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Near-term quantum computers provide a promising platform for finding ground states of quan-
tum systems, which is an essential task in physics, chemistry, and materials science. Near-term
approaches, however, are constrained by the effects of noise as well as the limited resources of
near-term quantum hardware. We introduce neural error mitigation, which uses neural networks to
improve estimates of ground states and ground-state observables obtained using near-term quantum
simulations. To demonstrate our method’s broad applicability, we employ neural error mitigation to
find the ground states of the H2 and LiH molecular Hamiltonians, as well as the lattice Schwinger
model, prepared via the variational quantum eigensolver (VQE). Our results show that neural error
mitigation improves numerical and experimental VQE computations to yield low energy errors, high
fidelities, and accurate estimations of more-complex observables like order parameters and entangle-
ment entropy, without requiring additional quantum resources. Furthermore, neural error mitigation
is agnostic with respect to the quantum state preparation algorithm used, the quantum hardware
it is implemented on, and the particular noise channel affecting the experiment, contributing to its
versatility as a tool for quantum simulation.

I. INTRODUCTION

Since the early twentieth century, scientists have been
developing comprehensive theories that describe the be-
haviour of quantum mechanical systems. However, the
computational cost required to study these systems often
exceeds the capabilities of current scientific computing
methods and hardware. Consequently, computational in-
feasibility remains a roadblock for the practical applica-
tion of those theories to problems of scientific and tech-
nological importance.

The simulation of quantum systems on quantum com-
puters, referred to in this paper as quantum simulation,
shows promise toward overcoming these roadblocks, and
has been a foundational driving force behind the concep-
tion and creation of quantum computers [1–4]. In par-
ticular, the quantum simulation of ground and steady
states of quantum many-body systems beyond the ca-
pabilities of classical computers is expected to signifi-
cantly impact nuclear physics, particle physics, quantum
gravity, condensed matter physics, quantum chemistry,
and materials science [5–8]. The capabilities of current
and near-term quantum computers continue to be con-
strained by limitations, such as the number of qubits and
the effects of noise. Quantum error correction (QEC)
techniques can eliminate errors that result from noise,
providing a path toward fault-tolerant quantum compu-
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tation. However, in practice, implementing QEC imposes
a large overhead in terms of both the required number of
qubits and low error rates, both of which remain beyond
the capabilities of current and near-term devices.

Before fault-tolerant quantum simulations [9] can be
realized, modern variational algorithms significantly al-
leviate the demand on quantum hardware and exploit
the capabilities of noisy intermediate-scale quantum
(NISQ) devices [10, 11]. A prominent example is the
variational quantum eigensolver (VQE) [12], a hybrid
quantum–classical algorithm that iteratively approxi-
mates the lowest-energy eigenvalues of a target Hamil-
tonian through the variational optimization of a family
of parameterized quantum circuits. This, and other vari-
ational algorithms, has emerged as a leading strategy to-
ward achieving a quantum advantage using near-term de-
vices and accelerating progress in multiple scientific and
technological fields [13].

The experimental implementation of variational quan-
tum algorithms remains a challenge for many scientific
problems, as NISQ devices suffer from various sources of
noise and imperfection. To alleviate these issues, sev-
eral methods for quantum error mitigation (QEM) have
been proposed and experimentally validated that im-
prove quantum computations in the absence of the quan-
tum resources required for QEC [14]. For a review of cur-
rent QEM techniques, we refer the reader to Ref. [13] and
the material cited therein. In general, these methods use
specific information about the noise channels that affect a
quantum computation, the hardware implementation, or
the quantum algorithms themselves. Examples include
the implicit characterization of noise models and how
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FIG. 1: Neural error mitigation procedure | First, an
approximate ground state |Ψg〉 is prepared on a quantum computer
from which simple projective measurements are taken (left column).
This measurement dataset, D, is then used to reconstruct the final
state |Ψg〉 with a neural quantum state |Ψ~λ〉 using neural quantum
state tomography (middle column). Then, the neural network ansatz
is post-processed using variational Monte Carlo to mitigate errors in
the ground-state representation (right column).

they affect estimates of the desired observables, specific
knowledge of the state subspaces in which the prepared
quantum state ought to reside, and the characterization
and mitigation of the sources of noise on individual com-
ponents of the quantum computation such as single- and
two-qubit gate errors, as well as state preparation and
measurement (SPAM) errors.

Machine learning techniques, which have recently been
repurposed as tools for tackling complex problems in
quantum many-body physics and quantum information
processing [15, 16], provide an alternative route to QEM.
Here we introduce a QEM strategy named neural error
mitigation (NEM), which uses neural networks to miti-
gate errors in the approximate preparation of the quan-
tum ground state of a Hamiltonian.

The NEM algorithm, summarized in Fig. 1, is com-
posed of two steps. First, we perform neural quantum
state tomography (NQST) to train a neural quantum
state (NQS) ansatz to represent the approximate ground
state prepared by a noisy quantum device, using exper-
imentally accessible measurements. Inspired by tradi-
tional quantum state tomography (QST), NQST is a
data-driven machine learning approach to QST that uses
a limited number of measurements to efficiently recon-
struct complex quantum states [8]. We then apply the
variational Monte Carlo algorithm (VMC) on the same
neural quantum state ansatz (which we call the NEM
ansatz) to improve the representation of the unknown
ground state. In the spirit of VQE, VMC approximates
the ground state of a Hamiltonian based on a classical
variational ansatz [18], in this case a NQS ansatz.

In this paper, we use an autoregressive generative neu-
ral network as our NEM ansatz. In particular, we use the
Transformer [1] architecture, and show that this model
performs well as a neural quantum state. Due to its ca-
pability to model long-range temporal and spatial corre-
lations, this architecture has led to many state-of-the-art

results in natural language and image processing, and has
the potential to model long-range quantum correlations.
We refer the reader to the Methods section and Supple-
mentary Information for a complete description of NQS,
NQST, VMC, and the Transformer neural network.

Neural error mitigation has several advantages com-
pared to other error mitigation techniques. Firstly, it
has a low experimental overhead; it requires only a set
of simple experimentally feasible measurements to learn
the properties of the noisy quantum state prepared by
VQE. Consequently, the overhead of error mitigation in
NEM is shifted from quantum resources (i.e., performing
additional quantum experiments and measurements) to
classical computing resources for machine learning. In
particular, we note that the primary cost of NEM is in
performing VMC until convergence. Another advantage
of NEM is that it is agnostic with respect to the quan-
tum simulation algorithm, the device it is implemented
on, and the particular noise channel affecting the quan-
tum simulation. As a result, it can also be combined
with other QEM techniques [20, 21], and can be applied
to either analog quantum simulation or digital quantum
circuits [22, 23].

Neural error mitigation also alleviates the low mea-
surement precision that arises when estimating quantum
observables using near-term quantum devices. This is
particularly important in quantum simulations, where
making accurate estimations of quantum observables is
essential for practical applications. Neural error miti-
gation intrinsically resolves the low measurement preci-
sion at each step of the algorithm. During the first step,
NQST improves the variance of observable estimates at
the cost of introducing a small estimation bias [24]. This
bias, as well as the remaining variance, is further reduced
by training the NEM ansatz using VMC, which results
in a zero-variance expectation value for energy estimates
once the ground state has been reached [25].

II. RESULTS

A. Quantum Chemistry Results

Accurately simulating a molecule’s electron correla-
tions is an integral step in characterizing the chemical
properties of the molecule. This problem, known as the
electronic structure problem, involves finding the ground-
state wavefunction and energy of many-body interacting
fermionic molecular Hamiltonians. Achieving an abso-
lute energy error corresponding to chemical accuracy (1
kcal/mol ≈ 0.0016 hartrees), the threshold for accurately
estimating room-temperature chemical reaction rates, is
essential to applications in drug discovery and materials
science [7].

