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Abstract— Robots applications in our daily life increase at
an unprecedented pace. As robots will soon operate “out in the
wild”, we must identify the safety and security vulnerabilities
they will face. Robotics researchers and manufacturers focus
their attention on new, cheaper, and more reliable applications.
Still, they often disregard the operability in adversarial envi-
ronments where a trusted or untrusted user can jeopardize or
even alter the robot’s task.

In this paper, we identify a new paradigm of security threats
in the next generation of robots. These threats fall beyond
the known hardware or network-based ones, and we must
find new solutions to address them. These new threats include
malicious use of the robot’s privileged access, tampering with
the robot sensors system, and tricking the robot’s deliberation
into harmful behaviors. We provide a taxonomy of attacks
that exploit these vulnerabilities with realistic examples, and
we outline effective countermeasures to prevent better, detect,
and mitigate them.

I. INTRODUCTION

When we withdraw money from an ATM or swipe a credit
card in a gas station, we generally do not worry about the
machine’s behavior or the ATM’s authenticity. However, ill-
intentioned can easily alter a card reader by physically acting
on it to send sensitive data to untrusted third parties [1]. Such
illicit activity, which yields an annual loss of $24.26 billion
in the USA only [2], remains one of the financial industry’s
most difficult crimes to protect against [3]. This highlights
to what extent we underestimate the security threats in our
daily lives and how simple attacks can severely impact us.

The introduction of social robots in our societies will
represent a fertile ground for a new security threat paradigm.
These threats fall beyond the hardware and software ones
and, without preventive measures, they can yield harmful
robot behaviors. Examples include harmful physical interac-
tion with the robot (e.g., tampering with road signs to attack
self-driving cars), malicious use of privileged access of the
robot (e.g., introduction of a factory defect in the food indus-
try), and accidental use of the robot (e.g., a non-expert user
designs a dangerous robot behavior). Conventional tools in
cybersecurity alone may not quickly recognize and respond
to attacks that exploit these vulnerabilities.

We, as the robotics community, often give a lower priority
to new security threats. On the one hand, robot manufacturers
prioritize development costs, speed to market, and customer
satisfaction; on the other hand, robotics researchers focus on
new robotics applications and new problems to solve [4].
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(a) Printout of a fire extinguisher in place of a real one to deceive a
surveillance robot (left) and the object detection results using Google Cloud
API (right).

(b) Obstacles maliciously placed to hijack the robot.

Fig. 1. Examples of behavior threats carried out by non-expert users.

We need countermeasures that combine cybersecurity and
robots’ deliberation tools to face this new paradigm of
threats. Countermeasures incur certain costs from an eco-
nomic and usability perspective, but they prevent much larger
expenses. Consider the example of an arsonist that deceives
a surveillance robot by placing printouts of fire extinguishers
in place of the real ones before setting the building on fire (as
in Figure 1(a)) or a felon that places obstacles on the robot’s
path to hijack it (as in Figure 1(b)). Even using state-of-the-
art navigation and object detection tools, as we did in the
example, the robot is not only unable to perform its task
correctly, but it is also unable to realize that an adversarial
actor prevents the success of those tasks. The growing eco-
nomic anxiety and the fear of robots displacing workers [5],
[6] may motivate these attacks. Moreover, nation-states,
criminal organizations, radical political or religious groups
may sponsor them; and, more alarming, they do not require
any prior knowledge in cybersecurity.

This paper analyzes this new paradigm of robotics threats,
provides a taxonomy of attacks and suggests possible effec-
tive countermeasures. The analysis suggests a high risk of
attacks as they will become easier to perpetrate and robots
mass-produced. We aim at drawing attention to this new
security landscape and outline possible countermeasures.
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II. EXISTING SOFTWARE AND HARDWARE SECURITY
THREATS IN ROBOTICS

In this section, we outline the existing software and
security issues in robotics. Existing threats focus on in-
tentional attacks that compromise the robot’s hardware or
software whereas we are interested in studying threats, both
intentional and unintentional, that compromise the robotics
deliberation, leaving intact the hardware and software.

