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Abstract
Recordings of neural circuits in the brain reveal extraordinary dynamical richness and high vari-

ability. At the same time, dimensionality reduction techniques generally uncover low-dimensional

structures underlying these dynamics. What determines the dimensionality of activity in neural

circuits? What is the functional role of this dimensionality in behavior and task learning? In

this work we address these questions using recurrent neural network (RNN) models, which have

recently shown promise in predicting and explaining brain dynamics. Through simulations and

mathematical analysis, we show how the dimensionality of RNN activity evolves over time and

over stages of learning. We find that RNNs can learn to balance tendencies to expand and com-

press dimensionality in a way that matches task demands and further generalizes to new data.

Strongly chaotic networks appear particularly adept in learning this balance in the case of classi-

fying low-dimensional inputs, combining the natural tendency of chaos to expand dimensionality

with opportunistic compression driven by stochastic gradient descent to form representations with

good generalization properties. These findings shed light on fundamental dynamical mechanisms

by which neural networks solve tasks with robust representations that generalize to new cases.

1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2019. ; https://doi.org/10.1101/564476doi: bioRxiv preprint 

https://doi.org/10.1101/564476
http://creativecommons.org/licenses/by-nc-nd/4.0/


INTRODUCTION

Dynamics shape computation in brain circuits. These dynamics arise from highly recur-
rent and complex networks of interconnected neurons, and neural trajectories observed in
cortical areas are correspondingly rich and variable across stimuli, time, and trials. Despite
this high degree of variability in neural responses, repeatable and reliable activity structure
is often unveiled by dimensionality reduction procedures [15, 47]. Rather than being set
by, say, the number of neurons in the circuit, the effective dimensionality of the neural ac-
tivity (or neural “representation”) seems to be intimately linked to the complexity of the
function, or behavior, that the neural circuit fulfills or produces [14, 19, 50, 57]. Similar
task-dependent trends in dimensionality can manifest in artificial networks used in machine
learning systems trained using optimization algorithms (e.g., [14, 42, 62]). Bridging between
machine learning and neuroscience, artificial networks are powerful tools for investigating
dynamical representations in controlled settings, and enable tests of theoretical hypotheses
that can be leveraged to formulate experimental predictions (reviewed in [6]).

The connection between task complexity and representation dimension is especially in-
triguing in light of fundamental ideas in learning theory. On the one hand, high-dimensional
representations can subserve complex and general computations that nonlinearly combine
many features of inputs [8, 13, 18, 39, 52, 61]. On the other, low-dimensional representa-
tions that preserve only essential features needed for specific tasks can allow learning based
on fewer parameters and examples, and hence with better “generalization” (for reviews, see
[7, 9, 18, 60], and see [10, 11] for important steps toward characterizing the coding properties
of general representation geometries).

What are the mechanisms that regulate the effective dimensionality of network activity
across many trials and inputs? While dimensionality modulation can occur due to hard
structural constraints such as “bottleneck” layers with a small number of neurons [23], here
we consider the case where the number of neurons is not a constraining factor. We consider
two factors: chaos and learning. Frequently encountered in recurrent neural network (RNN)
models of brain function, dynamical chaos (whereby tiny changes in internal states are am-
plified by unstable, but deterministic, dynamics) provides a parsimonious explanation for
both repeatable structure as well as internally generated variability seen in highly recurrent
brain networks such as cortical circuits [17, 30, 38, 40, 55, 56, 59, 63]. In the reservoir com-
puting framework, chaos in an RNN can increase the diversity of patterns and dimension of
activity the network produces through time in response to inputs, in some cases increasing
the system’s computational abilities [26, 35, 41]. While chaos-driven expansion as deter-
mined by fixed recurrent weights has been explored in simulations [35], the attributes of
this phenomenon as recurrent weights evolve through training are less understood (but see
[16, 58]).

The goal of the current work is to elucidate how an RNN’s representation and dynamics
are shaped by learning to balance the two desiderata of compressing and expanding the
dimension of input data. Notably, we find evidence that stochastic gradient descent (SGD)
is predisposed to compress dimension, even when expansion is necessary to solve the task.
Chaos in our case provides a key ingredient for effective learning: directions of expansion
that coexist with many directions of compression. SGD is often effective at making use
of this expansion while still compressing opportunistically without sacrificing task perfor-
mance. This results in learned representations that balance expansion and compression and
that consequently lend themselves to good generalization. The same balance of expansion
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and compression in chaotic networks may account for the highly variable nature of neural
activity, and suggests that further optimizing this trade-off may be a method for improv-
ing the flexibility and accuracy of artificial neural networks. Finally, we analyze how SGD
compresses dimensionality in neural networks. Our work is similar to the information com-
pression phenomenon explored in [53, 54], but instead focusing explicitly on the geometry
of the representation. In addition, while the noise generated by SGD in [53] is treated as
additive and Gaussian, here we consider the true noise generated by two steps of SGD in
a more simplified model. This contributes to revealing why this ubiquitous algorithm often
finds solutions that generalize (e.g. [2, 4, 20, 29, 33, 36, 53, 54]).

RESULTS

Model and task overview

We investigate the dynamics of recurrent networks learning to classify static inputs. Our
network model is based on standard RNN models used in machine learning [22, 37]. Inter-
actions between N = 200 neural units are determined by a randomly initialized recurrent
connectivity matrix, and unit activations pass through a hyperbolic tangent nonlinearity.
The dynamics of the network initialized in this way can be modulated from stable to chaotic
by increasing the average magnitude of the initial neural coupling strength, and vice-versa.
We compare chaotic networks initialized near the transition point to chaos (said to be on
the “edge of chaos”), to “strongly chaotic” networks well past the transition point, as they
learn to solve the task described below. To measure chaos, we numerically compute the
Lyapunov exponents of the system (see Supplemental Information for more details).

