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Abstract4

Human tool use prowess distinguishes us from other animals. In many scenarios, a human is5

able to recognize objects, seen for the first time, as potential tools for a task, and use them without6

requiring any learning. Here we propose a framework to enable similar abilities in robots. We7

first characterized human tools to identify a special category of tools that humans are able to use8

immediately through a process of skill transfer from their limbs, rather than tool learning. Motivated9

by the tool characterization and our neuroscientific studies on human tool use and embodiment,10

we then developed a tool cognition framework that enables a robot to recognize a previously unseen11

object as a tool for a task, plan how to grasp and wield the tool in the face of constraints and obstacles,12

before finally performing the task with the tool. Furthermore, the framework allows for flexibility in13

tool use, where the same tool can be adapted for different tasks, and different tools for the same task,14

all without any prior learning or observation of tool use. We demonstrate the possibilities offered by15

our tool cognition framework in several robot experiments with both toy and real objects as tools.16

1 Introduction17

In his seminal work on apes in the early 1900s, Wolfgang Koehler wrote about his tool-using chim-18

panzee:“When the bananas are hung out of reach on the smooth wall of the house, he (the chimpanzee)19

takes a green plant –stalk, then a stone, a stick, a straw, his drinking bowl, and finally a stolen shoe, and20

stretches up towards the fruit; if he has nothing else at hand, he takes a loop of the rope to which he is21

attached and flaps it at the bananas” [1].22

The reason this account of the chimpanzee amazes us is that we realise that the chimpanzee could23

recognize objects around it as potential reaching tools, just like a human would. But how do humans and24

the chimpanzees do this? How can we intuitively recognize and use objects in our environments as tools25

to accomplish tasks? Similar tool cognition can be of tremendous benefit for robots, and enable them to26

become truly autonomous and successful in unstructured environments.27

For this reason, several studies have attempted to develop tool use in robots. However, first time28

tool use is popularly seen as a learning problem in robotics, where a robot learns the movements and29

strategies possible with a tool by exploration [2]-[10], or demonstration/observation [11, 12, 13], similar30
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to the learning of tasks without tools. On the other hand, humans often use objects immediately as tools,31

without requiring to learn how to use them (from scratch). When a coin rolls under the sofa, you are able32

to intuitively recognize an elongated object like a cricket bat, that you may have never seen before, as a33

potential tool to retrieve the coin. And are also able to pick it up and immediately use it as such.34

Arguably, to perform this tasks, we utilize the knowledge we have accumulated about the task from35

our previous skills with and without tools. Again previous studies have suggested tool affordance learn-36

ing [14]-[17] or transfer learning [18, 19, 20, 21, 22, 23, 24, 25, 26, 27] to utilise learning from some37

instances of tools, before extending to other tools. However, here we show that even this is not required38

for a large category of tools. We propose a tool cognition framework that enables robots to use tools39

with absolutely zero previous experience in tool use or tool use observation. It allows robots to extend40

their prior skills without tools for both, recognizing as well as using previously unseen objects in their41

environments as tools, without any new learning.42

The first intuition for our tool cognition framework was derived our recent characterization of human43

tools into 3 categories [30] depending on the tasks they serve and the actions required to use them.44

We proposed as Category I tools, tools which help amplify/augment kinematic or dynamic features45

of functions that are already in a human individual’s repertoire (that is, functions he/she is able to perform46

without the tools). And furthermore, these tools require an individual to perform the same general action47

with the tool as that without. Category I tools include tools like hammers, rakes and tongs. A hammer48

enables a human to hit a wooden board, something he can do without tools, and with his fist. Furthermore,49

using a hammer requires an individual to make the same hitting action with his arm, as that when using50

his fist. Similarly, a rake is used for reaching, something a human can already do with his arm, and51

using a rake requires him/her to perform a reaching action with his/her arm as performed without the52

rake (though he may adjust is reach to rake’s shape). Another case in point: a tong helps a human lift up53

hot or distant objects, an while he has to hold the tongs in his hand and adjust for its length, using a tong54

also requires a pinching action, something a human would have used to pick up the objects with his/her55

bare hands.56

This is not so for Category II tools, which include tools like a traditional bow drill, a car jack or a57

power hammer. These tools augment functions in a human’s repertoire (poking, lifting or hammering58

respectively), but using these tools requires an individual to make actions different from what he/she59

would have performed to achieve the same functions without the tool. For example, poking/drilling using60

a bow drill does not require one to produce a poking action with his/her arm, but to-and-fro movements61

instead; lifting a car with a car jack does not require an individual to produce a lifting action, but rather62

a pumping/rotary action with his hand.63

Finally, Category III tools provide new functions that a human cannot perform without a tool. These64

include most modern tools ranging from a vacuum cleaner and chain saw, to computers.65

Interestingly, note that all the tools that humans are able to use immediately are Category-I tools. We66

can intuitively recognize and use a stick as a rake, or tongs to pick up objects. Our previous examples of67

using a cricket bat, paper sheet and the tree branch are also examples of Category I tools, which (augment68

but) afford actions that we can do even without the tools, and with actions similar to those when using69

the tools (see Fig. 1a). This intuitiveness is however, visible to a lesser extent with Categories II and III70

tools. A person who has never seen a bow drill will not be able to immediately use it. He would have71

explore and learn how to use it. Similarly, a person who has never seen a power hammer (a Category II72

1Please see the supplementary video accompanying this manuscript. Also available online https://youtu.be/gGCAWJ40K6I
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hammering pinching lifting holding

(a) (b)

(c)

Figure 1: (a) Robot tool cognition concept: Note the physical similarity between the hand while perform-
ing a hammering, pinching, lifting and holding task, and the corresponding objects that we recognize as
tools for the same tasks. We propose that robots can compare ‘functionality’ features, crucial for a task,
on their limbs to recognize unknown objects as potential tools for the task. (b) Example of in situ tool
use in which our robot retrieved a distant pail with an object it recognized as a tool, and picked up from
its environment1. The robot had no prior learning with the tool or observation of the tool being used.
(c) Overview of the proposed tool cognition framework enabled by key components comprising func-
tionality feature acquisition, functionality feature detection, and tool augmentation optimization. Grasp
candidates on the tool are assumed to be available in this paper (see e.g. [28, 29] for grasp generation
techniques).

3



tool) or a vacuum cleaner (a Category III tool) will not be able to use it unless he finds out that he needs73

to press a button to start it and learns (either by himself or by reading instructions) what happens when74

the button is pressed.75

The above observations of Category 1 tools enable known tasks with actions one already possesses,76

suggested to us that like humans, robots should be able to utilize available non-tool skills (controllers in77

case of robots) to use Category 1 tools without any learning. But how can robots recognize category 178

tools? The intuition for the answer to this question came from our Neuroscience studies on the issue of79

embodiment.80

In psychology, it is believed that human tool skill stems from their ability to embody tools [31]-[34].81

Our recent investigations of limb and body embodiment by humans have highlighted that the ability of82

our brain to embody an entity is critically dependent on whether the functionality offered by it [35, 36, 37]83

matches that to the limb it replaces. [35]. This result suggests that human’s may recognize embodied84

objects (tools in our case) by comparing the functionally relevant physical features of the object with that85

of their own limb. Correspondingly, here we propose to use the limbs of a robot (or certain features of86

it) as a template to recognize (Category 1) tools for a task (see Fig. 1a).87

Utilizing these intuitions, here our framework proposes the following to enable tool recognition and88

use by robots without any learning.89

We propose (see Fig. 1C) that:90

a) A robot can identify an object as a potential tool for a task by detecting functionality features91

similar to those on the robot’s limbs crucial for performing the same task.92

b) Once recognized, the robot can search for a suitable pair of grasp and functionality feature loca-93

tions using a standard planner in order to optimize the required augmentation to performing the94

task.95

c) It can then update its own kinematic and/or dynamic model (we deal with only kinematic tools in96

this work) to account for the gripped tool and use the tool with the same task controller as without97

tools.98

For illustrative purposes, consider a robot with anthropomorphic hands that can catch a tennis ball in99

its hand. The robot posseses a catching controller to first reach the falling ball, and then ensure that it100

enters into its cupped hands. Then, when catching a volley ball (which it cannot do with its hands), our101

framework enables the robot to acquire and use the shape of its cupped hands (the functionality feature)102

to recognize that a bucket is a tool for catching, even though it may have never seen or used a bucket103

before. The robot can then use the same catching controller, with an updated robot kinematic model (to104

account for the bucket) to catch the volley ball with the bucket, without requiring any learning.105