A. Hardware threats

Once robots populate our homes and cities, attackers will
easily have direct access to their sensors (e.g., cameras
and laser scanners) and onboard hardware interfaces (e.g.,
USB ports and CPU’s pins). Moreover, robots will be mass-
produced. Thus skilled individuals can reverse engineer robot
components and possibly expose hardware vulnerabilities.
This will reduce the expertise required to execute certain
attacks. Infected hardware can manipulate data being sent
and received before the Operating System (OS) level and
therefore remain hard to detect [8], as in the following
example.

Example 1 (Malicious Repair): A domestic robot is sent
to a local repair shop to fix its broken arm. In addition to
the new arm, the repairer installs a hardware backdoor on
the robot’s camera so that they can steal sensitive data, as
credit card numbers or personal footage used to blackmail
the robot’s owners.

Once an attacker takes a system’s hardware, it becomes
much harder to regain control of the system [7], [9]. Physical
access represents one of the largest threats to robotics and
Internet of Things (IoT) devices [10], [11].

B. Software threats

Robots rely on software libraries to perform their tasks,
and an OS provides common services for these libraries.
Thus robots also have the same software threats as standard
computers. Attackers have a long experience in malware (i.e.,
malicious software) development. Moreover, the ability to
mass upgrade the robots’ software brings software threats to
a much larger scale.

Robots will exchange information with each other to
either communicate their intentions (e.g., the maneuver of
autonomous cars) or to synchronize their interactions (e.g.,
handover of an object). With the increasing reliance on
interconnected robots, there will emerge new software threats
that target this interconnection. Robots can infect one another
via their, possibly trusted, communication network.

Example 2 (Domestic Hack): A skilled cybercriminal
hacks his domestic robots to install malware to each robot
connected to it from the same brand. Each infected robot
installs the malware to the other robots that it encounters.
After a week, that malware infected all the robots of that
brand, resulting in a financial loss for the manufacturer and
the users.

Fortunately, the long experience in developing antivirus
programs and generic security software suites may tame the
effects of software threats.

III. A NEW PARADIGM OF SECURITY THREATS

We foresee a change to the robotics threats landscape.
This section outlines a new paradigm of security threats:
behavior threats. These threats exploit both the deliberation
and the perception system’s intrinsic vulnerabilities, tricking
robots into tasks harmful for themselves and the humans sur-
rounding them. We identify three types of attacks in this new
paradigm: 1) the threats to robots where attackers target the
robots, 2) the threats through robots where robots represent
an attack vector, and 3) accidental threats where the attack
is performed without awareness (e.g., misuse or software
bug). Behavior threats can involve any software robot control
architecture level, from the high-level deliberation to the low-
level actuation control.

The presence of a particular unresolved vulnerability
implies that an attacker will eventually exploit it and the
robot’s behavior vulnerabilities are no exception. For ex-
ample, self-driving cars create the opportunity for attackers
to cause crashes by performing adversarial behaviors. A
stop sign modified in specific ways, which humans would
easily recognize as still a stop sign, might nevertheless, be
misclassified by an AI system. Moreover, as cybercriminals
will probably employ AI systems to carry out labor-intensive
attacks as spear phishing [12], we cannot exclude that they
will eventually use AI systems to target robot’s intelligence.

A. Threats to robots
Robot abuse exists since the first deployments in open

areas of robots. hitchBOT [13], a robot that successfully
hitchhiked across Canada, Germany, and the Netherlands,
got decapitated in Philadelphia [14] in 2015. In Silicon
Valley, a man beat to the ground a security robot [15].
In San Francisco, a group of people covered a robot in
barbecue sauce and wrapped it in a tarp [16]. In Moscow,
a man attacked a robot with a baseball bat while it pleaded
for help [17]. In Osaka, three boys beat a humanoid in a
shopping mall [18]. However, these attacks remain mostly
physical, and they are easy to detect, as the robot cannot
continue any task. Future attacks will involve the robot’s
intelligence, and they will be harder to detect, as described
in Section IV below.

B. Threats through robots
Attacks through robots may leverage the privileged access

of robots to a facility (such as hospitals or private offices)
to perpetrate a crime. An attacker may physically modify
a robot to implement malicious tasks, like introducing a
wifi sniffer to steal sensitive data, a gun to kill a specific
individual, or an explosive device to execute a terror attack.

