Single-cell isolation is typically achieved via fluorescence-activated cell sorting (FACS), a form 
of flow cytometry (e.g. Hsieh et al., 2017). This process enables rapid sorting of individual cells; 
however there are a number means by which it can result in undesirable outcomes. Sorted cells 
may not survive, leaving an empty well; alternatively, faults in the sorting process may erroneously 
transfer more than one cell to the destination well, resulting in polyclonality. Further, for any given 
cell type, there may be variety of morphological or physiological changes that can occur during 
development that alter the quality of the cell line. In the case of stem cells, for instance, there are 
a number of known morphological markers which indicate loss of pluripotency (Ellis et al., 2009; 
Waisman et al., 2019), a common defect in newly reprogrammed iPSCs (Kyttälä et al., 2016; 
Miller et al., 2013). As a result of these factors, the presence, clonality and quality of cell 
aggregations in putatively monoclonalized wells must be validated post-hoc. 

At present, the only method for validating monoclonality is through manual inspection of 
microscopic imaging performed at regular intervals to track the growth of colonies after sorting. 
Doing so is highly time-consuming, with technicians often spending several hours per day 
classifying wells according to colony presence, clonality and morphology. More critically, 
however, the reliance on human judgement introduces key sources of bias and technical variability, 
particularly when such protocols are distributed among multiple investigators and research groups. 
As a result of this lack of standardization, monoclonalization protocols cannot be reliably upscaled 
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without exacerbating the technical variability of cell lines. All of these factors make 
monoclonalization a highly desirable target for automation, which would enable colony selection 
protocols to be infinitely expanded and distributed at scale while minimizing technical variability. 

Deep learning, based on the use of convolutional neural networks (CNNs), has enabled enormous 
advances in computer vision over the past several years (Krizhevsky et al., 2012; LeCun et al., 
2015) and has become an invaluable tool in automating the analysis of biomedical images of 
various types (Wainberg et al., 2018; Caicedo et al., 2018). These techniques have already been 
applied to numerous processes in stem cell research, including for the automated inference of 
differentiation (Kusumoto et al., 2018; Waisman et al., 2019) and prediction of function in iPSC-
derived cell types (Schaub et al., 2019). To our knowledge, however, CNNs have never been 
employed in automatically identifying clonality during monoclonalization protocols for any cell 
type. 

In domain-specific tasks, deep learning models frequently match or surpass the image-analyzing 
performance of human investigators (e.g. Esteva et al., 2017; Pereira et al., 2016). Dedicated 
neural network architectures exist for specific tasks such as image classification (Coudray et al., 
2018) and segmentation (Havaei et al., 2015). Specifically, detection networks, which are trained 
to detect and localize each instance of a given object class in images, clearly offer a promising 
opportunity for the automated verification of monoclonality, which ultimately relies on the 
counting of individual cells. Implementations of detection networks in other scientific endeavors 
have previously proven highly successful (e.g. Caicedo et al., 2019). These typically adhere to 
standardized procedures for training and inference, involving annotating images with object 
bounding boxes for training, followed by fitting the labelled data via defined network architectures 
such as RCNN (Girschick, 2015) and YOLO (Redmon et al., 2016). 

A number of key nuances inherent to monoclonalization make the task resistant to automation 
through standardized, widely adopted deep learning practices. For instance, confirming a 
monoclonal well requires the enumeration of individual starting cells. These typically occupy 
<0.01% of the well’s field of view and are frequently too small to be visible to human investigators 
without manually magnifying the image at the precise location of the cell. Grayscale imaging 
exacerbates this difficulty, typically exhibiting a large amount of noise. Debris particles very often 
appear subjectively indistinguishable from starting cells and investigators frequently rely upon 
information in later images, such as growth, to confirm whether a specific particle is a cell or an 
abiotic artefact. 