Taking an example from our experiments, in which our robot uses a reach controller to pull objects106

using its curved (hooked) hand like a rake. When the robot needs to rake in an object beyond its reach, it107

searches for similar curved parts (the functionality for this task) on objects in its environment, and so can108

recognize an umbrella as a rake tool, even though it has never seen it before. The grasp location on the109

umbrella is decided according to how far beyond its reach the object is, while the use of the umbrella is110

enabled by the use of the same reach controller that it already possesses, albeit with updated kinematics111

to account for the umbrella .112

The specific procedures for the acquisition and detection of functionalities is described in Sec. 4.1113

and Sec. 4.2, while results of these procedures are provided below in Sec. 2.1 and Sec.2.2. The procedure114
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pull back push forward lift up on hand

after one 

succesful trial

after 10 

succesful trial

after 20 
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after 40 
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Figure 2: The functionality feature learnt by the robot by pulling objects towards itself (left column),
pushing objects away from its body (center column) and lifting objects on its hand (right column), each
across 1-40 successful trials (rows). The blue volume shows the contact feature representation starting
from a naive prior and updating through successful trials. The red arrow shows the task feature represen-
tation, which is the average direction of the object velocity during the task. The functionality features
have been superimposed on the end-effector image for reference.

utilized to select the grasp, movement plan considering required augmentation, and the final tool execu-115

tion are explained in Sec. 4.3 and Sec. 4.4 respectively, while these results are shown below in Sec.2.3.116

Due to space constraints, a detailed comparison of these procedures to the those proposed in literature, is117

provided in the supplementary materials, while we provide a list of limitations of the framework in the118

discussion section.119

2 Results120

2.1 Functionality Features acquisition from the Robot’s Limb121

Our framework accumulates contact points over successful trials of the task to infer the features of122

the limb crucial for the task, that is, the functionality features. Fig. 2 shows the three dimensional123

functionality features learnt for three tasks. Each task involved 40 successful exploration trials where124

the robot manipulated cubic or cylindrical objects of different sizes (see Sec. 4.1 for experiment details).125

The blue volumes in Fig. 2 show the contact features, represented as 3D voxels superimposed on the126

3D outline of the shape of the end-effector. At the beginning, the entire end-effector is considered to127

represent the functionality feature, but during each successful trial, the robot updates the functionality128

feature by accumulating and analyzing the spatial frequency of the contact points. Eventually, after 40129

successful trials, the crucial contact features required for each task remain on the surface of the limb.Our130
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functionality feature representation consists of the task feature (remaining blue surface) and contact131

features (red arrows), which encode the average direction of the object movement across the 40 trials.132

2.2 Functionality Detection on Objects133

After the functionality features (see Sec. 4.1) required for completing a task have been acquired, the134

robot is able to use them as a visual template to recognize objects that can potentially serve as a tool for135

the same task.136

Results on segmented tool point clouds, computed voxel surfels, detected candidate functionality137

features, and grasp candidates for pushing/raking from Sec. 4.1 are shown in Fig. 3 for a 3D-printed138

L-shaped tool as well as real-world objects. The figure also shows ’lift’ functionalities detected on 2139

dustpans and a frying pan. As seen previously in the functionality learning results (Fig. 2), the lift140

functionality is a surface patch with a direction vector. More examples of functionality detection on real141

objects are shown in Fig. S2 and S3.142

2.3 Planning Grasp and Movement for Augmentation143

From the many candidate functionality features that were detected on a potential tool, we use a Monte144

Carlo Tree Search (MCTS) to find a solution, in terms of a pair of grasp and functionality candidates,145

that provides the required augmentation to satisfy the task goal and constraints while optimizing for146

arm manipulability and configuration changes. Details of the algorithm are explained in Sec. 4.3. To147

demonstrate the tool use enabled by our framework, we first present results for a simulated experiment148

in a 2D world with a 3 degree-of-freedom (DoF) planar robot, followed by real experiment results on a149

10-DoF articulated robot as further validation.150

2.3.1 Simulated Experiment151

The simulated experiment (Fig. 4) involved 3 object pushing tasks, namely direct point-to-point push152

(Task 1), push around an obstacle (Task 2 with the red circular obstacle), and push into a channel (Task153

3). For each task, 3 different tools were available, which the robot observed for the first time, and had to154

choose one to perform the task. The choice was made based on the utility score, which is a measure of155

how well the utility function consisting of a measure of the task error, configuration changes, considering156

the task constraints, are met. Details of the utility score and simulation setup can be found in Sec. 4.3157

and 4.5 respectively.158

The heat maps in the figure is the visualization of the utility scores of all the solution candidates.159

It is observed that the heat maps for Task 1 have a greater density of high scoring regions compared to160

Tasks 2 and 3, whose heat maps are much sparser. This is due to the fact that Task 1 is a relatively easier161

with many feasible combinations of grasp and push locations, and our algorithm chooses the highest-162

scoring combination as the optimal solution. Task 2 and 3, on the other hand, is the most constrained as163

it involves 2 movements that also need to avoid collision with the obstacle, yielding smaller pockets of164

sufficient grasp and push locations pairs. For Task 3, the heat map for Tool 1 has two bands while that165

for Tools 2 and 3 have only a single band (at the top of the heat map). This is because both tips of Tool166

1 can be used to push the object into the channel, while only a particular tip is feasible for Tools 2 and167

3. Though specific in the push location choices, Task 3 offers high flexibility in the choice of where to168
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(a) (b) (c) (d)

Figure 3: Perception of functionality features on objects for a pushing/raking task (top 3 rows) and
a lifting task (bottom 2 rows). (a) Observed object. (b) Segmented point clouds. (c) Voxel surfels
provide local planar approximation of the object surface. (d) Detected functionality features are shown
as red spikes for the pushing/raking task, and red dots/blue patches for lifting. To avoid clutter in the
visualization, functionality candidates are shown simply as red dots representing the center of the circular
patch. Circular patches are shown for representative samples only. Grasp candidates (manually specified)
are shown as blue dots.
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Figure 4: Selection of the best tool for a given task based on optimal utility scores obtained after 3200
MCTS simulations. The heat maps show the utility scores for each task. The robot compared the max-
imum scores for the 3 different tools and chose the tool with the highest maximum score. In the top
row, index labels for the grasp and push functionality candidates are indicated for each tool in blue and
red respectively. For tasks 1-3, black circles represent the target (dotted) and object (solid line) respec-
tively, and large red circles for task 2 represent obstacles. Dotted arrows indicate the desired movement
direction. In the heat maps, warmer colors indicate higher log scores, with red asterisk ‘*’ denoting the
solution with maximum score. Task 2 involves 2 heat maps because a second round of push location
selection is required before the second leg of movement to circumvent the obstacle.