Inputs are N -dimensional constant vectors. They are selected from Gaussian-distributed
clusters whose means are distributed randomly within a d-dimensional, random subspace of
the N -dimensional neural activity space. We call this subspace the input’s ambient space and
consider two scenarios for the ambient dimension: d = 2 and d = N . Each cluster is assigned
one of two class labels, at random, as illustrated in Fig. 1. While this schematic only shows
six clusters for clarity, in our simulations we use 60 clusters. Each cluster is assigned one
of two class labels: 30 clusters for label 1, and 30 for label 2. The task proceeds as follows:
(1) a random input is selected from one of the clusters and presented to the network for one
timestep; (2) the network’s dynamics evolve undriven during a delay period of 9 timesteps;
(3) a linear readout of the network’s state at timestep 10 is used to classify the input into
one of the two classes. Recurrent and output weights are adjusted via an SGD routine to
minimize a cross entropy loss function, and classification performance is evaluated on novel
inputs not used for training. We find our results qualitatively robust to moderate changes in
the choice of model parameters, as well as using squared error loss instead of cross entropy.
See Fig. S4, where we train our network on the MNIST digit classification database [34].

SGD trains networks to compress high-dimensional inputs

We start by considering the classification of high-dimensional inputs, where the input
ambient space dimensionality d is equal to the number N of recurrent units (see Fig. 2a
for a visualization). While classification in networks is often viewed from the perspective
of making inputs linearly separable, in our scenario the data are already linearly separable
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FIG. 1. Task and model schematic. Input clusters are distributed in a d-dimensional subspace

of neural space. An input x is shown to the network for one timestep, and after a delay period in

which the network evolves undriven, the network state h(x, teval) is linearly read out at a timepoint

teval in order to classify the input. Bottom: Schematic of the response of the network to the

ensemble of inputs, viewed at snapshots in time. Through training, the network attempts to form a

representation that allows a separating hyperplane. The network may also bring points belonging

to the same class together to form a more compact representation. Bottom left: Dashed lines

depict the top two eigenvectors of the covariance of the representation, scaled by the corresponding

eigenvalues. To capture the degree to which activations fill space, we use the effective dimensionality

(ED), which measures the participation ratio of all of the eigenvalues.

in the input space. This focuses our attention on what, if anything, networks learn to do
beyond producing linear separability.

We study networks in two dynamical regimes: a strongly chaotic network and one that
is initialized at the edge of chaos. Fig. 2b measures the degree of chaos of the edge-of-chaos
and strongly chaotic regimes by plotting the top 15 Lyapunov exponents χk of the networks
through training. In these plots, positive values of χk indicate chaotic dynamics. If all χk are
negative, then the dynamics are non-chaotic (stable), meaning that trajectories converge to
stable fixed points or stable limit cycles. The edge-of-chaos network is weakly chaotic before
training and becomes stable after training, while the strongly chaotic network is chaotic
both before and after training. While each of the plots in Fig. 2b only shows the exponents
for a single network realization and a particular positioning of input clusters, they capture
the general qualitative behavior of the two dynamical regimes for d = N .

As shown in Fig. 2d, both networks easily achieve perfect testing accuracy on the delayed
classification task. What is then of interest is how properties of the network’s internal
representation change over the course of training. In Fig. 2c we plot the top two principal
components of the network responses to 600 input samples at snapshots in time. The top row
corresponds to the edge-of-chaos network, where we see that points belonging to different
classes are pulled apart while points within the same class are compressed together in all
dimensions (see Fig S1 for a quantification of this phenomenon). The case is similar for the
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FIG. 2. Comparison of edge-of-chaos (blue-green) and strongly chaotic (red) networks classifying

high-dimensional inputs. Input color (yellow-orange or purple) denotes true class label. Shaded re-

gions indicate 75% probability mass of gamma distributions fit to values of the dependent variables

over a sample of 30 network and input realizations, with solid lines indicating medians. “After

training” designates networks that have been trained on 9,600 input samples. (a) Schematic of the

task. (b) Lyapunov exponents measured through training. Each plot is of a single network and

input realization. Error bars (too small to see) denote standard error of the mean. Top: Edge-of-

chaos network. Bottom: strongly chaotic network. (c) Activations of recurrent units responding

to an ensemble of 600 inputs, plotted as “snapshots” in time in principal component space. Top:

Edge-of-chaos network. Bottom: strongly chaotic network. (d) Testing accuracy measured through

training. (e) Effective dimensionality (ED) of the network representation through time t. (f) Mean

accuracy of a logistic regression (LR) linear classifier trained on the recurrent unit activations at

each timepoint t. (g) Mean testing accuracy of an LR classifier. The model was trained on data

drawn from 80% of the input clusters (816 input points) and tested on held-out data from the

remaining 20% of input clusters (204 input points).

strongly chaotic network (bottom row), except that the classes begin to mix back together in
the top two PCs after the evaluation time teval = 10. Our analysis of the Lyapunov exponents
indicates that the edge-of-chaos network forms fixed points that persistently solve the task,
while the strongly chaotic network forms chaotic attractors that transiently solve the task.