We demonstrate the application of NEM to the esti-
mation of molecular ground states prepared using a VQE
algorithm and show that our method improves the results
up to chemical accuracy or better for the H2 and LiH
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FIG. 2: Neural error mitigated experimental and numerical results for molecular Hamiltonians | Neural error mitigation results for
energy, energy error, and infidelity for the ground states of LiH and H2 prepared using a hardware-efficient variational quantum circuit. Each
panel contains information about the prepared quantum states (blue triangles), neural quantum states trained using neural quantum state
tomography (green circles), the final neural error mitigated states (red diamonds), and, where appropriate, the exact results (solid black line).
The top row (a - c) shows results for the LiH ground state prepared experimentally using IBM’s five-qubit device, IBMQ-Rome. The middle
row (d - f) and bottom row (g - i) show the performance of neural error mitigation for numerically prepared H2 and LiH ground states,
respectively. Results are shown for the median performance over 10 noisy numerical simulations per bond length, and the shaded region is the
interquartile range. For our ten data points, the interquartile range includes the middle six and excludes the best two and worst two in order to
indicate the typical performance of the method. Error mitigated results extend both the experimentally and numerically prepared VQE states to
chemical accuracy and low infidelities for all bond lengths of LiH and H2. Chemical accuracy is shown at 0.0016 hartrees (dashed black line).

molecules (see Fig. 2 for experimental and numerical re-
sults). We map the H2 and LiH molecular Hamiltonians
computed in the STO-3G basis to qubit Hamiltonians
with N = 2 and N = 4 qubits, respectively [7]. The
prepared quantum state is the hardware-efficient varia-
tional quantum circuit composed of single-qubit Euler
rotation gates and two-qubit CNOT entangling gates na-
tive to superconducting hardware [7]. For both H2 and
LiH, we construct a variational circuit with a single en-
tangling layer, giving a variational circuit with 10 and 20
parameters, respectively. More details can be found in
the Methods section.

We highlight the performance of NEM on the exper-
imental preparation of the ground states of LiH at dif-
ferent bond lengths using IBM’s five-qubit chip, IBMQ-
Rome. We map the four-qubit LiH problem to the four
linearly connected qubits on IBMQ-Rome that have the
lowest average single- and two-qubit gate errors. During
optimization, we perform 250 iterations of simultaneous
perturbation stochastic approximation (SPSA) optimiza-

tion to obtain the final prepared quantum state. Neural
error mitigation improves the results of VQE to chemical
accuracy or better for all bond lengths, and achieves in-
fidelities, given by 1− | 〈Ψ|Ψ0〉 |2, of 10−3 for most bond
lengths (shown in top row of Fig. 2). On average, NEM
achieves an improvement of three orders of magnitude on
energy estimation and two orders of magnitude on infi-
delity. We provide further details about the reconstruc-
tion quality in the Supplementary Information, including
an analysis of the reconstructed neural quantum state.

Additionally, we illustrate the results of applying NEM
on the ground states of H2 and LiH prepared using clas-
sically simulated VQE with a depolarizing noise chan-
nel (shown in bottom two rows of Fig. 2). We simulate
VQE with a single-qubit depolarizing error probability
of 0.001 and two-qubit depolarizing error probability of
0.01. At each bond length, we generate 10 VQE simula-
tions and report the NEM results. Notably, the median
performance of NEM improves the ground-state estima-
tion of H2 and LiH to chemical accuracy and low infi-
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FIG. 3: Performance of neural error mitigation applied to ground states of the lattice Schwinger model | Left: Estimates for (a) the
ground state energy, (b) order parameter, (c) entanglement entropy between the first three and remaining five sites, and (d) infidelity to the
exact ground state, for the N = 8 site model. Each panel contains results for the quantum states prepared using VQE simulated with a
depolarizing noise channel (blue triangles), neural quantum states trained using neural quantum state tomography (green circles), the final neural
error mitigated neural quantum states (red diamonds), and, where applicable, exact results (solid black lines). While the qualitative behaviour of
the entanglement entropy and the order parameter across the phase transition are not modelled well by VQE or NQST, applying NEM
consistently improves the estimates of all observables to low errors and low infidelities. Right: Results of the scaling study of NEM at the phase
transition (m = −0.7) are shown for (e) the energy error per site and (f) infidelity, as a function of system size. The performance of VQE
without noise (blue triangles) shows an approximately constant energy error per site with infidelities that become slightly worse as system size
increases. Across all sizes, applying NEM (red diamonds) improves VQE performance by two to four orders of magnitude, even when using a
small VMC batch size of b = 28, which is the number of samples used to estimate the energy’s gradient in one iteration of VMC. In all panels
(left and right), median values over 10 runs are shown, and the shaded region is the interquartile range.

delities for all bond lengths. The increased infidelity for
bond lengths larger than 2Å, as shown in the infidelity
plots of Fig. 2, can be explained by the decreasing en-
ergy gap between the ground state and the first excited
state. When the energy gap is small, it becomes more
difficult for methods that optimize the energy, like VQE
and VMC, to isolate the ground-state representation.

B. Lattice Schwinger Results

We next apply our method to the ground state of the
lattice Schwinger model, which is a prototypical abelian
lattice gauge theory, and a toy model for quantum elec-
trodynamics in one spatial dimension. Multiple experi-
ments have been proposed that use quantum devices to
explore the properties of this model [27–30]. In this pa-
per, we consider the experiment where a trapped-ion ana-
log quantum simulator is used to variationally prepare
the ground state of the lattice Schwinger model using al-
ternating entangling operations, eitHE , which act on all
qubits simultaneously, and single qubit rotations [27].

After using a Jordan–Wigner transformation to map
the fermionic degrees of freedom of the theory to qubits,
the lattice Schwinger Hamiltonian takes the following [27]

form:

Ĥ =
w

2

N−1∑

j=1

(
X̂jX̂j+1 + Ŷj Ŷj+1

)
+
m

2

N∑

j=1

(−1)jẐj

+ ḡ

N∑

j=1

L̂2
j . (1)

The first term describes the creation and annihilation
of electron–positron pairs and contains an overall en-
ergy scale, w. The second term contains the bare elec-
tron mass m, and the third term contains ḡ, which is
the coupling strength to the electric field L̂j . Solv-
ing for the electric field in one spatial dimension gives

L̂j = ε0 − 1
2

∑j
`=1

(
Ẑ` + (−1)`Î

)
, where ε0 is an integra-

tion constant. Given that the quantum fields at one
spatial lattice point are encoded into a pair of qubits,
the total number of sites N must be even. We set
w = 1, ḡ = 1, and ε0 = 0 such that the only remaining
parameter is the mass m. The ground state of the sys-
tem for m→ +∞ describes a vacuum with no electron–
positron pairs and for m→ −∞ describes a large number
of electron–positron pairs. In the thermodynamic limit,
the model exhibits a second-order phase transition at
m ≈ −0.7, which can be detected using the order parame-
ter 〈O〉 = 1

2N(N−1)

∑
i,j>i 〈(1 + (−1)iẐi)(1 + (−1)jẐj)〉.

The model possesses discrete symmetries, which inform
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the choice of a variational quantum circuit with a man-
ageable number of parameters, but, in order to demon-
strate the general applicability of NEM, we do not enforce
these symmetries on the neural quantum state.