Irrespective of the above, verifying clonality necessarily depends upon the interaction between 
images taken at different time points. For instance, enumerating individual cells in a day 0 image 
to validate that the sorting process was successful in isolating exactly one starting cell provides no 
information about the cell’s subsequent survival, expansion, or retention of desirable 
morphological traits. Conversely, validating that only a single colony is visible at time of 
inspection does not suffice to confirm monoclonality, given multiple starting cells may give rise 
to a single, polyclonal mass of cells which superficially resemble monoclonal colonies. In short, 
insofar as human investigators are able to assess, there are no cases in which a single image may 
contain all the information necessary to infer the clonality of a well. For this reason, it is not 
feasible to construct a conventional training set consisting simply of images and their 
corresponding semantic labels.  
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Here we report an algorithm design which overcomes these difficulties by leveraging the 
chronological directionality inherent to the cell culturing process. Our computational workflow, 
termed Monoqlo, integrates multiple CNNs, each having its own “modular” functionality. 
Monoqlo provides a highly scalable framework, capable of analyzing datasets numbering in the 
tens of thousands of images in under an hour using commodity hardware. Through the combination 
of automated stem cell culture and deep learning, this work demonstrates the first example of 
machine learning being applied to the identification of monoclonal cell lines from brightfield 
microscopy. 

 

Results 
Neural network modularity. We modularize the task of automatically assigning clonality into 
four distinct deep-learning-enabled functionalities (Fig. 1). The decision to modularize was based 
on empirical inferences made during preliminary investigations. Namely, consistent with the 
principles of transfer learning (Oquab et al., 2014), we initially suspected that a CNN’s feature-
extracting capacity would be best optimized by consolidating all image types into a single training 
set. However, we found that networks trained in this manner performed poorly, often failing to 
distinguish between object classes. In particular, they often reported object types that could not 
feasibly occur in the image in question; for instance, detecting fully developed colonies in images 
generated immediately after seeding.  This indicated that a single model would not perform well 
across the diversity of image magnifications and object classes employed during 
monoclonalization.  

Instead, we stratify our training set based on chronological timestamps as well as magnification 
and crop level, and train four separate neural networks, each having its own “modular” 
functionality. First, we assign the term “global detection” to the task of detecting the presence or 
absence of colonies in a full-well image. Second, we refer to the task of detecting colonies in 
cropped images of various well regions at a variety of zoom magnifications as “local detection.” 
Third, the task of enumerating individual cells in a fully magnified, cropped image we term 

Fig. 1 | Summary of the four CNN “modules” used in Monoqlo. a, Simple schematic 
representations of the two neural network architectures used for the tasks of detection and 
classification. b, Respective functionalities of each of the 3 detection modules with representative 
target data and outputs. c, Examples of the four target morphological classes used in training the 
morphological classification network. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 29, 2020. ; https://doi.org/10.1101/2020.12.28.424610doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.28.424610
http://creativecommons.org/licenses/by-nc/4.0/


 5 

“single-cell detection.” We sought to achieve all three of the aforementioned tasks through the use 
of the Retinanet detection architecture with focal loss (Lin et al., 2017). Finally, in the only entirely 
classification-based task in this effort, we aimed to train a model to categorize images cropped 
around colony regions into morphological classes, here referred to as “morphological 
classification” (summarized in Supplementary Fig 1). Modularizing in this manner enabled us to 
capitalize on the temporal directionality of the cell culturing process; for instance, restricting 
detectable object classes to those that may realistically exist in an image based on its scan date. 

 

Workflow design overview. We designed a computational workflow, termed Monoqlo, that 
integrates each of our trained neural networks. The laboratory automation workflow that generates 
data for use with Monoqlo and the design of Monoqlo itself are summarized in Figs. 2 and 3, 
respectively. Our algorithm processes images on a per-well basis in a reversely chronological 
fashion. That is, for each physical well, the algorithm begins by analyzing the most recently 
generated scan. In our case, this is an image that has been cropped only to remove the black borders 
of the image, preserving the entire field of the physical well. These images are passed to the global 
detection model, the output of which is a coordinate vector demarcating the bounding boxes of 
any detected colonies. 