8



grasp the 3 tools, as most of the grasp locations have relatively high scores when matched with the few169

feasible push locations (see also Supplementary figure S1).170

These results show that the proposed framework enables the robot to adapt the use of different tools171

to achieve the same task, as well as, use a same tool for different tasks. Evolution of the heat maps172

with the number of simulations was also studied. We found that (see Supplementary Fig. S6) that with173

sufficient number of MCTS simulations, the optimal solution tends to converge. While the results are for174

a particular combination of task and tool, similar results can be obtained for other combinations.175

2.3.2 Real Experiment176

Further validation of our framework was performed in experiments with a physical robot to perceive,177

recognize and use objects in the real world as tools. Other than 3D-printed tools, we also tested on real178

objects like an umbrella2. Details about the robot and the experiment setup can be found in Sec. 4.6179

The top row of Fig. 5 shows the heat maps and optimized tool augmentation solutions corresponding180

to the tasks shown in Figure 5. It can be seen from the heat maps that the solution regions are sparse181

and concentrated, which reflects the difficulty of finding real world inverse kinematics solutions given182

the joint limits, restricted workspace of the arm, as well as the constrained end effector orientation183

necessitated by the task. The 2D stick diagrams beside the heat maps show the perceived 2D tool outlines,184

the identified optimal grasp and push points on the tools, and the corresponding initial tool pose to push185

the objects (yellow circles) to their respective targets (red circles). This initial tool pose, along with the186

desired final tool pose when the object is at the target, provide the key inputs for robot motion planning,187

before the tool action is finally executed.188

Trials with obstacles were also performed, but not shown here due to space constraints. We provide189

snippets of these trials in the two supplementary videos accompanying this manuscript.190

3 Discussion191

Controllers in robots provide it with skills to achieve specific tasks. Utilizing intuitions from Neuro-192

science studies of human tool use and embodiment, here we propose a framework that can allow a robot193

to immediately transfer this skill to tool-use in the same task. The framework enables robots to recognize194

and utilize tools in the task without requiring any supervised tool learning, which has been the norm with195

all robot tool affordance and tool-use frameworks in literature.196

We believe the tool use capability provided by our framework can provide robots with the ability to197

be innovative and autonomous in unstructured environments where obstacles can impede the completion198

of a task (see Supplementary Table S1 for comparison with existing work). However, to understand the199

full scope of the framework, its also important to understand its limitations, which we discuss below.200

First, this framework was designed to enable robots to recognize and use specifically Category I201

tools. This will allow it to use available objects as tools for tasks it knows. To use Categories II and202

III tools, which mostly include man-made devices, the robot needs to experience and learn them, using203

techniques such as those previously suggested [6, 12, 13]. Learning can of course also aid the use of204

Category 1 tools and hence techniques of tool learning and tool skill transfer may be used in addition to205

our framework to further innovate robot tool use.206

2Please see videos accompanying this manuscript. Also available online at https://youtu.be/yCgocGncPrg
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Figure 5: Snapshots of real robot performing (a) forward push using an L-shaped tool, (b) sideways push
using the same L-shaped tool, and (c) backwards pull using a real umbrella. The robot first perceived the
scene and, on determining that the task was infeasible with its end effector, turned to the tool rack. After
selecting the optimal pair of grasp and functionality candidates on the previously unseen tool, it used the
tool to complete the push task with both torso and arm motion. The chosen solution is shown as a ’*’ on
the heat map, while the kinematics corresponding to the chosen solution is shown adjacent to the heat
map.
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Second, our framework proposes to recognize the functionality and augmentation in objects using207

vision. This limits the current implementation to the recognition of tools that extend the kinematic abil-208

ities of robots. To use dynamic augmentation tools like a hammer, a robot has to recognize its dynamic209

properties, like its mass, which is not directly possible through vision. Future work on developing visuo-210

dynamic association, to enable a robot to associate textures and shape to mass for example, can enable211

extension of our framework to identify and utilize tools that provide dynamic augmentations.212

In any case, our proposed framework is heavily reliant on 3D visual perception for the recognition213

of a tool, and the visual abilities of the robot are the third and probably the single most critical constraint214

for the use of the framework. In the current manuscript, we proposed to use a voxel surfel representation215

and point-pair feature matching as a means of recognizing functionality features on tools (Sec.4.2), but216

optimizing this technique for tool recognition is not the focus of this manuscript. Robot tool recognition217

can potentially be improved in the future by using more sophisticated 3D template matching techniques218

such as [38, 39, 40].219

Similarly, our functionality learning algorithm can also be improved. In the current study we provide220

an ‘object-independent’ functionality learning algorithm that is specific for manipulation tasks. This221

method enables a robot to identify tools that are valid for a particular manipulation of all (or maxi-222

mum) objects. On the other hand, this method can miss tools that are valid only for specific objects.223

Functionality learning can be optimized separating task specific (object independent) and object specific224

functionality learning. This can help expand the repertoire of tools a robot can recognize and use.225

Although our current functionality learning, being studied in simulation, has performed robustly in226

limited real experiments, it may encounter sim-to-real issues in other varied and complex scenarios. To227

improve robustness in real applications, techniques that randomize dynamics in simulation (e.g. [41]) is228

a promising avenue for future investigation.229

Finally, While many animals (including apes, crows, jays, elephants among others) have been doc-230

umented to be able to use tools [42], only apes and New Caledonian crows are known to able to make231

tools [43, 44, 45]. Inspired by the tool shaping ability of New Caledonian crows, we conjecture that our232

framework can be extended to at least rudimentary tool-making. We provide the video and explanation233

of the first preliminary tool making experiment in the supplementary materials.234

4 Materials and Methods235

Our tool cognition framework (Fig. 1c) consists of 3 key components, namely i) functionality feature236

learning (sans tools), ii) functionality feature detection on previously unseen tool, and iii) tool augmenta-237

tion optimization, which work together to enable a robot to recognize and use a tool without any previous238

experience on the tool itself. During a ‘development’ stage, the robot builds its skill repertoire by ac-239

quiring functionality features of different tasks with its limbs. Subsequently, when faced with a known240

task that needs a tool, the robot detects task-relevant functionality features on a tool, and then optimizes241

the tool grasp and endpoint locations to achieve the required augmentation. Finally the robot motion is242

planned and performed with an incremental update of the end effector kinematics with the tool in hand.243

Grasp planning/generation is not studied in this paper, but interested readers can refer to [28, 29] for244

related techniques.245
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4.1 Acquiring Functionality Features246

Functionality features relevant to an object manipulation task can be acquired by performing the task247

with the robot’s limb only (without any tools). In this paper, a simulated model of the Olivia III robot248

(Figs. 6a,6b) was used to perform object manipulation trials, using its right arm end effector, in ROS249

Gazebo environment. Contact sensors covering the end effector were activated (using Gazebo contact250

sensor plugin) to register contact points with the object. Data of the contact positions on the robot end251

effector was collected at 100Hz from the start to end of each manipulation motion. Then, the batch of252

data for each task was used to acquire the functionality features F for the task, which will be used as a253

template/model for finding similar features on a potential tool.254

We considered single-hand manipulation tasks which included pushing and lifting of objects. For the255

pushing task, the environment consisted of a tabletop in front of the robot, and an object on the tabletop.256

The robot was required to manipulate the object over a distance of 10cm in 3 different directions: north,257

west, and south. For northward pushing (Fig. 6a), the robot spread its fingers and pushed the object258

with the inside of its palm. For westward (Fig. 6b) and southward sliding, the robot used the side of259

its palm. This push style was a priori knowledge given to the robot before acquiring the functionality260

features. For each direction, the robot performed 60 trials, with random initial object position (uniformly261

distributed about nominal position with 2cm maximum deviation in x and y directions). For the lifting262

task, an object is supported on a flat upward-facing surface of the robot’s hand, and moved upwards by263

10cm. That the flat upward-facing surface was chosen was a priori knowledge given to the robot. Both264

cylindrical and cubic objects of random sizes varying from 2cm to 8cm were used.265

The main idea for acquiring functionality features is to use accumulated limb-object contacts during266

successful task performance to update the functionality feature model iteratively, starting with the entire267

limb as an initial model. Details of the algorithm are described in the following.268