We demonstrate the performance of neural error mit-
igation by applying it to the approximate ground state
of the lattice Schwinger model obtained by numerically
simulating a VQE algorithm for N = 8 sites, with single-
qubit depolarizing noise with probability λ = 0.001 ap-
plied after each rotation and entangling operation. As
shown in Fig. 3a through Fig. 3d, the simple VQE scheme
we employ exhibits median infidelities between 0.10 and
0.31, with worse performance closer to the phase transi-
tion around m = −0.7. While the qualitative behaviour
of the ground-state energy as a function of the mass
is modelled approximately by VQE, the qualitative be-
haviour of other physical properties is not reproduced
well, limiting the utility of our VQE results for studying
the phase transition. This includes the order parameter,
and the Renyi entanglement entropy S2 of a partition
of the system, which is a broadly used, experimentally
accessible quantity [31, 32] expressing the amount of cor-
relation present in the quantum state.

The properties of the NEM state show a substantial
improvement over VQE. The NEM state reaches abso-
lute energy errors on the order of 10−2, and infidelities
approaching 10−3. Importantly, after applying NEM, the
physical properties estimated by the state accurately fol-
low their exact values. The ability to obtain precise es-
timations of these physical properties can be explained
by the accurate representation of the ground-state wave-
function captured by the NEM neural quantum state.
Further details about the reconstruction quality of each
component are covered in the Supplementary Informa-
tion, including a thorough analysis of the NEM neural
quantum state.

To gather evidence that the performance of NEM
scales well to larger near-term experiments on quantum
devices, we study the behaviour of NEM as a function of
system size for the lattice Schwinger model. For compu-
tational efficiency, the scaling study uses a modified VQE
implementation without noise (see Fig. 3e and Fig. 3f)
as compared to the simulated trapped-ion experiment
(see Fig. 3a through Fig. 3d). For more details on the
modified circuit, we refer the reader to the Methods sec-
tion. The VQE algorithm is simulated on a classical com-
puter for system sizes up to N = 16, and NEM is applied
to the resulting states. The results in Fig. 3e and Fig. 3f
show that NEM improves upon the VQE results by two
to four orders of magnitude, even for large system sizes,
using modest classical resources for the estimation of en-
ergy gradients in VMC.

III. DISCUSSION

The error mitigation strategy developed here demon-
strates significant improvements to the estimations of

ground states and ground-state observables obtained
from two example classes of near-term quantum simu-
lations, independent of the quantum device and noise
channels. Additionally, we show that NEM exhibits the
potential to scale well for such quantum experiments.
Given its low quantum overhead, NEM can be a pow-
erful asset for the error mitigation of near-term quantum
simulations.

An advantage of using techniques based on neural
quantum states for the task of quantum error mitiga-
tion is the ability to approximate complex wavefunctions
from simple experimental measurements. In the process
of improving the energy estimation performed by VQE,
NEM reconstructs and improves the ground-state wave-
function itself as a neural quantum state. The accurate
final representation of the ground-state wavefunction is
the reason why NEM is able to accurately reconstruct
and improve estimations of complex observables like en-
ergy, order parameters, and entanglement entropy with-
out imposing additional quantum resources.

By combining VQE, which uses a parametric quan-
tum circuit as an ansatz, and NQST and VMC, which
use neural networks as an ansatz, NEM brings together
two families of parametric quantum states and three op-
timization problems over their loss landscapes [33–35].
Our work raises the question as to the nature of the
relationships between these families of states, their loss
landscapes, and quantum advantage. Examining these
relationships offers a new way to investigate the poten-
tial of NISQ algorithms in seeking a quantum advantage.
This may lead to a better delineation between classically
tractable simulations of quantum systems and those that
require quantum resources.

IV. METHODS

A. Neural Quantum State

Our neural quantum state is based on the Trans-
former [1], an architecture originally developed to process
sequences that have temporal and spatial correlations,
such as written languages. Compared to previous archi-
tectures for sequence models such as the long short-term
memory (LSTM) neural network [36], the Transformer
excels at modelling long-range correlations, and has thus
become very popular in machine learning. Within the
quantum many-body machine learning community, there
has been a lot of work using autoregressive neural net-
works as neural quantum states [37, 38]. Recently, the
Transformer has been adapted as an autoregressive gen-
erative neural quantum state [39].

We represent the quantum state |ψ〉 with a Trans-
former neural network that takes as input a bitstring
s = (s1, . . . , sN ) ∈ {0, 1}N , describing a computational
basis state |s〉, where N is the number of qubits. The
neural network outputs two numbers (p~λ(s), ϕ~λ(s)) pa-

rameterized by the neural network weights ~λ, which form
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the complex amplitude 〈s|ψ~λ〉 given by

〈s|ψ~λ〉 =
√
p~λ(s)eiϕ~λ(s). (2)

Here, p~λ(s) is a normalized probability distribution,
which automatically normalizes the quantum state. The
autoregressive property of the model allows for efficient
sampling from the Born distribution of |ψ~λ〉 in the com-
putational basis. More details may be found in the Sup-
plementary Information.

The exact ground state amplitudes of both the quan-
tum chemistry models and the lattice Schwinger model
are real, that is, ϕ(s) ∈ {0, π}, and the signs of the lattice
Schwinger model ground-state amplitudes follow a sim-
ple sign rule. However, to show the general applicability
of our method, we do not enforce any of these conditions
in our neural quantum states.

B. Neural Quantum State Tomography

In neural quantum state tomography [8], a neural net-
work is trained to represent the state of a quantum de-
vice using samples from that state in various Pauli bases
(i.e., after performing various post-rotations). Neural
quantum state tomography proceeds by iteratively ad-
justing the NQS parameters to maximize the likelihood
that NQS assigns to the samples.

A sample s ∈ {0, 1}N in a Pauli basis B = P1P2 · · ·PN ,
with Pi ∈ {X,Y, Z}, is the unique simultaneous eigen-
state of the single qubit Pauli operators Pi, with eigen-
values determined by the entries of s. We denote such
a state by |s,B〉. The likelihood of the sample (s,B)
according to the neural quantum state |ψ~λ〉 is given by

p~λ(s,B) =
∣∣ 〈s,B|ψ~λ〉

∣∣2

=
∣∣∣
∑

t∈{0,1}N
〈s,B|t〉6=0

〈s,B | t〉
〈
t
∣∣ψ~λ

〉 ∣∣∣
2

. (3)

Here, we sum over the computational basis states |t〉 that
have a non-zero overlap with the given sample |s,B〉. For
a single sample |s,B〉, the number of these states |t〉 is
2K , where K is the number of positions i where Pi 6= Z.
Therefore, the computational cost of a single iteration of
tomography training is proportional to 2K . To constrain
this computational cost, we use projective measurements
in almost-diagonal Pauli bases (i.e., Pauli bases B with
low numbers of X or Y terms).

In order to learn the quantum state from a set of mea-
surements D, the objective function minimized during
NQST is an approximation of the cross entropy aver-
aged over the set of bases B from which samples were
drawn [24], and is given by

L~λ = − 1

|B|
∑

B∈B

∑

s∈{0,1}N
pVQE(s,B) ln p~λ(s,B). (4)

Here, pVQE(s,B) is the exact, unknown likelihood of
measuring |s,B〉 from the VQE state. The cross entropy

achieves its minimum in ~λ if pVQE(s,B) = p~λ(s,B). As
commonly done in unsupervised learning, the cross en-
tropy is approximated using the set D of the measured
samples |s,B〉, which is further partitioned into training
and validation subsets DT,V . The loss function used in
training is

L~λ ≈ −
1

|DT |
∑

|s,B〉∈DT

ln p~λ(s,B). (5)

The training is performed using stochastic gradient de-
scent (SGD) with the Adam [40] optimizer.