Our algorithm then expands these coordinates until each dimension of the bounding box is twice 
that of the predicted colony, loads the next most recent image for the same well, and crops the 

Fig. 2 | Overview of the daily automation workflow which generates data for training and 
real-time use with Monoqlo. Following cell deposition via FACs, cells are allowed to grow over N 
days, with well-level imaging occurring nightly. N represents a variable number dependent on cell 
growth rate and decisions on passage timing. 
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image to the resulting region. Due to the preservation of plate orientation and physical positioning 
between scans, the earlier instantiation of the same colony is therefore approximately centered 
within the newly cropped image. The expansion of the field-of-view’s cropping coordinates 
beyond the size of the original bounding box simply allows for a margin of positional error. The 

Fig. 3 | Schematic representing a broad overview of Monoqlo’s design and algorithmic logic. Arrows 
represent the processing order in the algorithm’s reverse-chronological analysis, beginning with the most 
recent scan. If a colony is detected, the region around the colony is cropped in the previous day’s scan 
and the image is passed to the local detection model. The process is repeated, progressively reducing the 
field of view being analyzed. If multiple colonies are detected in any scan, the well is declared polyclonal 
and no further scans are analyzed. Upon reaching the earliest “day 0” scan, the resulting image is passed 
to the local detection model. Based on the number of cells detected, a clonality for the well is finally 
declared. 
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resulting image is then passed to the local detection model, which reports the bounding box of the 
earlier colony, indicating its position within the original, uncropped image when summed with the 
cropping coordinates. The algorithm iterates this process recursively until the resultant most recent 
image is the earliest (“day 0”) scan, generated within hours of sorting. We found this incremental, 
iterative processing aspect of the workflow, as well as the expansion of the crop box dimensions, 
to be essential, as there are invariably small deviations from precise concentricity with each day 
due to non-radial growth and minor positional shifts between scans. Over periods of several days 
of imaging, these deviations sum to substantial offsets. As such, simply cropping and magnifying 
at the exact center of a late-stage colony will rarely yield a field of view in which the starting cell 
or cells are situated.  

Aside from counting individual starting cells, polyclonality can often be inferred if two or more 
clearly distinct cell masses are observed, which are assumed to have originated from two or more 
cells from the same FACS sort. If either the global or local detection models reports a colony count 
of >1 at any point during the process of iterating backwards chronologically, the algorithm 
accordingly declares the well to be polyclonal and ceases processing any further images for that 
well. Alternatively, if the workflow continues to detect exactly one colony until reaching the day-
zero scan, the resulting image will be magnified and cropped exactly around the ancestral cell or 
cells. This image can then be passed to the single-cell detection model, providing a count of the 
number of starting cells. On this basis, the well may then finally be declared either monoclonal or 
polyclonal. 

 

Chronological processing logic enables optimization. In our case, any given monoclonalization 
“run” typically comprises between 300 and 900 plate-wells and 2-6 runs are typically active at any 
one time. With per-well scans occurring daily for up to 30 days, the mean volume for each run at 
time of processing by our algorithm is therefore approximately 30,000 images. Rather than 
pertaining to images, however, the target labels in the case of monoclonalization correspond to 
individual wells. For this reason, we employ a “well knockout” approach in which detection by 
the workflow of any one of a number of exclusion criteria causes the algorithm to eliminate the 
entire well from the workflow and ignore all subsequent scans for that well. For instance, if no 
objects are detected in the most recent scan, then the well is reported empty at time of analysis and 
its antecedent characteristics are considered irrelevant. During testing, we executed Monoqlo on 8 
plates of 96 wells. The mean number of empty wells per plate at time of processing was found to 
be 73, ranging from 41 to 92. Thus, in cases where Monoqlo is applied to, for instance, 8 plates at 
day 15 of the monoclonalization process, the well knockout approach alleviates the need for 
processing of approximately 8,760 of a total of 11,400 images (76.8%) on the basis of emptiness 
alone. Any well found to be polyclonal at any stage of analysis is also excluded from further 
processing. In the same test run, we found a mean of 11 polyclonal wells per plate, with 
polyclonality being declared after a mean of 5.73 images having been processed. During real time 
deployment, we further extend our exclusion criteria to eliminate wells which are found to exhibit 
the morphological markers of differentiation. Due to the enormity of the datasets that require daily 
analysis, our knockout approach provides a vast improvement to compute time. 
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Neural networks learn to detect colonies and classify morphology. We began by evaluating 
learning trajectories and benchmarking the prediction performance of each CNN in its respective 
task. In the case of object detection networks, our initial metrics for assessment were the change 
in value of the loss function when tested on a held-out validation dataset representing 20% of our 
total image set. While training such networks, precise accuracy metrics are not automatically 
generated by the learning algorithms, since the model may correctly detect an object without the 
labeled and predicted bounding box coordinates matching exactly. As an alternative, we manually 
evaluated their performance by visually comparing labels and predictions in validation images 
with their respective bounding boxes drawn. From these comparisons, we quantified detection 
performance according to two metrics: 1) percentage of labelled objects which were correctly 
predicted and classified, and 2) number of false positives, in which the model detected an object 
where none was present, as a ratio to the total number of images analyzed. Results of our model 
validations are summarized in Fig 4. Finally, true colony width, as measured by biologists using 
an image scale bar, was highly predicted by Monoqlo-predicted bounding box X dimension 
(Pearson’s r(266) = 0.917, p < 2.2e-16) (Supplementary Fig 2). 