This compression phenomenon is partly captured by measuring the effective dimension-
ality (ED) of the representation [27, 48]. The equation for the ED of a set of S points
V = [vsi] ∈ RS×d with ambient dimension d is

ED (V ) =
Tr (C)2

Tr (C2)
=

(∑d
i=1 λi

)2
∑d

i=1 λ
2
i

=

(
d∑
i=1

λ̃2i

)−1
(1)

where Cij = 〈vsivsj〉s−〈vsi〉s 〈vsj〉s is the covariance matrix of V and the λ̃i = λi/
∑

j λj are
the normalized eigenvalues of C. A visual intuition for this quantity is shown in Fig. 1. ED
can be roughly thought of as the number of principal components needed to capture most
of the variance of the data [19].
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FIG. 3. Comparison of edge-of-chaos and strongly chaotic networks classifying low-dimensional

inputs. Details are similar to Fig. 2. “After training” designates networks that have been trained

on 96,000 input samples. (a) Inputs lie on a two-dimensional plane cutting through recurrent unit

space. (b-g) Descriptions as in Fig. 2.

In Fig. 2e the ED is plotted through time t. For each time point t the matrix V =
V (t) used to compute ED has dimensions S × N where S is the number of input samples
shown to the network. The EDs of the trained networks are approximately equal to that
of the input at time t = 0, since the initial states only differ from the inputs by one
application of the nonlinearity (see Methods). The dimensionality drops with increasing t
and is highly compressed at the evaluation time teval = 10. This compression results both
from increasing distances between different classes as well as decreasing distances within
classes (see Fig. 2c and Fig S1). The degree of these trends depends somewhat on the
learning procedure, with more aggressive weight updates resulting in faster dimensionality
compression (data not shown). However, the general behavior is robust to moderate changes
in the learning algorithm parameters. This compression can be viewed through the lens of
building invariance in the network representation [1, 20, 21], in this case invariance to input
cluster identity (data not shown).

We next study the coding properties of these representations. Fig. 2f shows the mean
accuracy of a logistic regression (LR) linear classifier trained to classify the network repre-
sentation at each timepoint. This confirms the point made above: the input data is linearly
separable, and this property is retained by the network dynamics. The interesting proper-
ties of the network computation lie elsewhere, in that the learned dynamics and resulting
dimensionality compression lead to better generalization properties of the representation. In
Fig. 2g, we measure generalization by first training an LR classifier on the network response
to inputs drawn from a fixed 80% of the input clusters, and then measuring the accuracy of
this classifier on the network response to samples drawn from the remaining 20% of the clus-
ters. The dashed lines indicate that, while the representations in the untrained networks are
linearly separable, a linear classifier trained on these representations does not generalize well
to held-out clusters. In contrast, after training, the network representations become increas-
ingly generalizable through time t, eventually allowing for perfect classification accuracy on
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held out clusters and maintaining this for future times.
We emphasize that in this case linear separability – the property needed to solve the

task with perfect accuracy – requires neither dimensionality expansion nor compression of
inputs. Nevertheless, we find that networks do learn to strongly compress their inputs, at
the same time achieving representations that lend themselves to good generalization.

Chaos drives dimensionality expansion, enabling SGD to find a balance between

expansion and compression

We next turn our attention to inputs embedded in a two-dimensional ambient space, d = 2
(see Fig. 3a for a visualization). In this case, the two classes are generally far from being
linearly separable (classification boundaries must be curved and nonlinear to separate the
60 clusters randomly distributed in two-dimensional space). As a consequence, it is difficult
for the network to classify without first increasing the dimensionality of its representation.

Fig. 3 compares the behavior of the edge-of-chaos and strongly chaotic networks trained
on this task. In this case, the edge-of-chaos network remains on the edge-of-chaos through
training (Fig. 3b). The strongly chaotic network remains strongly chaotic during training.
In comparing the representations in Fig. 3c, we find indications that the strongly chaotic
network (bottom) is more successful at achieving class separation at time teval = 10 than
the edge-of-chaos network (top). Fig. 3d confirms that this is indeed the case: the strongly
chaotic network learns to achieves near-perfect classification accuracy, while the edge-of-
chaos network is not as successful (Fig. 3d).

In looking at the dimensionality of the trained networks through time (Fig. 3e), we find
that both initially expand dimensionality until about t = 7, with the expansion being much
more dramatic for the strongly chaotic network (solid lines). The strongly chaotic network
then reverses course to compress dimensionality up to time teval = 10. The dimensionality
expansion of the strongly chaotic network up to t = 7 seems to follow from its natural
tendency to expand dimensionality before training, in contrast to the edge-of-chaos network
(dashed lines). The compression from t = 7 to t = 10 is then learned through training.

In Fig. 3f we see that the strongly chaotic network creates a linearly separable repre-
sentation both before and after training, while the representations for the edge-of-chaos
network are far from linearly separable before training. This is consistent with the expan-
sion of dimensionality that occurs even before training in the strongly chaotic network. The
generalization of both networks improves with training (Fig. 3g), with the strongly chaotic
network achieving better generalization performance.

We next turn our attention to a more challenging task, where input is only shown to
a subset of neurons (Fig. 4a); here, two. In this case, dimensionality expansion can have
the added benefit of enlisting more neurons to aid in the computation (e.g. [31]). We find
that the strongly chaotic network is still able to solve the task near-perfectly, while the
edge-of-chaos network’s median performance remains at about 75% (Fig. 4c). Looking at
ED, we find that the edge-of-chaos network does not learn to significantly expand ED, while
the strongly chaotic network is higher-dimensional before training and learns to expand its
dimensionality even further (Fig. 4e). This expansion again results in good linear separability
by the evaluation time t = 10, even before training (Fig. 4f).