C. Variational Monte Carlo and Regularization

Variational Monte Carlo is a method that adjusts
the parameters of a (classical) variational wavefunction
ansatz in order to approximate the ground state of a
given Hamiltonian. The method usually proceeds by
gradient-based optimization of the energy, where the en-
ergy and its partial derivatives with respect to the ansatz
parameters are estimated using Monte Carlo samples
drawn from the classical variational wavefunction. As de-
tailed in the Supplementary Information, the autoregres-
sive property of our neural network wavefunction allows
for efficient sampling of the learned probability distribu-
tion. This leads to more efficient VMC training com-
pared to models such as restricted Boltzmann machines
(RBM) [10, 41], where samples have to be obtained using
Markov chain Monte Carlo.

Many implementations of VMC use second-order
methods involving the Hessian of the energy [43], or other
update rules such as stochastic reconfiguration [41], to
update the parameters. These methods tend to be com-
putationally expensive for models with large numbers of
parameters. Instead, we use SGD via the Adam opti-
mizer, leading to an update-step cost that is linear in the
number of parameters, and hence scales more favourably
for larger models.

We find it necessary to add a regularization term to
the VMC objective in the early stages of VMC optimiza-
tion. Without it, the magnitudes of the amplitudes of
some computational basis states decrease to almost zero
over the course of training, even for computational ba-
sis states which have a non-zero overlap with the true
ground state. It has been previously noted [10] that the
VMC algorithm has difficulty finding the ground state
of molecular Hamiltonians because they have sharply
peaked amplitudes in a sparse subset of the computa-
tional basis states. The regularization term is designed
to increase very small amplitudes. It maximizes the L1

norm of the state, thereby discouraging sparsity. This
is in contrast to the common usage of L1 regulariza-
tion in machine learning and optimization where the L1
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norm is minimized to encourage sparsity in sparse opti-
mization tasks. We expect this technique to be useful
for systems where the ground state has a large overlap
with one or a few computational basis states. For exam-
ple, ground states of electronic structure problems have a
large overlap with the Hartree–Fock state and the lattice
Schwinger ground states have a large overlap with the
ground states for m → ±∞. This regularization tech-
nique allows the NQS to capture the subdominant am-
plitudes, rather than collapsing onto the dominant com-
putational basis state early in the training process. The
L1 norm can be estimated in a tractable manner because
we use an autoregressive, generative neural network as
our neural quantum state, which allows for the exact
sampling of the learned probability distribution and is
automatically normalized. More details on the regular-
ization term and the VMC algorithm can be found in the
Supplementary Information.

a

Variational Circuit Projective
Measurements

|0〉

|1〉

... ... ... ... ... ... ... ...

|0〉

|1〉

|Ψ0〉 eit1ĤE

Rz(θ11)

eit2ĤE

Rz(θ21)

eit3ĤE

Rz(θ31)

Rz(θ21) Rz(θ22) Rz(θ32)

Rz(−θ12) Rz(−θ22) Rz(−θ32)

Rz(−θ11) Rz(−θ21) Rz(−θ31)

∣∣∣Ψ(~θ)
〉

b

O6(t) =

e
1
2it(XX+Y Y )

e
1
2it(XX+Y Y )

e
1
2it(XX+Y Y )

e
1
2it(XX+Y Y )

e
1
2it(XX+Y Y )

FIG. 4: VQE ansatz circuits for the lattice Schwinger model |
(a) Variational quantum circuit used to prepare the approximate
ground state of the lattice Schwinger model, using VQE simulated
classically. The input state |Ψ0〉 is |01 · · · 01〉 (|10 · · · 10〉) for
m ≥ −0.7 (m < −0.7). (b) For the results shown in Fig. 3e
and Fig. 3f, the entangling layers of (a) are replaced with ON for N
sites. The layers of single-qubit gates are left unchanged.

D. The VQE Implementation for Quantum
Chemistry

We use the variational quantum circuit in Eq. (6) for
the electronic structure problem in quantum chemistry.
This ansatz was designed for the hardware capabilities
of current superconducting quantum processors [7]. We

use this circuit for both our numerical simulations with a
depolarizing noise channel, as well as to perform experi-
ments on a five-qubit superconducting quantum proces-
sor (Fig. 2).

The H2 and LiH molecular Hamiltonians are mapped
to qubit Hamiltonians with N = 2 and N = 4 qubits,
respectively [7]. In particular, we map the second-
quantized fermionic Hamiltonian for H2 to its qubit
Hamiltonian using the Bravyi–Kitaev transformation [44]
while the LiH Hamiltonian is transformed using the par-
ity transformation [44, 45]. In each case, two qubits asso-
ciated with the spin-parity symmetries of the model are
removed to obtain final qubit Hamiltonians [46].

The hardware-efficient variational quantum circuit is
composed of single-qubit rotations and two-qubit entan-
gling gates native to superconducting hardware. The
variational circuit,

|ψ(~θ)〉 =

d∏

l=1

(
N∏

q=1

[
Uq,lEUR(~θ)

]
× UENT

)

×
N∏

q=1

[
Uq,0(~θ)

]
|00 · · · 0〉 , (6)

for N qubits consists of d CNOT entangling layers alter-
nating with N(d+ 1) single-qubit Euler rotations, given

by U(~θ) = RZ(θ1)RX(θ2)RZ(θ3). In the first rotation

layer, Uq,0(~θ), the first set of Z rotations is not im-
plemented, reducing the number of circuit parameters.
Within each entangling layer, we apply CNOT gates on
pairs of linearly connected qubits. The variational circuit
has p = N(3d+ 2) independent parameters. For both H2

and LiH, we construct a variational circuit with d = 1
entangling layers giving 10 and 20 parameters, respec-
tively.

The variational circuit is then optimized using Qiskit’s
implementation of simultaneous perturbation stochastic
approximation (SPSA) [47] for 250 iterations to obtain
an estimation for the ground-state energy of H2 and LiH.
Each SPSA iteration requires two energy evaluations. In
order to reduce the sampling overhead during the en-
ergy estimations, Pauli terms in each Hamiltonian are
grouped according to their common tensor product ba-
sis [7], requiring only two and 25 circuits with unique
post-rotations for H2 and LiH, respectively, to estimate
the energy.

In order to perform NQST, we collect almost-diagonal
measurement samples from the final noisy state prepared
by the variational procedure. In this case, the nearly di-
agonal samples are taken in the following bases: in the
all-Z basis, in the N bases with one X (and Z elsewhere),
and in the (N(N − 1)/2) bases with two Xs (and Z else-
where).
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E. The VQE Implementation for the Lattice
Schwinger Model

Our variational quantum circuit for the lattice
Schwinger model closely follows the variational circuit
implementation on a trapped-ion analog quantum sim-
ulator [27] that approximately preserves the symmetries
of the lattice Schwinger model.

The quantum state is first prepared in |01 · · · 01〉 for
m ≥ 0.7 and |10 · · · 10〉 for m < −0.7, coinciding with
the ground states of the Schwinger Hamiltonian Eq. (1)
for m → ±∞. On this initial state, three alternating
layers of evolution with an entangling Hamiltonian, fol-
lowed by Z rotations on each qubit, are applied. The en-
tangling Hamiltonian contains long-range XX couplings
and a uniform effective magnetic field, and is given by

ĤE = J

N−1∑

j=1

N∑

k=j+1

1

|j − k|α X̂jX̂k +B

N∑

j=1

Ẑj . (7)

We choose α = 1, J = 1, and B = 10 to approximate
the trapped-ion experimental setup [27]. Evolution with
this Hamiltonian preserves the symmetries of the lattice
Schwinger model to first order terms in J/B.