Let B = {b(ix, iy, iz)}, O = {o(ix, iy, iz)}, and C = {c(ix, iy, iz)} be voxel representations of the269

robot’s limb, manipulated object, and limb contact points, respectively, where (ix, iy, iz) are the voxel270

coordinates with respect to a reference frameOB on the limb. For simplicity, we define the manipulation271

task by the error vector T = ptar − pobs between the initial object position pobs and the target position272

ptar. Let the robot try to learn the task T over N movement trials.273

Define the functionality feature as F = {Ft, Fc}, consisting of task feature Ft and contact features274

Fc. The task feature captures information about the manipulation task requirement, and is specified by275

Ft = T/∥T∥, the normalized direction vector between the object and the target, originating from F̄c,276

the centroid of the contact points in the learnt contact feature Fc. The contact feature Fc are the points of277

contact between limb and object during a successful execution of the task manipulation.278

The total set of accumulated contact points is given by:279

CN = {cN (ix, iy, iz)} =
N⋃
k=1

nk⋃
j=1

B ∩Ok
j (1)

where nk is the number of time steps in the kth trial, and Ok
j the object voxel representation, with respect280

to reference frame OB on the limb, at the jth time step during the kth trial.281

Let SN
µ (r) be the voxel representation of a sphere of radius r about a voxel µ = (µx, µy, µz) if the282
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N th trial is successful, i.e.283

SN
µ (r) = {sNµ (ix, iy, iz, r)}

sNµ (ix, iy, iz, r) =

{
1 if

√
(ix − µx)2 + (iy − µy)2 + (iz − µz)2 ≤ r and N th trial successful,

0 otherwise
(2)

Through exploration of the task with its limb, the set of contact features after N trials is obtained as284

the intersection of limb voxels B and spheres centered on accumulated contact voxels Sµ, as follows:285

FN
c =

⋃
µ∈ΩN

C

SN
µ (rN )

⋂
B (3)

where ΩN
C = {ix, iy, iz | cN (ix, iy, iz) = 1} is the set of voxels that registered at least one contact over286

the N trials, and rN is a contracting sphere radius given by287

rN =

{
max(0, θ − γ nC) if rN > rmin

rmin otherwise
(4)

which decreases with the total number of accumulated contact points nC =
∑
ix

∑
iy

∑
iz

CN (ix, iy, iz), and288

θ, γ are positive constant parameters that determine the learning rate.289

After the contact feature is learnt, a reference frame for the functionality feature F is placed at F̄c, the290

centroid of the contact points, so that it can be used as a template to search for functionality candidates291

on a potential tool. To allow generalization of this learnt feature representation to different object sizes,292

we multiply a scaling constant ks for manipulating any new object:293

Fc,new = ksFc,learnt (5)

where294

ks =
A⊥(Onew, Ft)

Ā⊥(Onew, Ft)
(6)

with A⊥(Onew, Ft) the area of the projection of object Onew on a plane perpendicular to Ft, and295

Ā⊥(Onew, Ft) the average projection from the trained objects. For example, the functionality features296

learnt from interacting with a tennis ball with the limb can be scaled up to recognize a potential tool for297

interacting with a basketball, by using the ratio of projected object area estimated by visual perception.298

4.2 Detecting Functionality Features299

To find a potential tool which can perform the specified task, tool surfaces need to be examined for300

the required functionality features. In this paper, we use voxel surfels, originally proposed in [46], to301

rapidly perform visualization and meshification of point clouds with the advantages of reduced data size302

and faster processing speed compared to point clouds. We simplify the voxel surfel representation by303

dividing the 3D space into a set of non-overlapping voxels V = {vi, i = 0, ...1} with dynamic voxel size304

[vx, vy, vz]. Then, a voxel surfel is described by the set:305

νi = {ωi, ηi, ξi} (7)
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where ωi is the centroid of all points in the voxel, ηi the normal of the dominant plane, and ξi a measure306

of flatness for the dominant plane. Essentially, the voxel surfels are locally linear approximations of the307

object surface.308

Based on the voxel surfel representation, we detect functionality features on the tool by using point-309

pair features (PPF) [47], which has been found to be efficient, accurate and robust for 3D object matching310

[48]. We construct a PPF vector from a pair of voxel surfels νi, νj as follows [47]:311

Pij = [∥dij∥, ∠(ηi, dij), ∠(ηj , dij), ∠(ηi, ηj)] (8)

where dij = ωj −ωi. We form global descriptors, for the functionality feature template F , as the full set312

of PPFs {Pf
ij}, and a hash table Hf that quantizes PPFs such that similar PPFs share the same key (see313

Algorithm 1). The same is done for the tool candidate to obtain {Pt
ij} and Ht. Then, the template PPFs314

are compared with PPFs for each voxel surfel on the tool. For every matched hash table key, a ‘local315

transformation’ α that maps (ωf
i , ω

f
j ) to (ωt

i , ω
t
j) is obtained by solving [47]:316

ωt
j = Tt→gRx(α)Tf→gω

f
j

Tt→gη
t
i = Tf→gη

f
i = [1, 0, 0]T (9)

where Rx(•) is the rotation matrix about the x-axis of a reference frame g. A vote is cast for the ‘local317

coordinate’ (νtm, α) in a discrete accumulator space. The most-voted local transformation α∗ within the318

set of matched template PPFs Ωm is then used to form a hypothesis, which is checked by applying α∗319

to other voxel surfels in Ωm. If the hypothesis is not rejected, then a functionality feature is detected320

at tool voxel surfel νt∗. The above procedure for detecting functionality features on a tool candidate is321

summarized in Algorithm 2.322

Algorithm 1 Generating global descriptors for functionality template
Input: Functionality template F
Output: Global descriptors: point pair features Pf and hash tableHf

1: Compute set of voxel surfels for F , {νfi }i=1,...,Nf
, from (7)

2: CreateHf with discrete cells covering a range of distance and angle values between point pairs
3: for i = 1 to Nf do
4: for j = 1 to Nf do
5: if i == j then continue
6: Compute Pf

ij for νfi and νfj based on (8)

7: Place Pf
ij in the corresponding cell inHf and register its key

8: return Pf andHf

4.3 Optimizing Tool Augmentation323

We formulate the tool augmentation optimization problem as follows. Define the functionality pose as324

the position and orientation of the patch on the tool surface that contacts the object in order to perform325

the task. Let the forward kinematics of the arm be X = f(q), where q is the vector of arm joint angles,326
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Algorithm 2 Detecting functionality features on a tool candidate
Input: Tool point cloud Ct. Functionality template global descriptors (Pf ,Hf ) and voxel surfels
{νfi }i=1,...,Nf

Output: T = {νt∗, α∗}: list of tool voxel surfels νt∗ with the required functionality features, along with
the corresponding transformations αt

∗
1: set T = ∅
2: Compute tool voxel surfels {νti}i=1,...,Nt from Ct and (7)
3: CreateHt with discrete cells covering a range of distance and angle values between point pairs
4: for i = 1 to Nt do
5: for j = 1 to Nt do
6: if i==j then continue
7: Compute point pair feature Pt

ij from νti , ν
t
j and (8)

8: Place Pt
ij in the corresponding cell inHt and register its key

9: Ωm ← set of PPFs inHf that matches the key of Pt
ij

10: Nm ← size(Ωm)
11: for k = 1 to Nm do
12: Compute local transformation αk from Pf

k to Pt
ij by solving (9)

13: Vote for the local coordinate (νfk , αk)

14: Obtain hypothesis transformation α∗ from the most-voted local coordinate (νf∗ , α∗) in Ωm

15: Map νf∗ to νt∗ using α∗ and (9)
16: Similarly, map other matching template surfels {νfk }Ωm to corresponding tool surfels {νtk}α∗