The generalization properties of the strongly chaotic network’s representation improve
after training, even though dimensionality compression does not occur (Fig. 4g, solid red
line). However, comparing this network at the evaluation time with the strongly chaotic

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2019. ; https://doi.org/10.1101/564476doi: bioRxiv preprint 

https://doi.org/10.1101/564476
http://creativecommons.org/licenses/by-nc-nd/4.0/


network trained on distributed inputs (Fig. 3g, solid red line), we find that here the gener-
alization score is less reliable, with larger error bars. This suggests that the dimensionality
compression exhibited in Fig. 3e, solid red line, plays a role in improving generalization prop-
erties, while constrained dimensionality expansion as in Fig. 4e, solid red line, can still allow
for relatively good (albeit not as good) generalization. Indeed, while the strongly chaotic
network expands dimensionality without a clear compression phase, the dimensionality is
still small at the evaluation time relative to the size of the network.
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FIG. 4. Comparison of edge-of-chaos and strongly chaotic networks classifying two-dimensional

inputs fed to two neurons. Details are similar to Figs. 2 and 3. “After training” designates networks

that have been trained on 96,000 input samples. (a) Schematic of the task. Two-dimensional input

is delivered to two randomly selected neurons in the network. (b-g) Descriptions as in Fig. 2.

Mechanistic explanations for compression

Our networks exhibit dimensionality compression when tasked with classifying high-
dimensional, linearly separable inputs. Above we have discussed the benefits of this compres-
sion from the perspective of generalization; in this section, we give mechanistic explanations
for why this compression occurs. More specifically, for gradient descent parameter updates,
we show how noise can can lead to weight changes that compress the dimensionality of
internal unit representations, and then apply this analysis to understand how SGD drives
compression. See [25] for a more thorough analysis in the case of networks trained by a
particular unsupervised learning rule, [28] for compression induced by the “Pseudo-Inverse”
learning rule, and [49] for a recently developed alternative approach to analyzing compres-
sion induced by SGD. Our result is related to the pioneering idea of information compression
which is studied in, e.g.([53, 54]), which implicates the same driving mechanism (gradient
noise) and establishes the resulting impact on generalization.

To shed light on the compression behavior illustrated in Figs. 2d, 2e, 3c and 3e – where
points that belong to the same class are brought close together by the dynamics of the trained
network – we show how compression can occur in a simplified scenario. In particular, we
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consider a linear, single-hidden-layer feedforward network. Our analysis proceeds in two
steps. First, we show how gradient updates with isotropic noise injected in the output
weights leads to compression in all directions orthogonal to the readouts. This suggests a
crucial role for variability in driving compression. Second, we show how the noisy variability
of the network weights generated by SGD can also result in compression orthogonal to the
readout direction.

In a single-layer linear network, the internal neural activations responding to a single input
sample x are h(x) = Wx + b, and the scalar output is ô(x) = r>h(x). Since significant
compression occurs for both cross entropy as well as squared error loss in our simulations,
for ease of analysis we consider squared error loss `(x) = 1

2
e(x)2, where e(x) = ô(x)− o(x)

and o maps the input x to its corresponding class label, either +1 or −1. The gradient
descent learning updates W ←W + δW and b← b+ δb over a batch of input samples B
are:

δW = − γ

|B|
∑
x∈B

e(x)rxT , (2)

δb = − γ

|B|
∑
x∈B

e(x)r (3)

Here γ is the learning rate and rxT is the outer product of r and x. The update rule results
in a corresponding update h← h+ δh where δh(x′) = δWx′ + δb.

Note that the change of hidden representation δh points in the direction of the readout
vector: δh(x′) ∝ r. If output weights r are unchanged by the update rule, then gradient
descent parameter updates can modulate the response only along this single dimension. This
modulation can be expected to cause compression in this single dimension when gradient
descent reduces the loss, as the average loss is minimized when r>h(x′) = o(x′) for all x′.
Satisfying this equation implies that h(x′) for o(x′) = +1 has minimized its variation along
r, and similarly for o(x′) = −1.

To see reduction of variability in all dimensions like that exhibited by Fig. 2f, rather than
only along a single dimension, we need to consider how the direction of compression can
change across learning. We turn to this next. For all subsequent calculations, we assume
that inputs have zero mean and covariance

〈
xx>

〉
= σ2

xI (note that this is approximately
satisfied by the inputs used for the simulations above).

Let hk denote the hidden representation after k steps of gradient descent, and similarly
for parameters W , b, and r. A single step of gradient descent results in the representation
h1(x

′) = h0(x
′) + δW0x

′ + δb0. Averaging over batches B, this becomes

〈h1(x
′)〉 = h0(x

′)− γr0
〈
e(x)x>

〉
x′ (4)

= h0(x
′)− γ

(
σ2
xr0r

>
0W0 − r0

〈
o(x)x>

〉)
x′ (5)

We will first consider variability in the initial readout direction r0 by modeling it as
isotropic additive noise: r0 = r + ξ where ξ is a random variable with zero mean and
covariance 〈ξξ>〉 = σ2

ξI and r is fixed. This noise is a simple model of variability that could
arise, for instance, from previous steps of SGD. Let P(r) denote any vector proportional to
r (this notation functions similarly to big O notation). These terms contribute only along
a single dimension, and we can expect compression in this direction as long as the loss is
decreasing (see discussion above), so we don’t analyze these terms further here and instead

9

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2019. ; https://doi.org/10.1101/564476doi: bioRxiv preprint 

https://doi.org/10.1101/564476
http://creativecommons.org/licenses/by-nc-nd/4.0/


focus on the components orthogonal to r. We then obtain

〈h1(x
′)〉 = h0(x

′)− γσ2
x

〈
ξξ>

〉
W0x

′ + P(r) (6)

= h0(x
′)− γσ2

xσ
2
ξW0x

′ + P(r). (7)

If we further assume that the bias is aligned with the readout, b0 ∝ r, then

〈h1(x
′)〉 = (1− γσ2

xσ
2
ξ )h0(x

′) + P(r). (8)

This shows that in our simple linear network model, isotropic variability of the readout
weights r drives compression in all directions within the subspace orthogonal to r. See Fig.
S2 for a visualization.