Only half of the parameters in each single-qubit rota-
tion layer are independent, as required by the symme-
tries, giving ϕj = −ϕN+1−j for j ∈ {N/2 + 1, . . . , N}.
In total, the variational circuit has 15 independent pa-
rameters for N = 8 lattice sites, which are initialized to
zero at the start of each optimization. As a simple noise
model, after each entangling layer and each single-qubit
rotation layer, a depolarizing channel with λ = 0.001 is
applied to each qubit (Extended Data Fig. 1a).

To optimize the variational parameters, the energy is
estimated by taking samples in each of the three bases
Z⊗N , X⊗N , and Y ⊗N . The SPSA hyperparameter val-
ues are chosen by inspecting the variance and approxi-
mate gradient at the beginning of the optimization [48].
The exact values are listed in the Supplementary Infor-
mation.

As input to NQST, almost-diagonal samples are taken
in each of the following 2N −1 Pauli bases: the all-Z ba-
sis, the (N −1) bases with XX at a pair of neighbouring
sites (with Z elsewhere), and the (N − 1) bases with Y Y
at a pair of neighbouring sites (with Z elsewhere). Note
that for the Hamiltonian given by Eq. (1), the samples
provide an estimation of the energy.

The results of the scaling study shown in Fig. 3e
and Fig. 3f use a modified VQE implementation for com-
putational efficiency. Instead of evolving the circuit us-
ing the entangling Hamiltonian, we use an entangling
layer ON comprising two layers of two-qubit gates sim-
ulated without noise, as depicted in Extended Data Fig.
1b. The entangling layer was chosen to exactly preserve
the symmetries of the lattice Schwinger model, while be-
ing easier to simulate numerically than evolution with
ĤE . Note that, since it is composed of nearest-neighbour
gates, it is also suited for superconducting quantum

hardware, especially to capacitively coupled, flux-tunable
transmon qubits, where the interaction XX + Y Y can
be easily implemented [49]. For the scaling study, 1024
samples are taken in each basis to estimate the energy
during SPSA optimization. The hyperparameter A of
SPSA is increased to 20 and the other parameters are
left unchanged.
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Supplementary Information:
Neural Error Mitigation of Near-Term Quantum Simulations

I. DETAILS OF THE TRANSFORMER NEURAL QUANTUM STATE
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FIG. S1: Illustration of a Transformer
layer | The Transformer consists of several
layers acting in sequence. The central
components of a Transformer layer are the
self-attention block and linear layer. To
enable a position-aware output, at each
layer a positional encoding of the index n is
added to the input. To enhance stability, a
skip connection and layer normalization are
employed.

We use the Transformer [1] neural network architecture to represent neu-
ral quantum states. The Transformer can be applied to represent probability
distributions and other functions over one-dimensional sequences of discrete
data. At its core is self-attention, a mechanism that learns correlations by as-
signing attention weights to each pair of positions (i.e., how much the output
at one position of a given sequence should depend on the input at another
position). Each layer of the Transformer contains a self-attention component,
which, in turn, consists of several independent so-called self-attention heads.
Within a self-attention component, each of these heads have independent pa-
rameters, and act on the layer inputs independently in parallel. The output of
the self-attention component is the concatenation of the outputs of each head.
In each head, for every pair of positions in the sequence, the attention weight
is computed from the inputs at those positions, using key and query vectors.
The output at each position is a sum, weighted by the attention weights, of
the value vectors at all positions. To improve the representation power of
the model, the self-attention components alternate with linear layers, which
act on each position individually. To ensure the stability of the model, skip-
connections and layer normalization are employed within each layer. A single
Transformer layer with all of its components is depicted in Fig. S1.

Recall from the Methods section of the main manuscript that the neural
quantum state maps a bitstring s ∈ {0, 1}N to a tuple (p(s), ϕ(s)), with 〈s|ψ〉 =√
p(s)eiϕ(s), where N is the number of qubits. The computational cost of

calculating 〈s|ψ〉 for a single computational basis state s is quadratic in the
number of qubits, and alternative versions of the Transformer architecture
improve this cost to being linear (e.g., [2]).

More specifically, the outputs p(s) and ϕ(s) are obtained from the bitstring s
as follows. The bitstring s is extended to s̃ = (0, s) by prefixing a zero bit. Each
bit s̃n of the input is encoded into a D-dimensional representation space using

a learned embedding, yielding the encoded bit e
(0)
nd with n ∈ {0, . . . , N} and

d ∈ {1, . . . , D}. Each index n is encoded using a learned positional encoding,
yielding the encoded index fnd. The encoded input is processed using K
identical layers. Each layer consists of a masked multi-head self-attention
mechanism [1], with H heads, followed by a linear layer, with skip-connections
and layer normalization. The weights of the attention matrices and the linear
layer are shared between the positions n, but not between the layers k.

The parameters of a single layer k are:

1. The query, key, and value matrices Q
(k)
hid, K

(k)
hid, and V

(k)
hid . The index h ∈ {1, . . . ,H} labels the self-attention

heads. The index i ∈ {1, . . . , D/H} runs over a representation space of dimension D/H, where we require that
D/H be an integer. As before, we have d ∈ {1, . . . , D}.

2. A matrix to process the output of the self-attention heads, O
(k)
de , with d, e ∈ {1, . . . , D}.

3. A weight matrix and a bias vector of the linear layer, W
(k)
de and b

(k)
d , with d, e ∈ {1, . . . , D}.

The self-attention component acts as follows:

1. We denote the input to the component by i
(k)
SA,nd, where n ∈ {0, . . . , N} and d ∈ {1, . . . , D}. Query, key, and

value vectors are computed as q
(k)
nhi =

∑
dQ

(k)
hidi

(k)
SA,nd, k

(k)
nhi =

∑
dK

(k)
hidi

(k)
SA,nd, and v

(k)
nhi =

∑
d V

(k)
hid i

(k)
SA,nd.

2. Attention weights are computed as follows. Compute the attention scores s
(k)
nmh =

∑
i q

(k)
nhik

(k)
mhi. Mask the

attention scores by setting s
(k)
nmh = −∞ whenever m < n. Compute the attention weights using the softmax



2

function given by

w
(k)
nmh =

exp(s
(k)
nmh)

∑
m′ exp(s

(k)
nm′h)

. (S1)

The masking ensures that w
(k)
nmh = 0 whenever m < n.

3. The output of each attention head is a
(k)
nhi =

∑
m w

(k)
nmhv

(k)
mhi. At each position n, concatenate the output of the

attention heads; that is, reshape the indices h and i into one index d, giving a
(k)
nd .

4. The output of the self-attention component is o
(k)
SA,nd =

∑
eO

(k)
de a

(k)
ne . Due to the masking, the output at position

n depends on the inputs only at positions m ≤ n. We write the action of the entire self-attention component

more abstractly as A(k), that is, o
(k)
SA = A(k)(i

(k)
SA).

The linear component acts on an input i
(k)
L,nd as o

(k)
L,nd =

∑
eW

(k)
de i

(k)
L,nd + b

(k)
d , which we write more abstractly

as o
(k)
L = L(k)(i

(k)
L ). Both components are wrapped with a skip-connection, layer normalization [3], and a ReLU

activation function. The output of the wrapped self-attention component A(k), acting on an input i
(k)
nd , is

a(k) = G(A(k), i(k)) = i(k) + ReLU
(
A(k)

(
LayerNorm(i(k))

))
, (S2)

where ReLU(x) = max(x, 0) is the ReLU activation function acting component-wise, and layer normalization is applied

on the last dimension of i
(k)
nd . We have introduced the notation G for the wrapping. The linear component L(k) is

wrapped in the same manner, giving e(k) = G(L(k), a(k)). In sum, the action of the entire Transformer layer is as
follows:

1. The input to the k-th layer is i
(k)
nd = e

(k−1)
nd + fnd.