17: N∗ ← number of correspondences between {νtk}α∗ and {νti}
18: if N∗

Nm
> threshold then

19: Append νt∗, α∗ to T
return T
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and X the end effector pose. For optimization of tool augmentation, we find the solution θ = (θg, θf )327

consisting of the grasp pose, θg, and functionality pose on the tool, θf , both in the local tool frame, that328

maximizes the utility function L as follows:329

L = det
(
J(q)JT (q)

)
(10)

θ = argmax
θg∈Ωg ,θf∈Ωf

L (11)

where J = ∂f(q)
∂q denotes the Jacobian, Ωg = {θg1 , ..., θgm} and Ωf = {θf1 , ..., θfn} the sets of grasp330

and functionality candidates respectively. The utility maximization is subject to the constraints:331

C1. The functionality candidate θf on the tool aligns with each desired task functionality:332

T i
w→tθf = Xi

task, i = 1, 2, ..., nf (12)

where T i
w→t is the transformation from the world frame to the ith tool frame, Xi

task the ith desired333

functionality pose for the task, expressed in the world frame, and nf the number of desired func-334

tionality poses in the task. An example is an object pushing task with nf = 2 where X1
task and335

X2
task are the desired initial and final functionality poses for the tool. More complicated tasks like336

scooping can also be specified as a sequence of functionality poses.337

C2. The tool grasp poses are reachable:338

∃ qi = finv(T
i
w→tθg), ∀i = 1, 2, ..., nf (13)

where finv is the inverse kinematics of the arm, and qi the joint angle solution for the grasp pose339

corresponding to the ith desired functionality pose.340

C3. The tool does not collide with the environment.341

C4. The robot joint limits are satisfied.342

To solve the tool augmentation optimization problem, we use Monte Carlo Tree Search (MCTS), an343

anytime, heuristic search algorithm which uses stochastic simulations to find the most promising set or344

sequence of decisions in a search tree [49].345

The action space A, in the tool frame, can be represented by a Cartesian product of 4 layers of346

decision candidates, for the case without obstacle handling:347

A = G× Φ× S × P (14)

where G = {g1, ..., gng} is the set of candidates for grasp locations, Φ = {ϕ1, ..., ϕnϕ
} grasp orienta-348

tions, S = {s1, ..., sns} segments on the tool surface, and P = {p1, ..., pnp} functionality locations on349

the tool surface segment.350

The structure of the search tree is shown in Fig. S4, where the decision layers are organized in a351

manner intuitive for understanding, e.g. for each grasp location, there is a set of grasp orientations, and352

for every grasp orientation within this set, there is a set of valid tool segments, and, in turn, for every tool353

segment within this set, there is a set of valid functionality locations.354
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The selection step of the MCTS uses the Upper Confidence Bound for Trees (UCT) [50] to select355

the best child node while maintaining a balance of exploitation and exploration. For a node where one356

or more child nodes have not been visited, a random sequence of actions is made until a functionality357

candidate on the surface of the tool is selected (i.e. terminal node). Then, evaluation is performed to358

determine the utility score (or reward) rterminal, based on the manipulability cost (10) and constraints359

C1-C4. This score is then backpropagated up the tree to the root node:360

rterminal(k) = rterminal(k − 1) + ∆r(k) (15)

∆r(k) =

{
c1L+ c2, if constraints C1-C4 are satisfied

0, otherwise
(16)

rparent(k) = rparent(k − 1) + rchild(k) (17)

for the kth simulation, and where c1, c2 are positive coefficients.361

After Nsim simulations, the terminal node with the highest utility score, along with the trace of par-362

ents up the search tree, constitute the solution to the augmentation optimization problem, {g∗, ϕ∗, s∗, p∗},363

in the tool frame. This is rewritten in world frame pose forms for grasp Xg and functionality Xf as fol-364

lows:365

θg =

[
R(ϕ∗) g∗

0 1

]
, θf =

[
R(ns∗) p∗

0 1

]
(18)

Xi
g = T i

w→tθg , Xi
f = T i

w→tθf (19)

for i = 1, 2, ..., nf , where R(•) is the rotation matrix based on orientation •, and ns∗ the unit normal of366

segment s∗.367

Algorithms 3-4 illustrates the MCTS algorithm for finding the best combination of grasp and func-368

tionality candidates. Backpropagation(root, rterminal) backpropagates utility score (17) to the root node.369

BestAction(rbest) selects the terminal node with the highest utility score rbest over Nsim simulations, and370

traces its parents up the search tree to yield the best action a∗ = {g∗, ϕ∗, s∗, p∗}.371

Algorithm 3 MCTS for Augmentation Optimization
Input: Action space A, maximum number of iterations Nsim, desired task functionality poses
{Xi

task}i=1:nf
.

Output: Best action a∗ = {g∗, ϕ∗, s∗, p∗} ∈ A.
1: rbest ← 0
2: rterminal ← 0
3: for i = 1 to Nsim do
4: leaf ← Selection&Expansion(root)
5: a← Simulation(leaf)
6: rterminal ← rterminal + RewardEvaluation

(
a, {Xi

task}i=1:nf

)
7: rbest ← max(rbest, rterminal)
8: Backpropagation(root, rterminal)

9: a∗ ← BestAction(rbest)
10: return a∗
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Algorithm 4 RewardEvaluation
Input: Action a = {g, ϕ, s, p}, desired task functionality poses {Xi

task}i=1:nf
.

Output: Reward ∆r

1: θf ← ComputeLocFuncPose(s, p)
2: θg ← ComputeLocGraspPose(g, ϕ)
3: Pr ← true
4: Lmin ← large number
5: for i = 1 to nf do
6: T i

w→t ← Xi
taskθ

−1
f

7: qi ← InvKin(T i
w→tθg)

8: Lmin ← min
(
Lmin, det

(
J(qi)JT (qi)

))
9: Pr ← Pr ∧ CheckCollision(T i

w→t) ∧ CheckJointLim(qi)

10: if Pr is true then
11: ∆r ← c1Lmin + c2
12: else ∆r ← 0

13: return ∆r

We can extend the above algorithm to deal with obstacles that impede tool or object motion, by372

modifying the utility function and the action space. The detailed formulation and algorithm can be found373

in S4.374

4.4 Tool Use Controller: Same Controller as Without Tool375

After identifying the best grasp and functionality poses on the tool, the robot needs to use the tool to376

perform the task. Since we are dealing with Category I tools, tool use involves similar actions as what377

the robot would perform with its end effector. Thus, the robot can utilize the same controller to perform378

the task with the tool as without, but with an update to the kinematic model of its end effector to include379

the tool. This is similar to the popular notion of tool embodiment in humans [51]. When the robot is380

holding the tool, the new kinematics of the arm is updated to:381

Xtool = Tee→toolf(q) (20)

where Tee→tool is the transformation from the original end effector to the tool. Based on this new arm382

kinematics, motion planning is executed to ensure that the arm is also safe from collision with the envi-383

ronment when moving between desired functionality poses.384

4.5 Simulation Setup for Tool Use Experiments385

The simulation study is based on a planar 3-DoF robot moving on a horizontal plane, and the purpose is to386

study the augmentation optimization algorithm extensively with different tool forms. The 3-DOF planar387

robot arm with link lengths (0.35, 0.35, 0.05)m, a cylindrical object with diameter 0.08m, a cylindrical388

obstacle with diameter 0.1m for one of the tasks, and a channel 0.16m wide for one of the tasks. The389

base of the robotic arm is fixed at the origin.390
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The primary task studied involves pushing a cylindrical object to a goal position on a horizontal391

plane, and the secondary task is to avoid any obstacle in the environment. An illustration of the tasks is392

shown in Fig. S5. Specifically, the robot is required to perform 3 tasks as follows:393

• Task 1: Moving the object at pobj=(0.8,−0.2)m to a target at ptar=(0.5, 0)m.394