In the above simplified analysis, we assumed a form of variability for r and directly
“imposed” it. In the following, we explore the impact of true variability in r as driven
by SGD (using a batch size of 1 for simplicity). The gradient update for r in this case is
δr = −γe(x)h(x). This variability affects the hidden representation only after at least two
gradient steps. Assuming that the readouts are at equilibrium 〈δr〉 = 0, the equation for
the updated hidden representation becomes

〈h2(x
′)〉 = h0(x

′)−γσ2
x

〈
(δr0)(δr0)

>〉W0x
′−γσ2

x

〈
(δr0)r

>
0 (δW0)

〉
x′+P(r0)+O(γ4). (9)

Here δ is the update at the first step of SGD, as before. The second term resembles Eq. (6),
with

〈
(δr0)(δr0)

>〉 replacing
〈
ξξ>

〉
. The third term is an additional cross term that appears

due to dependence between the updates to the initial output weights r0 and the initial input
weights W0. For this equation to indicate compression, the norm of the right hand side must
be less than the norm of h0. While the exact conditions for this to occur are not immediate
from the equation, we here outline a set of assumptions that allow it to be analyzed easily,
and show that compression occurs in this case. Namely, we assume that W0 is a diagonal
matrix, r0 is proportional to a standard basis vector r0 ∝ ek for some k ∈ {1, 2, ..., N}, and
b ∝ r0. With these assumptions, Eq. (9) decouples into scalar equations

(〈h2(x
′)〉)j = αj(h0(x

′))j + P(r0) +O(γ4) (10)

for j 6= k, where αj =
(
1− γ3σ4

x 〈e(x)2〉
(
(W0)

2
jj + ‖r0‖2

))
is smaller than 1 for γ small

enough. Here the w2
jj and ‖r0‖2 factors come from the second and third terms of Eq. (9),

respectively. This reveals that, for γ > 0 small enough and under the simplifying assump-
tions above, h2 is on average reduced in all directions orthogonal to the readout by the noise
generated by SGD weight updates.

This equation yields some insights. For one, the effect of compression is of order γ3, which
indicates that the effect may be relatively weak for single-layer networks. For another, the
compression depends directly on e(x)2, so that a network that reduces the error very quickly
may not compress as much. The term

(
(W0)

2
jj + ‖r0‖2

)
shows dependence of compression

on the magnitude of the initial parameters.
This simplified analysis gives intuition for how SGD can lead to representations in which

each class of input is mapped into a tightly clustered set. This, in turn, gives rise to an
overall dimension for the representation that is close to the number of classes – a dimension
that is typically dramatically compressed when compared with the input data itself (see
Fig. S3 for simulations showing dependence of dimensionality on the number of classes).
To further support our hypothesis of SGD as a mechanism driving compression, in Fig. S5
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we compare the dimensionality compression of our RNN model across two cases: using full
batches and using a batch size of one. We find that for mean squared error loss the RNN
model only compresses dimensionality with minibatching the minibatching. However, both
batch sizes cause dimensionality compression in the case of categorical cross entropy loss
combined with tanh nonlinearity, indicating that additional mechanisms could be at play.

CONCLUSIONS AND DISCUSSION

RNNs learn to perform rich operations on their inputs, including expanding and com-
pressing their dimensionality in order solve classification tasks with efficient, compact rep-
resentations. This behavior relies on the interplay of learning rules with network dynamics.
We explore this in two regimes: edge-of-chaos and strongly chaotic dynamics.

Networks in both regimes strongly compress high-dimensional inputs – i.e., those that
are initially linearly separable – into distinct sets, one for each class. This behavior also
occurs when classifying MNIST (Fig. S4), and has recently been observed in deep networks
[12, 49]. We develop mathematical reasoning for why this compression occurs: a linear
approximation reveals how SGD itself naturally promotes compression of points belonging
to the same class. The compressed representations can arise either from the formation of
stable fixed points (for networks initially at the edge of chaos) or relatively low-dimensional
chaotic attractors (for networks in the strongly chaotic regime). This has implications for
coding: networks that are stabilized by training learn to solve the task for all time while
networks that remain chaotic partially “reset” after the evaluation period. The former may
lend itself to long-term memory; the latter could be useful in flexibly learning new tasks.

In the case of low-dimensional inputs, we observe differences depending on degree of
chaos. Networks initialized on the “edge of chaos” lack an effective mechanism for form-
ing high-dimensional representations, and do not achieve linear separability as a result [13].
Highly chaotic networks, on the other hand, naturally expand dimensionality. The beneficial
attributes of dimensionality expansion has been explored in feed-forward models such as ker-
nel learning machines [52] and models of olfactory, cerebellar, gustatory, and visual circuits
[3, 5, 8, 39, 43, 46, 57], as well as reservoir computing models where recurrent weights are
random and untrained [35].