C. Accidental Threats
Accidental threats refer to situations in which a human

causes a dangerous robot behavior without awareness. They
include programming(e.g., a bug in the behavior’s code)
and user (e.g., a misspelled request) errors. These types
of threats will probably become the most frequent ones as
robots will have more inexperienced (or imprudent) users
than attackers [19], [20].



IV. BEHAVIOR ATTACKS TAXONOMY

In this section, we outline the four categories for the
attacks described in the previous section. We discriminate
attacks based on intentionality and the level of expertise
required. We do not consider software and hardware threats
as they fall outside the scope of this paper.

A. Intentional Physical Attacks

Intentional physical attacks require physical access or
interaction to the robot either during its use, maintenance, or
even production. These attacks may be the most dangerous
ones as they can provide additional robot capabilities as
carrying an explosive or a gun. We now present two realistic
intentional physical attack examples.

Example 3 (Robot Kidnap): A domestic robot goes to a
pharmacy to fetch drugs for its assisted human. On its
way back, a couple of criminals places cardboard boxes
maliciously in front of the robot, forcing it to change its paths
to home. The criminals keep moving the boxes in front of the
robot’s new path in such a way that they force it to navigate
through an alley, where they steal the robot undisturbed.

The attack example above does not exploit any hardware
or software vulnerabilities of the robot and thus it results
hard to detect algorithmically.

Example 4 (Explosive Warehouse Robot): A warehouse
robot fetches small packages and brings them directly to
the customer. The robot has a LED battery indicator that
turns red when the battery gets low. A criminal glues an
explosive device on top of the led indicator. Such a device,
using a color sensor, activates the bomb when the red light
is on. Once back in the warehouse, the robot battery gets
low, making the device triggers the bomb.

The attack example above does not modify the robot’s
hardware or software, not even its behavior. Instead, it
exploits a simple robot behavior, i.e., switching the color
of a led, for malicious purposes.

B. Unintentional Physical Attacks

Unintentional physical attacks originate from naı̈ve inter-
actions with robots as asking to fetch a burning pot. But,
more alarming, a naı̈ve human behavior can represent an
apparent threat to others. Robots, especially those deployed
in law enforcement, may have a dangerous reaction in front
of an apparent threat to humans, as in the following example.

Example 5 (Toy Guns): A group of airsoft players ex-
ercises in an abandoned building. A bystander calls the
police to report the trespassing. A police officer sends a
reconnaissance drone to the building before deploying human
officers. The drone scours the building until it sees a woman
that shot at a man with a rifle. The drone then engages the
Taser gun, neutralizing the innocent woman.

Unfortunately, these apparent threats remain profoundly
hard to decode, and they deceive humans too. For example,
three police officers shot to death a toy gun-carrying disabled
man in Sweden [21] and a police officer opened fire towards
a man with autism deemed to hold his therapist hostage in
California [22].

C. Intentional Programming Attacks

Intentional programming attacks involve the manipulation
or exploitation of the robot’s code to cause danger. The
introduction of malicious behaviors can be perpetrated at the
production stage, from an inside cybercriminal, or during its
use, from any generic felon.

The presence of several service robots in our cities opens
the opportunity to execute a “Physical” Distributed Denial
of Service (DDoS) attack, as in the following example.

Example 6 (Physical DDoS): A cybercriminal, using a
bot, orders 1000 pizzas to different homes from 50 differ-
ent fully-autonomous pizzerias. The locations of the target
homes are near a hospital. During rush hour, the attack
perpetrated let the ambulances (and other vehicles headed
for the hospital) be stuck in a traffic jam.
The distributed nature of the above attackmakes it hard to
detect.

Assistive and eldercare facilities already employ robots
to help healthcare professionals in simple tasks [23]. These
robots will soon perform more complex tasks, including
physical interaction with patients that will probably be pro-
grammed by demonstration, where the robot observes the
execution of a certain task from a human trainer and extracts
relevant information for reproducing it [24].

State of the art in machine learning and robot’s delibera-
tion remains unable to discriminate if the task demonstrated
hides malicious intents [25]. A human trainer may program
the robot to hurt patients, as in the example below.

Example 7 (Malicious demonstration): A nurse in an el-
dercare facility teaches the brand new robot how to lift non-
self-sufficient patients. The nurse shows an operation that
causes pain to the patients when lifted.

Episodes like the one above are not far from reality. A
study suggested that nurses account for 86% of murders
perpetrated by healthcare professionals [26].