• Task 2: Moving the object at pobj=(0.6,−0.4)m to a target at ptar=(0.5, 0)m with an obstacle395

blocking the shortest path between the object and target.396

• Task 3: Moving the object at pobj=(0.5, 0)m into a channel to reach a target ptar=(0.65, 0)m in a397

0.096m-wide channel.398

The desired functionality pose for the task, Xtask, is given by:399

Xtask =

[
Rtask ptask
0 1

]
Rtask =

[
cosϕ − sinϕ
sinϕ cosϕ

]
, ptask = pobj − robj

e

∥e∥

e =

[
ex
ey

]
= ptar − pobj , ϕ = arctan

ey
ex

(21)

where robj is the radius of the object.400

We generated pairs of via point candidates flanking both sides of the obstacle when going along the401

object-to-target vector e:402

pi,jv = pobs + sgn(j − 1.5)di(robj + robs)ê⊥, i = 1, ..., Nc, j = 1, 2 (22)

where sgn(•) is the signum function, Nc the number of candidate pairs, ê⊥ a unit vector perpendicular403

to e, di > 1 a parameter determining the distance of the candidate pair from the obstacle, and robs the404

radius of the obstacle respectively. For simplicity, we set Nc = 1.405

Three different 2D tools, illustrated in Fig. 4, were considered. For simplicity, perception of push and406

grasp candidates was omitted in this simulation study. Push candidates were placed at 0.02m intervals407

along the 2D tool edges, and grasp candidates 0.045m apart. At each grasp candidate, the neighboring408

push candidates were considered invalid, since they were covered by the robot end effector (during the409

grasp) and could not be used for pushing. These invalid push candidates were not given rewards if visited410

during the MCTS simulations branching from that grasp candidate.411

4.6 Real Experiment Setup for Tool Use412

The manipulator platform used in the real experiment is the Olivia III robot (Fig. 6c) comprising a 3-DOF413

torso, 2-DOF head with an RGBD sensor, and dual articulated 7-DOF arms with 4-fingered grippers. We414

used a combination of arm and torso for manipulating objects and tools.415

The experiment environment (Fig. 6c) included a 2m × 1m table surface and a tool rack beside the416

robot. The apparatus on the table included a cylindrical object (diameter 0.08m, height 0.1m), a flat417

goal disc (diameter 0.05m), and an obstacle (diameter 0.04m, height 0.15m). The robot was tasked418

with pushing the object from its initial position to the target position on the table, with and without an419

obstacle, and worked with a 3D-printed L-shaped tool.420
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(a) (b)

(c) (d)

Figure 6: For learning functionality features, the simulated Olivia III robot uses (a) an open hand to push
forward, and (b) the side of its palm to push to its left. For the real robot experiment on tool recognition
and use, (c) shows the robot and its environment including a table top with Charuco marker, tool rack,
and external cameras for assisting perception, and (d) shows the front view of the tool rack showing
Aruco marker for tool segmentation and Charuco marker view registration.
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For ease of implementation, 3 RGBD cameras were used. An external camera was mounted above421

the table for detecting the object, target and obstacles on the table. Another external camera was placed422

behind the robot to detect the tool pose on the rack as well as the functionality features on the tool.423

The onboard camera registered the poses of all entities in the robot’s frame with the help of 2 Charuco424

markers on the table and tool rack. Object segmentation was based on Random Sample Consensus to425

extract the table plane and then clustering points above the plane. The object and goal clusters were426

identified by color (yellow and red respectively), and remaining clusters were considered obstacles. The427

tool was segmented from the tool rack scene by extracting the cluster of points in front of a vertical plane428

marked by an Aruco marker (Fig. 6d). As shown in Supplementary Fig. S7, the robot perception module429

was able to localize the object, goal, obstacle, and tool.430

The segmented tool point cloud was used to detect the functionality candidates using cube voxels431

with initial size of 1cm3. Since the tabletop pushing task is 2D in nature, we used a simplified 2D432

representation of the tools (Fig. 3) by extracting the intersection between the cross-sectional plane and433

the voxel surfels, and then taking the convex hull. Grasp candidates were placed at 0.03m interval along434

the medial axis of the 2D tool, excluding those near the tool ends and those that cannot fit the end435

effector (Supplementary Fig. S1). After tool augmentation was optimized, motion planning for grasping436

and moving the tool was performed using the ROS Moveit! library. To increase reach, we appended the437

torso joints to the arm kinematic chain.438

The object, target marker, and obstacle were randomly presented by a human experimenter, and439

their positions estimated by the robot’s perception (Supplementary Tables S2-S3). To complete the task,440

the robot first located the object, target and any obstacle. Then, it evaluated the feasibility of using its441

gripper to complete the task, by planning the motion. If no feasible plan is found, the robot turned442

towards the tool rack, and perceived the scene in order to segment the tool, estimate the tool pose, and443

detect the functionality and grasp candidates. After tool augmentation is optimized, the robot planned444

and performed the tool grasp and movements.445

Besides the L-shaped tool, we also experimented with an umbrella to test the robot’s ability to recog-446

nize and use real world objects as tools. Here, the setup is slightly different in that the umbrella rack is to447

the front of the robot (Fig. S8), and the robot relies on its onboard camera only, i.e. no external cameras.448

The task procedure is the same as that for the L-shaped tool. Perception of the umbrella is similar to that449

for the L-shaped tool, except that it relies only on the Aruco marker on the umbrella rack for segmenta-450

tion. Charuco markers were not used because view registration with external cameras was not required.451

We placed grasp candidates at 0.09m interval along the medial axis of the 2D umbrella, excluding those452

near the tool ends and those that cannot fit the end effector. The object, target, and obstacle positions for453

the umbrella trial are shown in Supplementary Table S4.454

5 Data availability455

The data that support the findings of this study are available from the corresponding authors upon rea-456

sonable request.457

6 Code availability458

All codes details will be made available by the corresponding authors on request.459
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Supplementary Materials for:632

A framework for tool cognition in robots without prior tool learning or633

observation634

635

S1 Related Works and Chosen Implementation636

In our previous work [30], we introduced these concepts. However, our previous work and a work by637

Saponaro and colleagues [52] presented very basic algorithms which considered the overall shape of638

the objects and not specific features. Furthermore, the tool grasp and tool tip (functionality) locations639

were assumed to be restricted in certain regions of the tool, and demonstration of the robot’s tool use640

ability was limited to specific toy tools. In this paper, we provide a more complete framework for tool641

cognition, which enables a robot to not only recognize task-critical functionality features on objects,642

but also optimize its potential augmentation in the presence of grasp and movement constraints (due to643

obstacles), with the ultimate goal of recognizing and using a vast range of daily-life objects as tools to644

accomplish various tasks645

Our robot tool cognition framework is described in detail in the main text. In this section we give a646

brief description of the chosen procedures in this manuscript, and related previous works.647

S1.1 Terminologies: Functionality and Affordance648

Tool use studies have often talked about affordances offered by tools [15, 53, 54]. According to [14],649

tool affordance refers to the ”awareness within robot about the different kind of effects it can create650

in the environment using a tool. It incorporates the association of effects and abstract geometrical651

properties of tools with the perception of the initial environment and the executed action.” Our definition652

of functionality is a subset of the above, and specifically refers to interaction with the environment653

enabled by certain features of a given tool. Therefore, our proposed tool representation allows for the654

prediction of environmental effects across different tools.655

With the advent of deep convolutional neural networks (CNNs), many studies on end-to-end object656

affordance learning and detection based on CNNs have been reported in the literature (see e.g. [16, 17]).657