Fig 4 | Results of Monoqlo (MQ) framework validations. a, 
Well-level clonality identification performance of the MQ 
framework on real-world production run data. Outer colors 
represent the ground-truthed clonality of the well, with color 
meanings indicated in legend; inner colors represent the clonality 
identified by MQ, with dual-color wells thus indicating MQ errors. 
b, Class-specific clonality identification performance of Monoqlo 
on manually curated, class-balanced test dataset. c, Summary of 
MQ clonality performance, with analyses restricted to monoclonal, 
morphologically healthy wells that were selected for further 
passaging by biologists. 
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Deep-learning workflow with modularization identifies clonality. We benchmarked the 
efficacy of Monoqlo as a unified, modular workflow, first by testing its accuracy on a manually 
curated, class-balanced validation set, and subsequently by evaluating its clonality identification 
performance (irrespective of morphology) post-hoc on a raw, unfiltered dataset from real-world 
monoclonalization runs. Our curated test set included 100 wells from each of three classes; empty, 
monoclonal, and polyclonal; randomly selected from historical records of manually classified 
wells. The imaging date at which processing was initiated for each well was randomly generated 
from the range of days 8 - 18. The real-world scenario validation was performed on a 
monoclonalization run (DMR0001) which comprised 768 wells in total, spanning a time frame of 
19 days, thus yielding a data volume of 18,240 images. Manual image review found 561 of these 
wells to be empty; that is, they contained no indication of living cells, irrespective of remnants of 
dead colonies, abiotic debris, and other artefacts. Monoqlo correctly eliminated 556 (99.1%) of 
these wells. The remaining 5 empty wells were reported as monoclonal, seemingly resulting in 
false positives on the part of the global detection model due to unidentified abiotic artefacts 
(Supplementary Fig 3) with a superficially similar appearance to that of a cell colony. Accordingly, 
Monoqlo identified 194 non-empty wells. This included 115 monoclonal declarations, of which 2 
and 5 wells were found to have ground-truth classifications of “polyclonal” and “empty,” 
respectively; the remaining 108 wells (93.9%) being concordant with the ground truth. Finally, 61 
wells were reported as being polyclonal, of which 57 (93.4%) were confirmed by ground truthing 
and 4 were found to be monoclonal. Results of both validations are summarized in Fig 4. 

 

Hand-crafted programmatic solutions improve deep learning workflows. We identified a 
number of circumstances in which shortcomings of our trained CNNs, which would otherwise 
have led to erroneous results, could be robustly corrected for using simple programmatic logic. 
Perhaps most prominently, we found that detection CNNs tended to often report multiple, 
overlapping colonies in image regions where only a single colony existed in the ground truth 
(Supplementary Fig 4). We found were able to partially mitigate this by adjusting the size and 
distribution of the anchor boxes (Jeong et al., 2018). However, doing so is laborious, can only be 
done prior to training a model, and provides only an incomplete solution. Instead, our algorithm 
combines any overlapping boxes and considers the resulting box as a single object. In the case of 
colony detection, this never results in loss of polyclonal identifications. To illustrate, consider the 
concept of “colony splitting” which occurs due to Monoqlo’s reversely chronological approach. 
Colonies which overlap one another at day N are spatially isolated at day N - K and have grown 
into a combined mass at day N + K where K is a variable amount of time dependent on growth 
rates and original separation distance (Supplementary Fig 5). Thus, overlapping object detections 
can safely be considered by our algorithm as a single object which, if representing multiple 
colonies, will later be detected as entirely isolated from one another in earlier images and thus 
declared polyclonal. 