On the other hand, studies have also pointed out the need to constrain dimensionality
to enable generalization [18, 35, 57]. We find that SGD balances the expansion induced by
chaos with compression through training, resulting in representations that are both linearly
separable as well as compact at the readout time, coinciding with good generalization prop-
erties. In the most striking cases (Fig. 2e), strongly chaotic networks initially expand, and
then compress dimensionality. In the extreme case of spatially localized inputs constrained
to two neurons, the strongly chaotic network typically only expands dimensionality, with-
out subsequently compressing it, seemingly with some cost to generalization; still, the ED
remains small relative to the size of the network.

In all of these cases, strongly chaotic networks produce ongoing neural variability, a
property shared by biological models of neural circuits [24, 30–32, 38, 44, 45, 51, 59] as
well as experimental recordings [40, 45, 56]. Our findings suggest that internally generated
variability plays a functional role in neural circuits and can add both biological realism as
well as computational power to artificial network models.

A clear need for the future is the consideration of a wider range of tasks (c.f. [14]). Also
needed is a more complete study a range of input dimensions as well as higher-dimensional
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outputs specified by more than two class labels. For a start, we have found that in the
case of high-dimensional inputs, the number of class labels strongly modulates the readout
dimensionality of the trained RNN, while the number of input clusters does not (Fig. S3).
In addition, it remains to extend theoretical arguments for compression induced by SGD to
the full nonlinear, recurrent network trained over many samples from multiple classes, and
to prove explicitly that this compression results in a reduction of the dimensionality of the
network response to inputs. Lastly our results should be generalized to different learning
frameworks and models with learning rules other than SGD (see [25] for the case of deep
networks trained by an unsupervised learning rule).

Taken together, we find that RNNs learn to balance compression with the natural expan-
sion induced by chaos in a way suitable to the task at hand. These findings invite the further
exploration of learning strategies through the lens of modulating dimensionality. The obser-
vation that SGD naturally promotes dimensionality compression sheds light on its surprising
success in generalizing well (see also [2, 29, 36, 53, 54]). Our observations of compressed
geometry of learned representations are closely related to prior work on their compressed
information and allied generalization bounds [53, 54]. Our findings also lend support for
the hypothesis that low-dimensional representations in the brain arise naturally from synap-
tic modifications driven by learning, and highlight a scenario where chaotic variability and
salient low-dimensional structure synergistically coexist (cf. [24, 30, 31, 44]).

METHODS

(See Supplemental Information for more details.)

Model

We consider a recurrent neural network (RNN) model with one hidden layer trained to
perform a delayed classification task (Fig. 1). The equation for the hidden unit activations
ht is

ht = tanh
(
Wht−1 + xt + bin

)
(11)

where W is the matrix of recurrent connection weights, xt is the input, and bin is a bias
term. The network is initialized to have zero activation, h−1 = 0. The output of the network
is

ot = W outht + bout.

The output o = oteval at the evaluation timestep teval = 10 is converted to a scalar error
signal via a categorical cross-entropy loss function. This loss is used to update the recurrent
weights W and the output weights W out via SGD.

Inducing Chaos

We initialize W as W = (1 − ε)I + εJ where ε = .01 ensures smooth dynamics before
training. The matrix J has normally distributed entries that scale in magnitude with a
coupling strength parameter γ, Jij ∼ N (0, γ2/N). We investigate two dynamical regimes,
“edge of chaos” and “strongly chaotic”, with gain strength γ = 20 and γ = 250, respectively.
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Appendix: Theoretical arguments for compression

Here we show the full steps of the derivation of the compression caused by stochastic
gradient descent. The model again is that of a single-layer linear network, with internal
neural activations responding to a single input sample x given by h(x) = Wx + b, and a
scalar output by ô(x) = r>h(x). In the following, we assume that x has zero mean and
covariance σ2

xI. We consider a squared error loss function `(x) = 1
2
e(x)2, where e(x) =

ô(x)− o(x) and o maps the input x to its corresponding class label. The gradient descent
learning updates over a batch of input samples B are:

δW = − γ

|B|
∑
x∈B

∂`(x)

∂W
= − γ

|B|
∑
x∈B

e(x)rx>, (A.1)

δb = − γ

|B|
∑
x∈B

∂`(x)

∂b
= − γ

|B|
∑
x∈B

e(x)r (A.2)

δr = − γ

|B|
∑
x∈B

∂`(x)

∂r
= − γ

|B|
∑
x∈B

e(x)h (A.3)

Here γ is the learning rate for the gradient descent routine and rx> is the outer product of
r and x.

Let hk, and ek denote the hidden representation and error after k steps of gradient
descent, respectively, and similarly for parameters Wk, bk, and rk. The goal is to compute
the hidden representation h2(x) after two steps of SGD and show that it is compressed
when compared with the original hidden representation h0(x). For SGD with batch size
one, on each step of the gradient descent routine an input sample is chosen randomly to
use for backpropagating error and updating parameters. Let x0 and x1 denote the input
chosen on the first and second steps of SGD, respectively. As is the usual assumption,
we choose x0 and x1 independently. Let ∇k

θ`(x) denote the gradient of ` with respect to
parameter θ evaluated at input x and at the parameter values at step k of SGD (that is,
parameters Wk, bk, and rk). The parameter updates at the first step are then given by
−γ∇0

W `(x0) = −γe(x0)r0x
>
0 , −γ∇0

b`(x0) = −γe(x0)r0, −γ∇0
r`(x0) = −γe(x0)h0(x0) and

at the second step by−γ∇1
W `(x1) = −γe(x1)r1x

>
1 , −γ∇1

b`(x1) = −γe(x1)r1, −γ∇1
r`(x1) =

−γe(x1)h1(x1). Note that the gradient on the second step depends on the value of the
parameters after the first step of gradient descent.