These approaches involve learning directly on instances of the object classes and rely on copious amounts658

of labelled image/CAD data to achieve high accuracy rates of affordance detection. Tests of unseen659

objects are drawn from the same set of object classes used for training. For example, to detect a rake660

affordance in an umbrella, the robot needs to train on instances of a class of umbrella-like objects. Our661

approach is different in that learning of functionality features is performed on only on the robot’s limb662

and while performing actions with its prior skills, and yet it is able to extrapolate the detection of similar663

features on unseen objects that do not belong to the same object class as a ‘limb’.664

The functionality recognition procedure we propose may be viewed similar to zero shot learning665

[55, 56, 57] proposed for visual and haptic interactions and during transfer learning of tools[18, 19, 20,666

21, 22, 23, 24, 25, 26, 27]. These procedures suggest to explore and learn task relevant features, in this667

case from one set of tools, to recognize other tools for the same task. However, by definition, zero shot668

27



learning or transfer learning requires the robot to have atleast some prior tool experience, and hence669

also posses skill to pick up and explore these tools. This is fundamentally different from our proposed670

framework, that requires zero experience or observation of tools.671

S1.2 Tool-Use Planning672

Many existing approaches on planning for tool use focus on planning where to grasp the tool while the673

part of the tool that interacts with objects or the environment is known or fixed [58, 59]. In this work,674

our goal is the optimization of tool augmentation, which is the joint optimization of both grasp and in-675

teraction (e.g. push) locations, subject to external task/environment constraints and the robot’s internal676

constraints. To solve this combinatorial optimization problem, we employ the Monte Carlo Tree Search677

(MCTS) method, which is advantageous because it efficiently handles the exploration-exploitation trade-678

off through iterative learning of the value function with only a reward signal [60]. The MCTS method,679

popularized by AlphaGo for game-playing [61], has been studied in the robotics domain for autonomous680

vehicle behavior planning [62], multi-agent collaborative manipulation [63], rearrangement planning681

[60], and tool-use planning [64]. In [64], multi-bound tree search was used, under a general geometric-682

logic programming framework, to jointly optimize the manipulator motion path and decision parameters683

(e.g. grasp pose, hit angle) when full information is given from a simulated world. Our work applies684

MCTS to optimize the decision parameters in tool augmentation (including grasp and interaction points,685

and via points for obstacle avoidance), which then feed into state-of-the-art manipulator motion plan-686

ners. This reduces the complexity of the solution and allows us to validate on a physical robotic system687

recognizing and manipulating real world objects as tools.688

S2 Grasp Candidates689

While grasp candidates are just as important as functionality candidates as inputs to the algorithm, devel-690

oping algorithms for generation of grasp candidates is out of the scope of this paper. Interested readers691

may refer to grasp planning/generation techniques in the literature, e.g. [28, 29]. For simplicity and692

without loss of generality in our algorithm for tool augmentation optimization, we generated grasp can-693

didates by placing them at regular intervals along the medial axis of the potential tool (see (22) in Sec.694

4.5).695

S3 Functionality Feature Detection696

Additional results for detection of functionality features on potential tools for pushing and lifting tasks697

are shown in Figs. S2 and S3.698

S4 Handling Obstacles in Tool Augmentation Optimization699

To circumvent obstacles in the environment impeding the tool and/or object motion, via points are gen-700

erated in the vicinity of the obstacles. By visiting feasible via points, the obstacle can be avoided, and701

the task completed using the tool. In some cases, there can be a switch of tool pose between reaching a702

via point and moving to the target or next via point, resulting in a change of end-effector pose and arm703
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Figure S1: Illustration of grasp candidate placement. Grasp candidates are placed at regular intervals
along the medial axis of the 2D tool. Locations near the tool ends, and those that cannot fit the end
effector, are invalid and indicated in red. Valid candidates are indicated in yellow.

(a) (b) (c) (d)

Figure S2: Perception of push functionality on tools. (a) Visual appearance of tools (b) Segmented point
clouds of tools. (c) Voxel surfels on tools. (d) Detected functionality candidates (red circles and ‘spikes’)
and prescribed grasp candidates (blue dots) on tools.
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(a) (b) (c) (d)

Figure S3: Perception of lift functionality on tools. (a) Visual appearance of tools (b) Segmented point
clouds of tools. (c) Voxel surfels on tools. (d) A representative functionality candidate is shown as a
circular patch with a direction vector at the center of the patch pointing out of the page. To avoid clutter,
the other functionality candidate is shown simply as red dots representing the center of the circular patch.
The prescribed grasp candidate is shown as a blue dot on the tool handle.

joint configuration. For example, consider the task of pushing an object to a target location using a stick.704

If an obstacle lies in the path between the object and the target and a via point is generated, the stick first705

pushes the object to the via point, and then to the target. After the via point is reached, there can be a706

change of the functionality pose on the stick such that the object is pushed to the target more efficiently707

(see task 2 of Fig. 4). In this paper, for simplicity and without loss of generality, we generated via point708

candidates near each obstacle with a simple rule, with details in Sec. 4.5. It is possible to use other more709

sophisticated methods of via point generation e.g. [65, 66], but that is out of the scope of this study.710

To this end, for optimization of tool augmentation, besides maximizing manipulability, we also min-711

imize end effector pose changes and arm joint configuration changes. This results in the maximization712

of the following utility function subject to the constraints C1-C4:713

Lobs = α det(JJT )− β

Nv∑
i

(
∥∆Xi∥2 + ∥∆qi∥2

)
(23)

where Nv the number of via points, ∆Xi the change of end effector position at the ith via point, ∆qi the714

change of joint configuration at the ith via point, and α, β positive weighting constants.715

Since the via points affects the tool path and hence the grasp and functionality poses, they form part716

of the solution θobs = (θg, θf , θv) to be found by maximizing the utility function Lobs:717

θobs = argmax
θg∈Ωg ,θf∈Ωf ,θv∈Ωv

Lobs (24)

where Ωv = {θv1 , ..., θvn} is the set of via point candidates.718

The action space for the original MCTS formulation (without obstacles) is shown in Fig. S4. For719

obstacle avoidance, additional decision layers are appended to form a new action space Aobs:720

Aobs = G× Φ×
Nv∏
i=1

(Si × Pi × Vi)× SNv+1 × PNv+1 (25)

where Vi is a set of location candidates for the ith via point, Si and Pi the tool surface segment and721

functionality location before the ith via point (or equivalently after the (i − 1)th via point). Here, we722
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Figure S4: Search tree for finding the best combination of robot-tool and tool-environment interface
candidates using MCTS.

precluded any change in the grasp pose at the via points to enable smoother and more efficient task723

performance. Algorithms 5-6 illustrates the MCTS algorithm for finding the best combination of robot-724

tool and tool-environment interface candidates in the presence of an obstacle.725

Algorithm 5 MCTS for Augmentation Optimization (with Obstacle)
Input: Action space Aobs, maximum number of iterations Nsim, desired task functionality poses
{Xi,j

task}i=1:nv , j=1:nf
.

Output: Best action a∗ = {g∗, ϕ∗, v∗, s∗1, p
∗
1, . . . , s

∗
nv+1, p

∗
nv+1} ∈ Aobs.

1: rbest ← 0
2: rterminal ← 0
3: for i = 1 to Nsim do
4: leaf ← Selection&Expansion(root)
5: a← Simulation(leaf)
6: rterminal ← rterminal + RewardEvaluation

(
a, {Xi,j

task}i=1:nv , j=1:nf

)
7: rbest ← max(rbest, rterminal)
8: Backpropagation(root, rterminal)

9: a∗ ← BestAction(rbest)
10: return a∗
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Algorithm 6 RewardEvaluation (with Obstacle)
Input: Action a = {g, ϕ, v, s1, p1, . . . , snv+1, pnv+1}, desired task functionality poses
{Xi,j

task}i=1:nv , j=1:nf
.