Discussion 
This work represents, to the best of our knowledge, the first to automate the identification of 
clonality using a deep learning object detection approach. We believe this has the potential to 
remove a critical restriction on scalability in a number of cell culturing domains. This includes the 
present case of iPSC derivation, where monoclonalization is considered essential for two reasons. 
First, in cases of viral reprogramming, there is a large amount of cell-to-cell variance in residual 
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load of the Sendai viral vector used to deliver transcription factors to the inner cell during 
reprogramming (Agu et al., 2015). Second, the reprogramming process often leads to severe 
chromosomal abnormalities (Chen et al., 2018), presumably due to stress-induced mitotic 
disruptions. Both of these factors cause profound phenotypic variation, resulting in unpredictable, 
highly heterogeneous cell lines, eliciting the need for monoclonalization, which has historically 
incurred a bottleneck during iPSC production. Paull et al (2015) suggest that the physical 
monoclonalization process could exert further physiological stress on cells; however single cell 
cloning remains critical in a number of use cases. Given the extent to which cohort size dictates 
the viability of population studies, the removal of this bottleneck, as demonstrated in the present 
work, represents a significant step in fully unlocking the immense research potential of iPSCs.  

Perhaps more significantly, in addition to initial derivation, huge efforts are being made towards 
optimizing CRISPR-Cas9 editing efficiency and other forms of genome engineering in iPSCs 
(Wang et al., 2017), which holds enormous potential in regard to functionally annotating gene 
variants (Garg et al., 2018), disease modelling (Rahman et al., 2015), and validating 
polymorphisms identified in genetic association studies (Warren et al., 2017). Due to the genomic 
heterogeneity the editing process introduces, newly edited populations must be monoclonalized to 
ensure that all cells carry the same genotypes (Wang et al., 2015). While we have focused on iPSCs 
in the present study, the same holds true for gene editing in all cell types (e.g. Chu et al., 2015; 
Smurnyy et al., 2014). We therefore view the genome engineering pipeline to be another critical 
case in which the Monoqlo framework alleviates a major bottleneck in disease research and 
therapeutic development.  

We suspect that our algorithm could be adapted to any cell type, provided the cells are capable of 
being imaged and form discrete clonal masses. As an important example, antibody development 
is one of the most common use cases for monoclonalization (Khazaeli et al., 1994), due to the 
epitope specificity of monoclonal antibodies (Vojtěšek et al., 1992). Many of the most frequently 
used cell types in antibody development have been successfully detected in microscopy imaging 
with CNNs (Chen & Srinivas., 2016; Zhao et al., 2017). As monoclonal antibodies form the central 
component of many drug discovery efforts (Reichert et al., 2007; Nelson et al., 2010), the Monoqlo 
framework may have the potential to offer a valuable tool to the pharmaceutical industry at large.  

The present study adds to previous instances of deep learning applications in iPSC process 
automation. In particular, there is a great deal of interest in optimizing CNNs for use with 
brightfield microscopy in an effort to alleviate the need for immunostaining and fluorescence 
microscopy imaging (e.g. Kusumoto et al., 2018), which comes at much larger costs to financial 
investment and investigation time. For instance, Christiansen et al (2018) successfully trained deep 
learning models to predict fluorescent labels from brightfield images alone. This work further 
demonstrates the predictive power of deep learning in various analysis tasks using simple 
microscopy images without the requirement of fluorescent labelling. 