2. The wrapped self-attention component is applied to give a(k) = G(A(k), i(k)).

3. The wrapped linear layer is applied to give e(k) = G(L(k), a(k)).

After the final Transformer layer, the outputs of the neural quantum state are obtained from the final representation

e
(K)
nh as follows. Scalar-valued logits `n are obtained from e

(K)
nh using a linear layer, with weights shared among different

positions n. The logits are used to obtain conditional probabilities according to

p(sn = 1|s1, . . . , sn−1) = σ(`n−1) and

p(sn = 0|s1, . . . , sn−1) = 1− p(sn = 1|s1, . . . , sn−1) = σ(−`n−1), where n ∈ {1, . . . , N}, (S3)

and σ(`n−1) = 1
1+e−`n−1

is the logistic sigmoid function. The conditional probabilities give p(s) via the conditional

probability chain rule

p(s) =

N∏

n=1

p(sn|s1, . . . , sn−1), (S4)

where p(s) is an automatically normalized probability distribution.
The factorization of the probabilities p(s), along with the fact that the neural network output at position n depends

only on the positions m ≤ n, may be leveraged to efficiently draw unbiased samples from the probability distribution
p. To do so, we proceed a single bit at a time. First, we compute p(s1|s0 = 0), and sample the bit s1 from the
resulting probability distribution. We then compute p(s2|s0, s1) and sample the bit s2 from it, and so on, until all bits
have been sampled. The sampling is needed when training the NQS using VMC, as explained in the next section.

The phase ϕ(s) is obtained by forming a vector E(K) = (e
(K)
0 , . . . , e

(K)
N ) by concatenating the final representations,

and projecting E(K) to a scalar value using a linear layer. Our Transformer is implemented in PyTorch [4], and is
partially inspired by aspects of the implementations in Refs. [5, 6].
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II. VMC TRAINING AND REGULARIZATION

In the final step of NEM described in the Methods section in the main manuscript, the neural quantum state is
trained using VMC. We add the regularizer

Lreg = −εreg

∑

s∈{0,1}N

∣∣∣〈s|ψ~λ〉
∣∣∣ (S5)

to the loss function, where εreg is a coefficient that is decreased over the course of training. The regularizer maximizes
the L1-norm of the wavefunction, thereby discouraging sparsity in the early stages of training. For ground states
that are known to overlap greatly with one or a few ground states, this regularization technique encourages the NQS
to capture subdominant amplitudes rather than collapsing onto the dominant contributions (e.g., the Hartree–Fock
states, or the lattice Schwinger ground states at m→ ±∞) early in the training process.

As with the energy, the regularizer and its gradient with respect to the parameters ~λ of the neural quantum state
|ψ~λ〉 need to be estimated from samples using the Monte Carlo method, giving the expressions

Lreg = − εregEs∼p~λ
[∣∣∣〈s|ψ~λ〉

∣∣∣
−1]
≈ −εreg

1

b

b∑

i=1

∣∣∣〈si|ψ~λ〉
∣∣∣
−1

and

∇θLreg = − εregEs∼p~λ
[∣∣∣〈s|ψ~λ〉

∣∣∣
−1

∇~λ<(ln〈s|ψ~λ〉)
]
≈ −εreg

1

b

b∑

i=1

[∣∣∣〈si|ψ~λ〉
∣∣∣
−1

∇~λ<(ln〈si|ψ~λ〉)
]
. (S6)

Here, < denotes the real part, the expectation values are taken over p~λ(s) = |〈s|ψ~λ〉|2, si are samples from the same
distribution, and b is the batch size used in VMC.

The regularizer’s gradient is added to the energy’s gradient at every iteration. For completeness, we reproduce the
VMC algorithm here:

1. Draw b samples {s1, . . . , sb} from p~λ(s) = ‖〈s|ψ~λ〉|2.

2. Compute the local Hamiltonians for all si ∈ {s1, . . . , sb}:

Hloc(si) =
∑

t∈{0,1}N

〈si|Ĥ|t〉6=0

〈si|Ĥ|t〉〈t|ψ~λ〉
〈si|ψ~λ〉

(S7)

3. Estimate the energy and its gradient with respect to the parameters ~λ of |ψ~λ〉 using

E ≈ 1

b
<
( b∑

i=1

Hloc(si)
)

and

∇θE ≈
2

b
<
[ b∑

i=1

(Eloc(si)− E)∗∇θ ln〈si|ψ~λ〉
]
, (S8)

where ln〈s|ψ~λ〉 = ln
√
p(s) + iϕ(s) in terms of the neural network’s outputs.

4. Estimate the regularizer and its gradient.

5. Add the energy’s gradient and the regularizer’s gradient, and update the parameters using the Adam optimizer.

III. EXPERIMENTAL VQE RESULTS FOR LiH

We can analyze the quality of the variational procedure implemented on the five-qubit IBMQ-Rome device by
looking at the energy optimization curves of the experimental results of VQE implemented for various bond lengths
of LiH (see Fig. S2). Generally, the optimization curves show that the experimental VQE procedure performs as
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FIG. S2: Experimental VQE energy optimization curves | Energy evaluations during SPSA optimization for LiH ground states at different
bond lengths using a five-qubit superconducting quantum computer. In order to compare optimization curves for all bond lengths, we plot the
energy difference to the ground state as a function of SPSA energy evaluations. Before optimization, the energy is estimated 25 times and used to
calibrate the initial step size of the algorithm. These energy values are reported to the left of the vertical dashed line. During each SPSA

iteration, the energy is estimated using 25 measurement bases with 1024 measurements per measurement basis. The parameters ~θ are updated
250 times, resulting in 500 energy evaluations. Note that three bond lengths show incomplete convergence by the end of the optimization process,
with one bond length (1.8), still decreasing. Although VQE does not reach convergence for all bond lengths, neural error mitigation is able to
improve the results up to chemical accuracy, with low infidelity, as shown in the top row of Fig. 2 in the main manuscript.

expected, with energy optimization curves decreasing and converging to low energy estimates. However, we also see
that the simulation is unable to reach high-accuracy energy estimates, ∆E / 10−3. This is due to the effects of noise
on, and limitations of, the variational quantum circuit [7]. Despite these errors, neural error mitigation is able to
extend all experimental results up to chemical accuracy, with low infidelities. We refer the reader to Table S1 for the
specific hyperparameters used in implementing VQE and NEM.

IV. QUANTUM STATE RECONSTRUCTION

An important feature of NEM is the ability to analyze the quality of the reconstructed neural quantum state at
various stages of the NEM algorithm. Since NEM employs NQS at the core of its construction, we have direct access to
the reconstructed quantum state through the probability, p(s), and phase, φ(s), distributions given by, p(s) = | 〈s|ψ〉 |2
and ψ(s) = arg(〈s|ψ〉). We analyze the reconstructed quantum state obtained after NQST as well as the final NEM
procedure for both of the systems studied in this paper, and compare the probability distributions modelled by the
neural quantum states to the VQE result. The VQE state is given by a density matrix ρ, because VQE is numerically
simulated using a density matrix simulator. The probability amplitudes of ρ are given by p(s) = Tr(ρ |s〉 〈s|). Since
we simulate VQE with noise, the VQE density matrix ρ describes a mixed state instead of a pure state. For mixed
states, the phase is not well-defined, and therefore not reported in Fig. S3 and Fig. S4.