Output: Reward ∆r

1: Pr ← true
2: θg ← ComputeLocGraspPose(g, ϕ)
3: Lmin ← large number
4: for i = 1 to nv + 1 do
5: θif ← ComputeLocFuncPose(si, pi)
6: for j = 1 to nf do
7: T i,j

w→t ← Xi,j
task(θ

i
f )

−1

8: qi,j ← InvKin(T i,j
w→tθg)

9: Lmin ← min
(
Lmin,det

(
J(qi,j)JT (qi,j)

))
10: Pr ← Pr ∧ CheckCollision(T i,j

w→t) ∧ CheckJointLim(qi,j)

11: if Pr is true then
12: ∆r ← c1Lmin + c2
13: else ∆r ← 0

14: return ∆r
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S5 Simulated Experiment726

Illustrations of the 3 tasks in the simulated experiment of Sec. 4.5 are provided in Fig. S5. For tasks 1727

and 3, the number of push candidates on Tools 1-3 are 40, 68, and 55 respectively, and the number of728

grasp candidates on Tools 1-3 are 6, 12, and 7 respectively. For task 2 dealing with obstacle avoidance, to729

factor in the branching of possibilities as a result of the 2 via point candidates, the numbers of first-push730

candidates are doubled for all tools, i.e. 80, 136, and 110 respectively for Tools 1-3. The numbers of731

second-push candidates remain the same.732

(a) (b) (c) (d)

Figure S5: 2D representation of the simulation tasks, including (a) Task 1: pushing an object directly
to the target, (b) Task 2: pushing object to target while avoiding an obstacle, and (c) Task 3: pushing
object to a target in a channel. (d) An example tool with the grasp (yellow dots) and functionality (black
arrows) candidates on the tool surface segments.

Table S1 compares the number of solutions found using the proposed tool cognition framework with733

that in [30]. The 3 tasks and 3 tools are the same ones shown in Fig. 4. From Table S1b, solutions734

based on [30] were found by finding regions on the tool that match the shape template for the push735

functionality, and then testing inverse kinematics feasibility for wielding the tool at each combination of736

grasp and push locations. For fairness of comparison, the same grasp and via point candidates were given737

for the 2 methods. Unlike [30], which uses hand shape descriptors to represent task functionality, our738

proposed framework employs less restrictive features that are learnt through hand-object interactions in739

an offline development phase. As a result of these learnt functionality features, tool augmentation can be740

optimized by finding the best combination of grasp and push locations on the tool from a larger pool of741

feasible combinations. For [30], less options, in general, are available due to the restrictive shape feature.742

As a result, it yields less solutions than our proposed framework for Tasks 1 and 2. Task 3 yields the743

same number of solutions because the push location options are inherently limited, due to the task itself,744

to the extent that the solutions from our framework are identical to those offered by the shape features of745

[30].746
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Table S1: Comparison of the number of solutions found when using a) the proposed framework and b)
method in [30].

(a)

Tool 1 Tool 2 Tool 3
Task 1 8 42 16
Task 2 17 21 32
Task 3 12 11 7

(b)

Tool 1 Tool 2 Tool 3
Task 1 4 8 7
Task 2 5 6 12
Task 3 12 11 7

0 2 4 6
0

10

20

30

40

50

grasp location #

p
u
s
h
 lo

c
a
ti
o
n
 #

-4

-2

0

2

R
un

Se
t1

0 2 4 6
0

10

20

30

40

50

grasp location #

p
u
s
h
 lo

c
a
ti
o
n
 #

-4

-2

0

2

4

0 2 4 6
0

10

20

30

40

50

grasp location #

p
u
s
h
 lo

c
a
ti
o
n
 #

-4

-2

0

2

4

0 2 4 6
0

10

20

30

40

50

grasp location #

p
u
s
h
 lo

c
a
ti
o
n
 #

-4

-2

0

2

4

6

0 2 4 6
0

10

20

30

40

50

grasp location #

p
u
s
h
 lo

c
a
ti
o
n
 #

-4

-2

0

2

R
un

Se
t2

0 2 4 6
0

10

20

30

40

50

grasp location #

p
u
s
h
 lo

c
a
ti
o
n
 #

-4

-2

0

2

4

0 2 4 6
0

10

20

30

40

50

grasp location #

p
u
s
h
 lo

c
a
ti
o
n
 #

-4

-2

0

2

4

0 2 4 6
0

10

20

30

40

50

grasp location #

p
u
s
h
 lo

c
a
ti
o
n
 #

-4

-2

0

2

4

6

0 2 4 6
0

10

20

30

40

50

grasp location #

p
u
s
h
 lo

c
a
ti
o
n
 #

-4

-2

0

2

R
un

Se
t3

Nsim = 400

0 2 4 6
0

10

20

30

40

50

grasp location #

p
u
s
h
 lo

c
a
ti
o
n
 #

-4

-2

0

2

4

Nsim = 800

0 2 4 6
0

10

20

30

40

50

grasp location #

p
u
s
h
 lo

c
a
ti
o
n
 #

-4

-2

0

2

4

6

Nsim = 1600

0 2 4 6
0

10

20

30

40

50

grasp location #

p
u
s
h
 lo

c
a
ti
o
n
 #

-4

-2

0

2

4

6

Nsim = 3200

Figure S6: Evolution of the heat maps with the number of simulations, taking task 1 and tool 3 as an
exemplar. Each heat map is a an individual run instance with number of MCTS simulations, Nsim at
400, 800, 1600, or 3200. Three representative run sets under the same conditions are presented. For the
runs with Nsim = 400 and Nsim = 800 , the solution regions, indicated by warmer colors, as well as
the optimal solutions, are very different across the runs. When Nsim = 1600, the solution regions and
optimal solutions are similar between Runs 1 and 2 but different for Run 3. When Nsim = 3200, the
solution regions and optimal solutions are similar for all 3 runs. This shows that with sufficient number
of MCTS simulations, the optimal solution tends to converge. However, if the number of simulations
is small, the optimal solution can have high variability from one run to another. Similar results can be
obtained for other combinations of tasks and tools.
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S6 Real Robot Experiment747

Table S2: Positions of object and target during trials without obstacle and using L-shaped tool. The
world coordinate frame was centered at the robot’s base joint, with the x−axis pointing towards the table
in front of the robot, the y−axis towards the left arm, and z−axis upwards. Units in m.

Position Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
pobj [0.89,0.16] [0.75,-0.47] [0.90,-0.16] [0.73,-0.17] [0.94,-0.21]
ptar [0.94,-0.09] [0.90,-0.33] [0.76,-0.15] [0.97,-0.28] [1.02,0.02]

Table S3: Positions of object, target, and obstacle during trials with obstacle and using L-shaped tool.
The world coordinate frame was centered at the robot’s base joint, with the x−axis pointing towards the
table in front of the robot, the y−axis towards the left arm, and z−axis upwards. Units in m.

Position Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
pobj [0.78,0.28] [0.99,0.19] [0.63,-0.07] [0.68,-0.07] [0.92,-0.07]
ptar [1.07,-0.03] [0.68,-0.08] [1.03,0.20] [1.01,0.19] [0.95,0.26]
pobs [0.94,0.16] [0.79,-0.01] [0.82,0.03] [0.83,0.09] [0.92,0.09]

Table S4: Positions of object, target, and obstacle during trials with a real umbrella. The world coordinate
frame was centered at the robot’s base joint, with the x−axis pointing towards the table in front of the
robot, the y−axis towards the left arm, and z−axis upwards. Units in m.

Position without obstacle with obstacle
pobj [0.85,0.4] [0.55,0.4]
ptar [0.86,0.5] [0.6,0.25]
pobs - [0.79,0.35]
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Figure S7: Robot perception of the object, target and obstacle on the table (left), and the tool on the rack
(right), with the help of Charuco markers for multi-camera view registration.

Figure S8: Setup for experiment with umbrella as tool (left) and perception of umbrella by robot (right).
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