Waisman et al (2019) showed that standard CNN architectures such as Resnet50 may be trained 
to distinguish differentiated and undifferentiated stem cells in culture, even at early onset. Our 
classification CNN differs from theirs in that we stratify our training classes to a greater extent, as 
opposed to a binary “differentiated versus undifferentiated” approach. Doing so served to increase 
the robustness of our algorithm when applied in real-world cell culturing scenarios, in which there 
is a high degree of variability in iPSC colony morphology due to factors other than pluripotency 
status. Additionally, our network is trained on images cropped around distinct, singular colonies 
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as opposed to field-of-view images containing numerous, randomly seeded cell aggregations. In 
this sense, our training data are more akin to that employed in Kavitha et al (2017), in which a 
vector-based CNN is used to distinguish “healthy” from “unhealthy” colonies. Further, they 
highlight the benefits of using segmented colony images and outline a number of key difficulties 
involved in doing so in an automated capacity, without which classification models using 
segmented colony images cannot be integrated into real-world automated production workflows. 
By using our classification network in conjunction with colony detection models from the wider 
Monoqlo framework, we automate the segmentation step, enabling fully autonomous deployment 
in laboratory automation scenarios. 

We recognize a number of shortcomings of our approach. For instance, in cases where two or more 
starting cells are displayed precisely adjoining one another in the earliest available scan, the well’s 
clonality status must be considered ambiguous. This is because it cannot be determined whether 
the cells were sorted independently from the source plate or if a single cell was successfully sorted 
in isolation and subsequently divided. Notably, however, there is a time lag between seeding and 
attachment of the cell to the substrate during which the cell cannot be imaged. For this reason, the 
timing window of the first scan is critical. Certain other efforts have attempted to address this 
ambiguity through fluorescence microscopy applied to nuclear-stained images, which allows 
nuclear segmentation and helps to resolve the spatial distribution of individual cells. However, this 
does not entirely eliminate ambiguity since physically adjacent cells, whether clearly distinct or 
not, could certainly still have a polyclonal origin. We suggest that there are a limited number of 
feasible approaches to handling this ambiguity. Investigators may wish to simply assume any well 
containing multiple cells at time of earliest scan is polyclonal. Otherwise, we suspect that the 
ambiguity can only be resolved by generating images taken within minutes of seeding. Due to the 
time lag that occurs before cells can attach, however, we submit that optical focusing issues will 
be inevitable. Thus, starting cells are likely to be invisible at times, making it impossible to reliably 
verify monoclonality. 

While our algorithm represents the state-of-the-art in automated clonality inference, our results 
indicate that its performance remains imperfect. As a result, the exact manner of its application, 
and the extent to which it can be relied upon as a fully autonomous monitoring system, will depend 
on the aims and priorities of the process to which it is applied. If the acceptable margin of error for 
misclassifying polyclonal wells as monoclonal is 0%, for example, then post-hoc validation by 
human investigators will be required. Such instances will nonetheless benefit from enormously 
reduced workloads for manual image review. If, alternatively, the paramount priority is that non-
empty wells do not go undetected and small error rates in clonality assignment are deemed 
acceptable, then the critical variable will be the performance of the global detection model. In the 
present study, the 100% detection rate for colonies of sufficient size for passaging suggests 
Monoqlo’s suitability for deployment as a dependable, fully autonomous system. In both of these 
cases, however, the defining variable will be the performance of the deep learning models in 
isolation. CNNs trained by different investigators and tailored to different cell/image types could 
show substantially inferior or superior performance to those described in the present study. 

As for future directions, we believe Monoqlo could help facilitate investigations in a number of 
key questions which remain to be answered with regard to the predictive potential of deep neural 
networks in iPSC research. A number of studies have demonstrated that deep learning approaches 
can sometimes discriminate between biological groups in images where a morphological 
phenotype was not previously known to exist; or was suspected to exist but was not visible to even 
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a trained human investigator. For instance, Poplin et al (2018) showed that CNNs can predict 
factors such as cardiovascular disease risk, gender and smoking status from individual retinal 
images, none of which was previously thought to manifest morphologically in the retina. Further, 
in the case of iPSCs, deep neural networks have been successfully trained to predict donor identity 
from imaging of clinical-grade iPSC-derived retinal pigment epithelium (Schaub et al., 2019). 
With these discoveries in mind, we suggest the likely existence of thus far unidentified predictive 
markers in iPSC colony morphology. For instance, it may be possible to predict with better-than-
random accuracy at an early stage whether a presently undifferentiated colony will spontaneously 
differentiate. Successfully training such a model would confer enormous benefit to iPSC 
derivation, given the substantial costs associated with continuing to culture cells which may 
ultimately become unusable. Other candidate targets for CNN classification- or regression-based 
prediction include Sendai virus load, future QC pass/fail status, and relative differentiation affinity 
for specific germ layers.  