D. Unintentional Programming Attacks

Unintentional programming attacks result from negli-
gence, inattention, or lack of training while using or inter-
acting with robots. They include programs with a correct
syntax but a wrong semantic and programs with bugs that
static program analysis tools cannot detect, as the insertion
of a parameter with the wrong unit of measure (e.g., NASA
lost a spacecraft due to a metric mistake [27]).

Example 8 (Autonomous Cars): In Ogden, Riley county
of Kansas, a woman asks her voice-controlled autonomous
car to drive her sightless father to the county’s capital,
Manhattan, where his domestic robot is waiting for him.
Several hours later, the car brings the man to Manhattan in
New York.

The unintentional attack above results from the overcon-
fidence in autonomous systems’ abilities. Nowadays, similar
overconfidence causes the death by GPS where drivers
faithfully follow their navigation systems and disregard road
signs, turning to the wrong road or drive away from popu-
lated areas and die before rescuers can reach them [28].



V. COUNTERMEASURES

In this section, we outline possible technological counter-
measures to behavior threats. Political and social measures
fall outside of the scope of this paper. We divide countermea-
sure into three groups prevention, detection, and mitigation,
providing realistic examples.

A. Prevention
Following the fundamental principle of modern health care

“prevention is better than cure” [29], prevention represents
probably the most important countermeasure to behavior
threats.

The development of less vulnerable robots’ software and
hardware helps in reducing behavior vulnerability. However,
behavior threats emphasize the need for prevention measures
like the ones below.

Sustainable and agile robot’s code development: The
design and maintenance of a secure architecture, from a
software and hardware point of view, represent a well-
known problem for generic embedded systems and IoT [30].
On the one hand, the robots’ interconnection will allow
quick software, and hence security, updates, but on the
other hand represents an attack vector, both intentional and
unintentional. We may want to limit the rate of these software
updates [31]. Moreover, we must strive to make software and
hardware development sustainable.

Model-driven methods and tools enable sustainable soft-
ware development for robotics [32]. We must identify the
structures and abstractions that help design, integrate, and
update complex robotic software systems. [33]

Software integration and update will very likely remain
a challenge for the development of safe robots and, in
general, for future robotic developments, as recognized by
the European Commission [34].

Hierarchical behaviors: Robot’s behavior customiza-
tion represents an attack vector. Both naı̈ve and malicious
users may design robots behaviors that are dangerous for
themselves and others.

The robot’s behavior architecture must support hierarchies.
The attacks’ prevention and mitigation behaviors must re-
main at a higher level in the hierarchy. Users should not
be allowed to modify or even visualize such behaviors.
Solutions as Behavior Trees [35], Subsumption Architec-
ture [36], or Hierarchical Task Networks [37] will help in
making that hierarchy simple. Figure 2 shows an example
of a robot behavior hierarchy encoded with a Subsumption
Architecture. Such behavior avoids that the robot overheats
for too long, regardless of the user task. However, the
behavior designer must ensure preemptable task execution.

Sensors Stop if Overheated

Recharge if Needed

Do User Tasks

S

S

S Actuators

Fig. 2. Subsumption Architecture composed by three behaviors. The
behaviors Stop if Overheated subsumes the behaviors Recharge if Needed,
which subsumes the behaviors Do User Tasks.

Robust behaviors: The example in Figure 2 suggests
that the robots must operate correctly in different environ-
mental conditions. Following the IEEE standard glossary of
software engineering, we define this property as robustness.
Behavior attackers may leverage on the inability of a robot
to operate in a different setting than the ones expected and
in the inability to overcome task failures, hence robots must
operate properly in case of such failures.

Verified behaviors: We need to identify languages to de-
fine precisely non-ambiguous task specifications, constraints,
and methods to verify them. We may employ formal methods
used to specify and verify software systems to ensure the
correctness of a robot’s behavior [38], [39].

We could employ formal methods to design safe and
secure behaviors, which prevent intentional and unintentional
programming attacks, respectively. A verification framework
could perform a static analysis on a new robot behavior, also
defined by the user, to detect possible flaws in the behavior’s
logic and prevent programming attacks.