The hidden representation on the second step is h2(x) = W2x+b2. The parameters W2

and b2 are related to their initial values via

W2 = W1 − γ∇1
W `(x1) = W0 − γ∇0

W `(x0)− γ∇1
W `(x1) (A.4)
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and
b2 = b1 − γ∇1

b`(x1) = b0 − γ∇0
b`(x0)− γ∇1

b`(x1). (A.5)

The relationship between h2(x) and h0(x) is then given by

h2(x) = W2x+ b2

= (W0 − γ∇0
W `(x0)− γ∇1

W `(x1))x+ b0 − γ∇0
b`(x0)− γ∇1

b`(x1)

= h0(x)− γ∇0
W `(x0)x− γ∇1

W `(x1)x− γ∇0
b`(x0)− γ∇1

b`(x1) (A.6)

where in the last equation we grouped h0(x) = W0x+b0. Our goal is to relate everything in
Eq. (A.6) to initial parameter values. This is straightforward for the gradients ∇0

W `(x0) and
∇0
b`(x0): in particular, note that these terms are aligned with r0. We will not be needing

to consider terms proportional to r0 for this analysis, so we collect these terms together.
For convenience, suppose that P is the orthogonal projector onto the nullspace of r0 and let
P(r0) denote any quantity that is mapped to zero by this projector (this notation functions
similarly to “big O” notation). Examples of objects that are P(r0) are vectors proportional
to r0 and matrices of the form r0v

>. Then h2(x) can be written

h2(x) = h0(x)− γ∇1
W `(x1)x− γ∇1

b`(x1) + P(r0) (A.7)

Our next step is to average h2(x) over choice of x0 and x1. This results in the expression

〈h2(x)〉 = h0(x)− γ
〈
∇1
W `(x1)

〉
x− γ

〈
∇1
b`(x1)

〉
+ P(r0).

We first assume that the bias is at equilibrium, i.e.
〈
∇k
b`(x)

〉
x

= 0. This leaves us with the
expression

〈h2(x)〉 = h0(x)− γ
〈
∇1
W `(x1)

〉
x+ P(r0). (A.8)

We next focus our attention on computing ∇1
W `(x1). This update is

∇1
W `(x1) = −γe1(x1)r1x

>
1 = −γ

(
r>1 (W1x1 + b1)− o(x1)

)
r1x

>
1 .

Substituting W1 = W0 − γ∇0
W `(x0), r1 = r0 − γ∇0

r`(x0) and b1 = b0 − γ∇0
b`(x0) and

simplifying results in the expression

∇1
W `(x1) = −γe1(x1)∇0

r`(x0)x
>
1

+ γ2r>0 ∇0
b`(x0)∇0

r`(x0)x
>
1

+ γ2r>0 ∇0
W `(x0)x1∇0

r`(x0)x
>
1

+ γ2∇0
r`(x0)

>h0(x1)∇0
r`(x0)x

>
1 )

+ P(r0) +O(γ3)

To simplify this expression, we collect terms of order O(γ3) and again collect terms aligned
with r0. This simplification results in

∇1
W `(x1) = −γe1(x1)∇0

r`(x0)x
>
1

+ γ2r>0 ∇0
b`(x0)∇0

r`(x0)x
>
1

+ γ2r>0 ∇0
W `(x0)x1∇0

r`(x0)x
>
1

+ γ2∇0
r`(x0)

>h0(x1)∇0
r`(x0)x

>
1

+ P(r0)x
>
1 +O(γ3)
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Now we compute the average of this update, 〈∇1
W `(x1)〉. This is〈

∇1
W `(x1)

〉
= −γ

〈
e1(x1)∇0

r`(x0)x
>
1

〉
+ γ2

〈
r>0 ∇0

b`(x0)∇0
r`(x0)x

>
1

〉
+ γ2

〈
r>0 ∇0

W `(x0)x1∇0
r`(x0)x

>
1

〉
+ γ2

〈
∇0
r`(x0)

>h0(x1)∇0
r`(x0)x

>
1

〉
+
〈
P(r0)x

>
1

〉
+O(γ3)

To proceed, we assume that the output weights are at equilibrium, i.e. 〈∇0
r`(x)〉x = 0.

This removes the first term from the expression for 〈∇1
W `(x1)〉. Furthermore, we assume

that the input is mean zero and isotropic with variance σ2
x, so 〈x〉 = 0 and

〈
xx>

〉
= σ2

xI.
Using these assumptions below, along with some rearranging, we find that the input weight
updates satisfy 〈

∇1
W `(x1)

〉
= −γ

〈
e1(x1)

〈
∇0
r`(x0)

〉
x>1
〉

+ γ2
〈
r>0 ∇0

b`(x0)∇0
r`(x0)

〉 〈
x>1
〉

+ γ2
〈
r>0 ∇0

W `(x0)x1∇0
r`(x0)x

>
1

〉
+ γ2

〈
∇0
r`(x0)

>h0(x1)∇0
r`(x0)x

>
1

〉
+
〈
P(r0)x

>
1

〉
+O(γ3)

= γ2
〈
r>0 ∇0

W `(x0)x1∇0
r`(x0)x

>
1

〉
+ γ2

〈
∇0
r`(x0)

>h0(x1)∇0
r`(x0)x

>
1

〉
+
〈
P(r0)x

>
1

〉
+O(γ3)

= γ2
〈
∇0
r`(x0)r

>
0 ∇0

W `(x0)
〉 〈
x1x

>
1

〉
+ γ2

〈
∇0
r`(x0)∇0

r`(x0)
>〉 〈h0(x1)x

>
1

〉
+
〈
P(r0)x

>
1

〉
+O(γ3)