Training such models will invariably require large training volumes. The Monoqlo framework 
allows colonies to be algorithmically segmented and cropped from raw datasets, in addition to 
automatically filtering out images of empty wells which typically represent the vast majority of 
images. In many cases, investigators may also be able to label images in batch on the basis of the 
classification they assign to the most recent image of a given colony or well. Applying our 
classification network, which identifies differentiation, allows Monoqlo to retroactively assign 
labels such as “will differentiate” or “won’t differentiate” to earlier instantiations of the colony. 
This may mitigate the need for extensively laborious, manual reviews and labelling of unfiltered 
image sets, enabling partially or fully autonomous generation of large training volumes for future 
models. As such, our algorithm provides an invaluable tool for generating custom datasets for 
future investigations of the utility of deep learning in iPSC research. 

In summary, we have demonstrated a framework in which deep learning algorithms with a modular 
design can automate the verification of monoclonality in brightfield microscopy, requiring 
relatively little labelling. We further expanded the functionality of our workflow to classification 
of colony morphology, demonstrating the potential for autonomous monitoring of monoclonal cell 
line development and clonal selection in automation workflows. Monoqlo represents a crucial step 
in enabling widespread distribution of high-throughput cell line production and editing workflows. 
This may eliminate a critical bottleneck in the specific case of iPSC derivation and genome editing, 
moving current technology closer to the goal of unrestricted upscaling and distribution of 
pluripotent stem cells for biomedical research applications. Finally, in contrast to depending solely 
on machine learning models to contend with all aspects of a given task, we view this work as a 
useful example to highlight the benefit of combining the now well-recognized, immense 
capabilities of convolutional neural networks with human-designed algorithmic solutions. 

Methods 

Monoclonalization of hiPSCs. Destination plates (PerkinElmer #6005182) were pre-coated with 
17ug Geltrex™ LDEV-Free, hESC-Qualified, Reduced Growth Factor Basement Membrane 
Matrix (ThermoFisher #A1413302) diluted in 50uL DMEM/F12 (ThermoFisher #A1413302) for 
1hr in a 37C incubator. Following incubation, 150uL of d0 media 1xDMEM/F12, 1.5x PSC 
Freedom Supplement, (ThermoFisher #A27336SA), 1.5xAntibiotic/Antimycotic (ThermoFisher # 
15240062) and 15% CloneR™ (Stemcell Technologies #05888) was added to the 50uL of 
Geltrex+DMEM/F12 present in the well and incubated for 1hr in a 37C incubator. hiPSC colonies 
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maintained on Geltrex in Freedom PSC media (FRD1) (both ThermoFisher) were dissociated with 
Accutase (ThermoFisher #A1110501) for 5-10 min at 37C. Accutase was quenched with Sort 
buffer (MACS Buffer Miltenyi, containing 10% CloneR) and the cell suspension pelleted by 
centrifugation at 130 RCF. Cells were stained with antibodies: SSEA4-647: 1:100 ; BD #560219, 
Tra-1-60-488: 1:100 ; BD #560173, CD56-V450: 1:100 ; BD #560360, CD13-PE: 1:100 ; BD 
#555394 before being rinsed with a second centrifugation and resuspended in Sort Buffer + 
Propidium Iodide (PI, 1:5000, ThermoFisher #P3566). Cells were then sorted using a FACSARIA-
IIu™ Cell Sorter (BD Biosciences) into the pre-prepared destination plates using a 100µm ceramic 
nozzle with a sheath pressure of 23 psi. The flow cytometry gating strategy employed is 
summarized in Supplementary Fig 6. For samples sorted using the WOLFSorter, the Sort Buffer 
was supplemented with SYTOX AADvanced™ Ready Flow™ Reagent (ThermoFisher # R37173) 
instead of PI. 