The safety aspects in robotics are somewhat well defined,
in industrial robots’ applications, from a human-robot in-
teraction perspective [40]–[43]. Unfortunately, there is less
attention on the security aspects of robot behavior develop-
ment [7]. However, extensions on formal methods should
provide sufficient evidence for specific security certification
[44], [45].

Human readable behaviors: Borrowing the definition
of readability from software programming, we can define
readable behaviors essentially the ones easy to read and
understand [46]. Consider a robot that performs different
activities reactively according to the user inputs taken from
the literature [35]. Figure 3 depicts the behavior described
as a Hierarchial Finite State Machine (FSM). A user may
find such behavior descriptions hard to understand and edit.
Encoding the robot behavior with a readable representation
lowers the likelihood of programming errors [47] from both
the end-user and the manufacturer, which mitigates the
unintentional threats. Human readable behaviors relate with
the concept of explainable AI and improve the end-users trust
that the robots make good decisions and the manufacturer
accounts for possible damages [48].
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Fig. 3. Example of a non-readable behavior. Adapted from [35].



B. Detection

The ability to detect attacks becomes fundamental to
mitigate them. Intrusion detection and security challenges
fall outside the scope of this paper.

The anomaly detection tasks results especially challenging
when they must treat data from black boxes (e.g, Neural
Networks) and without a formal definition of nominal set-
tings [49]. We suggest the following detection mechanism.

Quality of Service Monitoring: Robot behavior must
be flexible enough to easily accommodate user requests
and execute user’s programs in different conditions. In both
social and industrial robotics, a challenge is to guarantee
the system’s correctness while fulfilling Quality-of-Service
(QoS) requirements. In this context, several QoS monitors
exists [50]. We could define an explicit representation of the
robot’s behavior as non-functional properties, as done in [51],
and exploit QoS monitors to detect an attack, as one of such
qualities will possibly degrade.

Redundant Software: We could employ formal methods
tools to synthesize monitors that detect unexpected changes
or anomalies in the robot’s behavior at runtime. Runtime
monitoring models a software verification technique that
involves observing the internal operations of a software
system and its interactions with its environment (the robot
and its surrounding in our context) to determine whether
the system violates a given specification [52]. We could use
these runtime monitors to define anomaly detection systems.
For example, the runtime monitor in Figure 4 monitors the
progress of a navigation task. Whenever a new destination is
set, the (Hierarchical) FSM checks if the robot reaches the
destination within a given time threshold T . Such a monitor
could detect the attack described in Example 3.

Learning Techniques: Anomalies remain inevitably
unpredictable in form and often expensive to miss. We
can formulate anomaly detection problems as classification
tasks [53]. A supervised or semi-supervised machine learning
framework may train anomaly detection models, such as
neural networks or support vector machines, from a dataset
containing labeled instances of nominal and failed behaviors
traces. Unsupervised learning requires less input from a
human expert, but they perform very poorly compared to
supervised or semi-supervised learning [54]–[56].

Not all anomalies represent failures. A robot can behave
anomalously without failing. Conservative detection mecha-
nisms cause false alarms that reduce the trust in robots [49].

Idle

start

Reset
Counter

Check
Progress

Warning

Increase
Counter

New Dest. Set

Counter ≥ T

Counter < T

Destination Reached

New Dest. Set

Fig. 4. Example of a runtime monitor that detects the attack of Example 3.

C. Mitigation

Once the robot detects an attack, it must actuate a mitiga-
tion strategy. A naı̈ve mitigation strategy could be to disable
the robot’s actuators. However, this strategy may lead to
dangerous behaviors, as in an autonomous car driving on
the highway or in a drone flying over a crowd. If the robot
could not prevent such attacks, it means that the robot is
in a situation for which its behavior is not intended. Here,
the robot’s deliberation capabilities play an important role
since, if the robot fails to recover from an attack, it requires
external intervention, which may be expensive.

Task Planning: Informally, task planning represents a
set of tools to choose and organize actions to achieve a
purpose. As the robot’s environment is, in general, uncertain
and dynamic, we must employ task planning techniques that
can operate in such a context. Partially Observable Markov
Decision Processes (POMDPs) provide a precise and elegant
mathematical formulation for task planning in uncertain and
dynamic environments and they found applications in various
robotic tasks. However, solving POMDPs exactly remains
computationally intractable [37], [57], [58].