= γ2σ2
x

〈
∇0
r`(x0)r

>
0 (∇0

W `(x0))
〉

+ γ2
〈
∇0
r`(x0)

(
∇0
r`(x0)

)>〉 〈
h0(x1)x

>
1

〉
+
〈
P(r0)x

>
1

〉
+O(γ3)

Regarding the term with
〈
h0(x1)x

>
1

〉
, we compute that〈

h0(x1)x
>
1

〉
=
〈
(Wx1 + b0)x

>
1

〉
= W

〈
x1x

>
1

〉
= σ2

xW . (A.9)

This leaves us with the expression〈
∇1
W `(x1)

〉
= γ2σ2

x

〈
∇0
r`(x0)r

>
0 (∇0

W `(x0))
〉

(A.10)

+ γ2σ2
x

〈
∇0
r`(x0)∇0

r`(x0)
>〉W

+
〈
P(r0)x

>
1

〉
+O(γ3)

Substituting this expression for 〈∇1
W `(x1)〉 into Eq. (A.8) and simplifying results in

〈h2(x)〉 = h0(x) (A.11)

− γ3σ2
x

〈
∇0
r`(x0)∇0

r`(x0)
>〉W0x

− γ3σ2
x

〈
∇0
r`(x0)r

>
0 ∇0

W `(x0)
〉
x+ P(r0) +O(γ4).
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This is a full reduction of the behavior of the representation after two SGD steps in task-
irrelevant directions orthogonal to the readouts, up to order O(γ4), under mild assumptions
on the input (mean zero and isotropic) and on the gradients of the output and bias weights
(that they are in equilibrium). While a systematic analysis of Eq. (A.11) is desirable, in
this work we instead make strong simplifying assumptions that make the equation easy to
analyze. The assumptions we make are: (1) W0 is diagonal, (2) r0 ∝ ek is proportional to
a standard unit vector ek, the vector of all zeros except for a one in the kth entry, for some
k ∈ {1, 2, ..., N}, and (3) b0 ∝ r0. Let’s assume without loss of generality that r0 ∝ e1.

We first address the second term in Eq. (A.11) by computing〈
∇0
r`(x0)(∇0

r`(x0))
>〉 = W0

〈
e(x0)

2x0x
>
0

〉
W>

0

+
〈
e(x0)

2W0x0

〉
b>0 x.

+
〈
e(x0)

2b0x
>
0

〉
W>

0

+
〈
e(x0)

2
〉
b0b

>
0

+ P(r0).

We first deal with the second term of the above expression. Note that by assumptions
(1)-(3), e(x0) = r>(W0x0 + b0) − o(x0) depends only on the first coordinate of x0. Since
〈x0〉 = 0, it follows that 〈e(x0)

2W0x0〉 ∝ e1 ∝ r0. The third and fourth terms are also
proportional to r0 by assumption (3). Hence〈

∇0
r`(x0)(∇0

r`(x0))
>〉 = W0

〈
e(x0)

2x0x
>
0

〉
W>

0 + P(r0).

We now finish computing the second term of Eq. (A.11) under assumptions (1)-(3). Using
again that e(x0) depends only on the first coordinate of x0, as well as the fact that the
distinct coordinates of x0 are independent, it’s straightforward to show that

W0

〈
e(x0)

2x0x
>
0

〉
W>

0 W0x =
〈
e(x0)

2
〉
σ2
xW0W

>
0 W0x+ P(r0).

Hence〈
∇0
r`(x0)(∇0

r`(x0))
>〉W0x = W0

〈
e(x0)

2x0x
>
0

〉
W>

0 W0x+P(r0) =
〈
e(x0)

2
〉
σ2
xW0W

>
0 W0x+P(r0).

(A.12)
Calculations for the third term of Eq. (A.11) follow a similar flow, resulting in〈

(∇0
r`(x0))r

>
0 (∇0

W `(x0)
〉
x = σ2

x ‖r0‖
2 〈e(x0)

2
〉
W0x+ P(r0). (A.13)

Substituting Eq. (A.13) and Eq. (A.12) into Eq. (A.11) results in

〈h2(x)〉 = h0(x)

− γ3σ4
x

〈
e(x0)

2
〉
W0W

>
0 W0x

− γ3σ4
x‖r0‖2

〈
e(x0)

2
〉
W0x+ P(r0) +O(γ4).

Note that our assumption (3) that b0 ∝ r0 implies thatW0x = h0(x)+P(r0). Furthermore,
since r0 ∝ e1 by assumption (2) and W0 is diagonal by assumption (1), it follows that
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W0W
>
0 b0 ∝ e1 so that W0W

>
0 (W0x+ b0) = W0W

>
0 W0x+ P(r0). Hence

〈h2(x)〉 = h0(x)

− γ3σ4
x

〈
e(x0)

2
〉
W0W

>
0 W0x

− γ3σ4
x‖r0‖2

〈
e(x0)

2
〉
W0x+ P(r0) +O(γ4)

= h0(x)

− γ3σ4
x

〈
e(x0)

2
〉
W0W

>
0 h0(x)

− γ3σ4
x‖r0‖2

〈
e(x0)

2
〉
h0(x) + P(r0) +O(γ4)

=
(
I − γ3σ4

x

〈
e(x0)

2
〉

(W0W
>
0 + ‖r0‖2I)

)
h0(x) + P(r0) +O(γ4)

This shows that for γ small enough, the hidden representation is scaled by a positive constant
less than one in the directions orthogonal to r0. This shows that the representation is
compressed.
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