In Fig. S3, we show the quantum states estimated at each stage of our process for the LiH ground states at a bond
length of l = 1.4 Å, prepared both experimentally (Fig. S3a) and numerically (Fig. S3b). We see that, for numerical
results, where we have access to the VQE quantum state, neural quantum state tomography accurately reconstructs
the optimized VQE state using the chosen measurement bases. For the experimental results, where we do not have
access to the final VQE quantum state, the neural quantum state trained using neural quantum state tomography
acts as an estimator of the final state expressed by the quantum device. At this stage, the neural quantum state
trained using NQST has not captured the exact ground state’s phase structure and inaccurately represents some of
the non-dominant computational basis states. After the NEM algorithm has been completed, the final NEM state
achieves accurate representations of both the probability distribution and phase for the computational basis states
whose exact probabilities are greater than 10−5 (or greater than 10−4 for experimental results). In the process of
improving the energy estimation achieved by VQE, NEM reconstructs and improves the ground-state wavefunction
itself. From another perspective, the classical ansatz trained through this process extends the “lifetime” of the
quantum simulation [8], allowing for its use in future work, without having to repeat the experiment.

Figure S4 shows a representation of the VQE state, as well as the neural quantum state after applying NQST
and after having completed NEM for the lattice Schwinger model. The phase structures of the lattice Schwinger
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FIG. S3: Quantum states at each step in the neural error mitigation algorithm for LiH | The quantum states obtained by VQE (blue
triangles), neural quantum state tomography (green circles), and neural error mitigation (red diamonds) for the LiH ground state at a bond
length of l = 1.4 Å. In contrast to the neural quantum state, the VQE state is given by a density matrix representing a mixed state because VQE
is simulated using a noisy density matrix simulator. Whereas the probability distribution is given by p(s) = Tr(ρ |s〉 〈s|), the phase for a mixed
state is not well-defined, and therefore not reported. In each subfigure, the top panel shows the probabilities for the NQS given by p(s) = |〈s|ψ〉|2
for each computational basis state |s〉. Computational basis states are sorted according to these probability amplitudes. The bottom panel shows
the phase error of the NQS relative to the ground state given by arg(〈s|ψ〉)− arg(〈s|ψg〉), where the global phase is fixed to a phase error of zero
for the computational basis state that has the largest ground state probability. Neural error mitigation applied to an experimentally prepared
VQE result is shown on the left (a), and NEM applied to a numerically simulated VQE result is shown on the right (b). Under our qubit
encoding for the electronic structure problem, the Hartree–Fock state is mapped to a computational basis state and constitutes the dominant
contribution to the exact ground state corresponding to the 0-th state on the horizontal axis. This results in an exact probability distribution
that has a sharp peak, as shown traced by the black line. We see that the neural quantum states trained using NQST approximately reconstruct
the VQE quantum state’s probability distribution, for the numerically simulated results. In addition, the final probability distribution
represented by the NEM states very accurately represents the basis states with exact probabilities greater than 10−5 for numerical simulations
and greater than 10−4 for our experimental results. The phase errors are shown in the bottom panel, where we see that the final NEM quantum
state accurately reconstructs the phase for computational basis states with probabilities greater than 10−5 for numerical simulations and greater
than 10−4 for our experimental results.

ground states follow a sign rule and have real amplitudes. Although possible, we do not enforce the sign rule or any
symmetries in our neural quantum states in order to show the general applicability of NEM. While the fidelity of the
NQST state with respect to the ground state is only 0.71, the errors in the complex phases that correspond to the
computational basis states with non-zero amplitudes are relatively small, and mostly confined to the range [−π2 , π2 ].
Given that converging to an accurate phase structure is one of the main difficulties encountered in training a neural
network using VMC [9], the NQST state may provide a good starting point from which it could be easy for the
VMC algorithm to converge to a good approximation of the ground state. After the NEM algorithm has completed,
the final NEM state achieves an accurate representation of both the probability distribution and the phases of the
lattice Schwinger ground state, specifically for the computational basis states whose exact probabilities are greater
than 10−5.

V. COMPARISON OF NEM TO VMC

The key observation outlined in this paper is that NQST and VMC can be combined to form a post-processing
error-mitigation strategy for ground-state preparation when the two procedures are conducted using a common neural
network ansatz. In addition to analyzing how well NEM improves the results obtained from noisy quantum simulations,
it is also useful to compare NEM to its classical counterpart: training a neural quantum state using only the variational
Monte Carlo algorithm, hereafter referred to as standalone VMC. We compare the performance of both methods as
a function of VMC batch size, which is the number of samples used in estimating the gradient and updating the
neural network’s parameters during VMC (see Section II). Given that we fix the total number of iterations used in
training, the batch size is indicative of the classical computational resources required. Note that increasing the batch
size decreases the variance of the energy’s gradient estimate. For larger systems, a large batch size is often required in
order to reach chemical accuracy, which imposes a bottleneck on the possible applications of VMC [10]. Another way
to increase the amount of classical computational resources, which may exhibit different scaling, would be to increase
the number of iterations at a fixed batch size.

In Fig. S5 we compare the energy error and infidelity of NEM performed on the experimental VQE result and
standalone VMC, for the LiH molecule at a bond length of l = 1.4 Å (the same experimental VQE data is presented
in the top row of Fig. 2 in the main manuscript). For NEM, we fix the outcome of the first stage of NEM (i.e., the
neural quantum state trained via NQST) and then train the VMC component of NEM using different batch sizes to
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FIG. S4: Quantum states at each step of the neural error mitigation algorithm for the N = 8 lattice Schwinger model | The
quantum states obtained by VQE (blue triangles), by NQST (green circles), and after completion of NEM (red diamonds) are shown, for the
lattice Schwinger model at m = −0.7. Similar to Fig. S3, the top panel shows the probabilities of each basis state sorted according to their
probability amplitudes, and the bottom panel shows the phase errors with respect to the exact ground-state phase. In contrast to the NQS
results, the VQE state is given by a mixed-state density matrix. Therefore, we report the VQE probability distribution but not the phase. Due to
the symmetries present in the lattice Schwinger ground state, many computational basis state amplitudes are zero in the exact ground-state
probability distribution (solid black line). While the probabilities of the VQE state somewhat follow the ground state, the VQE state
overestimates many of the computational basis states’ probabilities that do not contribute to the exact ground state. This is explained by the
effects of noise and because the quantum circuit employed only approximately preserves the symmetries of the model. We can see that NQST
successfully reconstructs the VQE state, accurately modelling the probability distribution for the computational basis states that contribute to
the exact ground state. Additionally, NQST provides an estimate of the phase, showing a phase error confined mostly to the range [−π/2, π/2]
for the computational basis states that make non-zero contributions to the exact ground state. At the end of NEM, the final probability
distribution represented by the NEM state accurately represents the probabilities and phases of the computational basis states that have exact
probabilities greater than 10−5.

investigate how the energy error and infidelity of the final NEM state scales. The results show that NEM performed
using the experimental results provides an advantage over using only VMC. NEM achieves chemical accuracy using
a lower batch size than VMC. In addition we note that NEM requires a smaller regularizer compared to conducting
the training using only VMC. Note that the ground states of LiH, a molecular system that can be mapped to four
qubits, can be feasibly solved using current classical methods.