Unfortunately, a framework that solves long-horizon task
planning in uncertain and dynamic environments lies far be-
yond the state of the art [37], [57], [59]. Early works rely on
the most-likely-state approximation where they identify the
most likely physical state of the robot, and then act assuming
that the robot is on that state [60]. However, those methods
do not plan for actions to reducing uncertainty and remain
impractical for our purpose. We may employ existing PDDL-
based planning frameworks [59], [61] and their extensions
in terms of replanning and goal reconsideration [62]; or task
planners that employ a search algorithm in belief space [63]–
[65].

The AI and the robotic communities identified different
key open challenges in this context [37], [66]–[68]. In
particular, task planning techniques often underestimates the
reasoning and deliberation needed for acting [66] advocating
for autonomous systems that “reacts to events and extends,
updates, and repairs its plan based on its perception”.

Operators deployed from a Control Center: Au-
tonomous failure recovery will probably remain unfeasible
for all possible attacks. Once the robot fails all its mitigation
strategies, we could employ a rescue squad composed of
humans or other robots to fix the robot on the spot or take
it for maintenance.

The rescue squad may be called by the robot itself, hu-
mans, or other robots nearby. However, this opens additional
challenges in terms of false alarms and hoax calls to the
rescue squads, with potentially dangerous consequences [69].

The mitigation strategies above rely on the fundamental
assumption that the actions are reversible i.e., their effects
on the robot and the environment can be undone by a finite
set of actions [70] that the robot, or the rescue squad, can
perform.



VI. CONCLUDING REMARKS

In this paper, we advocated a focus on a new paradigm
of robotics threats that will sit alongside the software and
hardware ones: the behavior threats. As robots will soon be
part of our society and will play a major role in several
countries’ economic development, we must foresee the new
security landscapes and shape effective countermeasures.

Our economy will strongly rely on social and indus-
trial robots; attacks to or through them will have a severe
economic impact. The spread of a biological virus in our
society resembles a software virus’s spread in a computer
network. A recent study compared the economic impacts of
a cyber-attack to robots, both social and industrial, to that
of a pandemic or a natural disaster [7]. Cybercriminals will
use robots to automate existing labor-intensive cyberattacks
as spear phishing and create a new paradigm of attacks
that exploit human vulnerabilities as the impersonation of
domestic robots or robot kidnap and ransom demand. These
attacks will probably target people from vulnerable socio-
economic groups as lonely older people fond with their
caretaker robot.

Our society will rely on social and industrial robots
too. The impact of the malicious use of robots opens
new scenarios of criminals activities as the recruitment of
members and supporters of terrorist organizations, or the
implementation of a “physical” DDoS, as in Example 6.
Scientists showed evidence on robot’s persuasive effects on
humans’ sense of trust and willingness to interact with them
that result more effective than other technologies [71], [72].
Additionally, robot’s social and human-like behaviors during
generic tasks execution [73], collaborative activities [74], and
in response to humans’ emotions bring humans to interact
with them as with other human beings. Scientists employed
humanoids robots, with human-like behavior, as childrens’
lecturers for educational scopes [75], and for neuro-cognitive
rehabilitation programs for disabled people [76]. Moreover,
interactions with robots may affect human ethics, especially
in terms of children’s moral development. A recent study
suggested that cruelty towards robots may make humans
more insensitive towards other humans too [77].

As with all new technologies, there will exist different
threats when we deploy the next generation of robots. The
consequences of robot behavior attacks must alarm us since,
unlike threats on software deployments that most often
compromise data or business continuity, they can put human
lives in danger. There will be an extended period during
which it will be impossible to foresee and prevent all these
attacks. It is imperative that we, as members of the robotics
community, strive to shorten that period.
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planning in belief space,” The International Journal of Robotics
Research, vol. 32, no. 9-10, pp. 1194–1227, 2013.

[60] R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief space
planning assuming maximum likelihood observations,” in Proceedings
of Robotics: Science and Systems, Zaragoza, Spain, June 2010.

[61] D. Hadfield-Menell, E. Groshev, R. Chitnis, and P. Abbeel, “Modular
task and motion planning in belief space,” in 2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2015, pp. 4991–4998.

[62] M. Levihn, L. P. Kaelbling, T. Lozano-Pérez, and M. Stilman, “Fore-
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