 

Image acquisition and labelling. All images were sourced from repositories of historical data 
from the monoclonalization step employed during the iPSC production process of the NYSCF 
Global Stem Cell Array®. These images, previously used for manually verifying clonality, are 
generated automatically once per 24-hour period from seeding until plates are disposed of. All 
scans, which were generated by Nexcelom Celigo cytometers, are brightfield images at a resolution 
of 1 μm per pixel, providing an image dimension of 7544 x 7544 pixels after stitching from 16 
individual fields. We annotated a total of 3,139 images with bounding boxes and object classes. 
An additional 2,224 unannotated images of empty wells were included in the training set as 
background-only images. During preliminary investigations, we found doing so to be pivotal in 
reducing the rate of false detections. All annotations were generated in Pascal VOC format using 
the LabelImg software (Tzutalin, 2015). We augmented our dataset by applying random flip and 
rotation transforms to the images (as per e.g. Perez & Wang, 2017). The morphological criteria 
required for categorizing each object class were designated by PhD-level biologists specializing 
in iPSC culture. Annotations were made by technicians of PhD-, MS- and BS-level, with all 
annotations being independently corroborated by an additional investigator. During initial 
investigations, we found that models sometimes incorrectly classified aggregations of dead cells, 
most of which had emanated from living colonies, as colony object detections. We corrected for 
this by labelling these objects as a separate class, as opposed to treating them as background. We 
termed this object type “overspill” (see Supplementary Fig. 7). 

 

Convolutional neural network architectures. For all object detection tasks in the present work, 
we use the RetinaNet CNN framework for one-shot detection, first introduced in Lin et al. (2017). 
The defining advancement proposed in this work was the use of the novel focal loss function, 
which adjusts the per-sample cross entropy loss to more heavily penalize misclassifying difficult 
examples than easy examples, thereby resolving the issues imposed upon object detection tasks by 
class imbalance. Our final detection CNN architecture consists of a ResNet50 convolutional 
backbone (He et al., 2016) with dynamic input dimensions, which performs feature extraction and 
passes the learned representations to a feature pyramid network (FPN) (Lin et al., 2017). The 
RetinaNet50 architecture consists of 50 convolutional blocks, each consisting of a 2D 
convolutional layer with rectified linear unit (ReLU) activation (Dahl et al., 2013) and batch 
normalization (Ioffe & Szegedy, 2015), and uses residual (skip) connections between several 
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convolutional blocks. The overall network incorporates the use of anchor boxes which represent 
predefined candidate object locations, as described in Ren et al. (2015), enabling the object 
detection task to be trained in end-to-end fashion. The outputs from the FPN are passed to two 
submodels, one of which performs regression to refine the localization of the object bounding 
boxes, the other performing object classification. Finally, the network’s output layer produces a 
filtered vector denoting the posterior probability of each anchor box containing an object, 
including the object’s class being indicated as a one-hot vector, and the refined pixel coordinates 
of the predicted bounding boxes. Overall, our detection networks each have >3.6 x 107 parameters. 
For morphological classification, we use the ResNet34 architecture. For full details on the neural 
network architectures, see Supplementary Materials 1.  

 

Training of deep learning models. RetinaNet detection models were trained using a Keras 
RetinaNet implementation (https://github.com/fizyr/keras-retinanet) with the ResNet50 
convolutional backbone having weights pretrained on the ImageNet dataset. Preprocessing 
involved subtracting ImageNet means from images and normalizing pixel intensity values to the 
range between 0 and 1. We also implement a hand-crafted algorithm for cropping the thick black 
borders around the well from the image which removes the outermost line on each edge of the 
image and repeats until the maximum, raw pixel intensity value for the given line exceeds 70. Each 
CNN model was trained for 60 epochs, with weights being saved after each epoch, allowing the 
checkpoint with the smallest validation loss to be selected as the final model for use in the Monoqlo 
framework. In each case, we use the Adam optimizer (Kingma & Ba, 2014), selecting an initial 
learning rate of 10-3, reducing the learning rate by a factor of 10 every 10 epochs after epoch 40. 
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