For the lattice Schwinger model, we also study the performance of NEM and standalone VMC as a function of
system size and batch size (Fig. S6). We show that while the best results for standalone VMC are comparable to the
best results of NEM, standalone VMC has a lower success rate, especially for larger systems and smaller batch sizes.
Conversely, NEM reliably converges to a good approximation of the ground state. We speculate that the state found
by VQE, which is approximated by NQST, provides a good initialization for training using VMC, and explains the
improved convergence rate of the NEM algorithm. While we expect that, for system sizes presented, hyperparameter
tuning could potentially improve the results of standalone VMC, we speculate that the increased stability of NEM
over standalone VMC will persist at larger system sizes.

In order to understand the advantages of using quantum resources in conjunction with classical methods, future
research must be conducted to explore whether using the NEM algorithm for preparing ground states, such as those
for larger systems in quantum chemistry and lattice theories, converges to classical representations of quantum states
that are outside the reach of standalone VMC. This speculation stems from the fact that both NEM and standalone
VMC train a neural quantum state using the VMC algorithm, with the difference being that NEM initializes the
VMC algorithm using a classical representation of an experimentally prepared quantum state. One approach could
be to determine whether the NEM algorithm captures features of the experimentally prepared quantum state, such
as superposition and entanglement, in its initial neural quantum state representation and whether it retains these
features throughout the classical training process. We also speculate that exploring the loss landscape of VMC
can help to delineate the boundary between classically solvable ground-state preparation problems and those that
require quantum resources. In other words, we ask whether initializing VMC using a classical representation of
an experimentally prepared quantum state relaxes classical resource requirements of the VMC algorithm, such as
the exponentially large amount of memory needed to describe high-fidelity ground-state representations. The work
presented in this paper provides a framework for investigating the fundamental differences and potential synergy
between quantum and classical information processing.
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FIG. S5: Comparison between neural error mitigation and variational Monte Carlo for quantum chemistry | The performance of
neural error mitigation (red diamonds) on experimental VQE results compared to the performance of training a neural quantum state using
standalone VMC (orange crosses) is shown. Both methods are compared as a function of the VMC batch size for the LiH ground state for l = 1.4.
Both methods are performed using a neural quantum state that has both the same architecture hyperparameter values. The median results for
VMC are shown for 10 runs, and the shaded regions show the interquartile range. In (a), the chemical accuracy (CA) and Hartree–Fock (HF)
energy error are reported. For LiH, NEM applied to the experimental results outperforms standalone VMC, achieving chemical accuracy at a
batch size at a factor of two earlier than standalone VMC.
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FIG. S6: Comparison between neural error mitigation and variational Monte Carlo for the lattice Schwinger model | Performance
of standalone VMC on the lattice Schwinger model, compared to the performance of NEM, for various system sizes N and batch sizes b. While
the best results achieved by standalone VMC are no worse than the best results achieved by NEM, standalone VMC does not consistently
converge to a high-quality approximation of the ground state. Neural error mitigation is more stable, especially at smaller batch sizes and larger
system sizes. Each panel shows the median results, and the shaded regions show the interquartile ranges. The hyperparameter values used for
standalone VMC are the same as those used in the scaling analysis shown in Fig. 3e and Fig. 3f of the main manuscript, and are listed in the
column “> 8 sites” of Table S1.

VI. COMPARISON OF NEM ACROSS DIFFERENT LEVELS OF NOISE IN VQE

The results presented in this paper have shown that NEM can improve estimates of ground states and ground state
properties obtained from VQE on noisy devices and in noisy simulations by supplementing these noisy VQE results
with classical simulation methods. However, for high levels of noise, we expect the results obtained from VQE to
contain less information about the true ground state. Beyond a certain level of noise, we expect that supplementing
VQE with NEM should not outperform an NQS trained using purely classical methods such as VMC. In order to
determine the regime where the combination of VQE and NEM holds the promise of improvement over purely classical
methods, we study the performance of NEM as a function of VQE noise levels.

We consider the eight-site Schwinger model, at the critical point m = −0.7, and compare the performance of NEM
for VQE noise rates ranging from zero noise to complete depolarization. The VQE circuit used is the same as the
results shown in Fig. 4a of the main manuscript, and has an initial state of |01 · · · 01〉. After each layer of the global
entangling operation or single-qubit rotations, a depolarizing channel with a variable rate λ ∈ [0, 1] is applied to each
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FIG. S7: Comparison of the performance of NEM across different levels of noise in VQE | Performance of neural error mitigation
applied to VQE results for the eight-site Schwinger model at the critical mass m = −0.7. Single-qubit depolarizing noise gates of various noise
rates λ are applied after every operation in the simulation of the VQE circuit. The NEM performance when λ = 1 can be attributed to classical
resources only, since the output of VQE corresponds to a state close to the maximally mixed state. At λ ≤ 10−2, corresponding to a purity of
tr(ρ̂2) ≥ 0.82, the results of NEM show a clear improvement over those of classical resources alone. Shown is the median over 100 runs. The
shaded region represents the interquartile range.

qubit. The hyperparameters for NQST and VMC are the same as in the main manuscript.
At a depolarizing error rate of λ = 1, the VQE results are highly mixed and thus contain no information about

the true ground state or its properties, as noise completely dominates the simulation. While even in the completely
depolarizing simulation, NEM yields an improvement over VQE, its performance can be attributed to that of VMC
which uses only classical computational resources. Thus, the results obtained when λ = 1 can be used as a benchmark
for the performance of standalone VMC. The results in Fig. S7 show that at noise rates of λ = 10−2 or lower,
corresponding to a median purity tr(ρ̂2) ≥ 0.82 of the VQE density matrix, the energy error and infidelity of the
NEM state yield a clear improvement over the NEM results when λ = 1. These results underscore the fact that NEM
used in conjunction with VQE shows an improvement over a computation that uses only classical resources given that
the quality of the quantum resources meets a minimum threshold for the system studied.

VII. HYPERPARAMETER VALUES

We present the hyperparameter values of our numerical studies in Table S1.
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Lattice Lattice H2 LiH

Schwinger Schwinger

(8 sites) (> 8 sites)

Variational Quantum Eigensolver

Iterations 200 200 250 250

Post-rotation circuits 3 3 4 25

Shots per basis 512 1024 1024 1024

SPSA parameters:

a0 0.1 0.1 calibrated† calibrated

c0 0.1 0.1 0.1 0.1

α 0.602 0.602 0.602 0.602

γ 0.101 0.101 0.101 0.101

A 10 20 0 0

Neural Quantum State

Transformer parameters:

Layers 2 2 2 2

Heads 4 4 4 4

Internal dimension 8 12 8 8

Parameter count 890 1766–2006 794 826

Neural Quantum State Tomography

Bases 15 2N − 1 4 11

Samples per basis 512 512 300 500

Batch size 512 512 128 128

Learning rate 10−2 10−3 10−2 10−2

Epochs 50 30 100 100

Time (Single CPU) < 1 minute 8 minutes (16 sites) 30 seconds 6 minutes

Variational Monte Carlo

Iterations 400 3200 1000 1200

Batch size 512 28 − 214 256 256

Learning rate 10−2 3 × 10−3 then decreased
by 10 times after 1600 and
2400 iterations

10−2 10−2

Regularization 0.1 for 200 iterations, then
0

25.6/(2N ) decreasing lin-
early for 1000 iterations,
then 0

0.05 for 600 iterations, then
0

0.05 for 600 iterations, then
0

Time (Single CPU) < 1 minute 6 hours (16 sites) 10 seconds 20 seconds

TABLE S1: Hyperparameter values for neural error mitigation components | Presented are the hyperparameter values of the neural

quantum state, VQE training, neural quantum state tomography, and variational Monte Carlo for each system studied. †The a0 parameter for
each H2 and LiH variational circuit is calibrated [7] in Qiskit’s VQE function.
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