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Artificial intelligence (Al) now enables automated interpretation of medical
images. However, Al's potential use for interventional image analysis

remains largely untapped. This is because the post hoc analysis of data
collected during live procedures has fundamental and practical limitations,
including ethical considerations, expense, scalability, dataintegrityand a
lack of ground truth. Here we demonstrate that creating realistic simulated
images from human modelsis a viable alternative and complement to
large-scale in situ data collection. We show that training Al image analysis
models on realistically synthesized data, combined with contemporary
domain generalization techniques, results in machine learning models

that on real data perform comparably to models trained on a precisely
matched real data training set. We find that our model transfer paradigm
for X-ray image analysis, which we refer to as SyntheX, can even outperform
real-data-trained models due to the effectiveness of training on a larger
dataset. SyntheX provides an opportunity to markedly accelerate the
conception, design and evaluation of X-ray-based intelligent systems. In
addition, SyntheX provides the opportunity to test novel instrumentation,
design complementary surgical approaches, and envision novel techniques
thatimprove outcomes, save time or mitigate human error, free fromthe
ethical and practical considerations of live human data collection.

Advancesinrobotics and artificial intelligence (Al) are bringing autono-
mous surgical systems closer to reality. However, developing the Al
backbones of such systems currently depends on collecting training
dataduringroutine surgeries. This remains one of the largest barriers to
widespread use of Al systemsin interventional clinical settings, versus
triage or diagnostic settings, asthe acquisition and annotation of inter-
ventional datais time intensive and costly. Furthermore, while this
approachcancontribute to the automation or streamlining of existing
surgical workflows, robotic and autonomous systems promise even
more substantial advances: novel and super-human techniques that

improve outcomes, save time or mitigate human error. This is perhaps
the most exciting frontier of computer-assisted intervention research.

Conventional approaches for curating data for Al development
(thatis, sourcing it retroactively from clinical practice) are insufficient
fortraining Almodels that benefit interventions that use novel instru-
mentation, different access points or more flexible imaging. This is
becausetheyare, by definition,incompatible with contemporary clinical
practices and such data do not emerge from routine care. Further-
more, these novel systems are not readily approved, and thus not easily
or quickly introduced into clinical practice. Ex vivo experimentation
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Fig.1| Overall concept of SyntheX. Top: conventional approach for learning-
based tasks on medical imaging. Curating a relevant database of real X-ray
samples requires real-data acquisition and costly annotation from domain
experts. Bottom: SyntheX enables simplified and scaled-up data curation
because data generation is synthetic and synthesized data can be annotated

automatically through propagation from the 3D model, which canbe CT scans or
volumetric surgical tool models. SyntheX results in deep learning image analysis
models that perform comparably to or better than real-data-trained models.
Figure created with Biorender.com.

does not suffer the same ethical constraints; however, it is costly and
requires mature prototypes, and therefore does not scale well.

A promising alternative to these strategies is simulation, that is,
the in silico generation of synthetic interventional training data and
imagery from human models. Simulation offers a rich environment
for training both human and machine surgeons alike, and sidesteps
ethical considerations that arise when exploring procedures outside
the standard of care. Perhaps mostimportantly, insilico surgical sand-
boxes enable rapid prototyping during the research phase. Simula-
tion paradigms are inexpensive, scalable and rich with information.
While intra-operative data are generated in highly unstructured and
uncontrolled environments, and require manual annotation, simula-
tion can provide detailed ground-truth data for every element of the
procedure, including tool and anatomy pose, which areinvaluable for
Aldevelopment.

However, simulations can fall short of real surgery in one key
aspect: realism. The difference in characteristics between real and
simulated datais commonly referred to as the ‘domaingap’. The ability
of an Almodel to perform on datafrom adifferent domain, thatis, with
adomaingap fromthe datait wastrained on, is called ‘domain generali-
zation’. Domaingaps are problematic because of the well-documented
brittleness of Al systems', which exhibit vastly deteriorated perfor-
mance across domain gaps. This may happen even with simple differ-
ences, such as noise statistics, contrast level and other minutiae®”.
This unfortunate circumstance, which applies to allmachine learning
tasks, has motivated research in the Al field on simulation-to-reality
(Sim2Real) transfer, the development of domain transfer methods.

In this Article, we present SyntheX, a framework for developing
generalizable Al algorithms for X-ray image analysis solely based on
synthetic datasimulated from annotated computed tomography (CT).
Using realistic simulation of X-ray image formation from CT and using
domainrandomization to train Almodels, SyntheX creates Almodels
that retain their performance under domain shift, enabling evalua-
tionand deployment on clinical X-rays acquired in the real world. The
overall concept of SyntheX s illustrated in Fig. 1 and we demonstrate
its utility and validity on three clinical applications: hip imaging, sur-
gicalrobotic tool detection and coronavirus disease 2019 (COVID-19)
lesion segmentation.

Atthe core of our reportis an experiment on precisely controlled
data from the hip-imaging task that isolates and quantifies the effect

of domain shift for Al-based X-ray image analysis. Using CT images
from human cadaversand corresponding C-arm X-ray images acquired
from two different imaging systems during surgical exploration, we
generated a hip-image dataset consisting of geometrically identi-
cal images across various synthetic and the real domains to train Al
models for hip-image analysis. To our knowledge, no study so far has
isolated the effect of domain generalization using precisely matched
datasets across domains. This work also demonstrates a feasible and
cost-effective way to train Al image analysis models for clinical inter-
vention on synthetic data in a way that provides comparable perfor-
mancetotraining onreal clinical datain multiple applications. We also
demonstrate that the model’s performance increases substantially
as the number of synthetic training samples increases, which high-
lights the key advantage of SyntheX: making available large amounts
of well-annotated data for model training or pre-training.

Clinical tasks

We demonstrate the benefits of SyntheX on three X-ray image analysis
downstream tasks: hip imaging, surgical robotic tool detection and
COVID-19 lesion segmentation in chest X-ray (Fig. 2). All of the three
tasks use deep neural networks to make clinically meaningful predic-
tions on X-ray images. We introduce the clinical motivations for each
taskin the following sections. Details of the deep network and training/
evaluation paradigm are described in ‘Model and evaluation paradigm’.

Hip imaging

Computer-assisted surgical systems for X-ray-based image guidance
have been developed for traumasurgery®, total hip arthroplasty’, knee
surgery®, femoroplasty’, pelvis osteotomy’® and spine surgery". The
main challenge in these procedures is to facilitate intra-operative
image-based navigation by continually recovering the spatial
tool-to-tissue relationships from two-dimensional (2D) transmission
X-rayimages. One effective approach to achieving spatial alignmentis
the identification of known structures and landmarks in the 2D X-ray
image, which then are used to infer poses'>".

In the context of hip imaging, we define six anatomical struc-
tures and fourteen landmarks as the most relevant known structures.
They are shown in Fig. 2a. We trained deep networks using SyntheX
to make these detections on X-ray images. Synthetic images were
generated using CT scans selected from the New Mexico Decedent
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Fig. 2| Clinical tasks. a, Hip imaging. The hip anatomical structures include
left and right hemipelvis, lumbar vertebrae, upper sacrum, and left and right
femurs, which areillustrated by different coloursin the leftmost hip rendering.
The anatomical landmarks consist of left (L.) and right (R.) anterior superior
iliac spine (ASIS), centre of femoral head (FH), superior pubic symphysis (SPS),
inferior pubic symphysis (IPS), medial obturator foramen (MOF), inferior
obturator foramen (IOF) and the greater sciatic notch (GSN). These landmarks

:
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are useful inidentifying the anterior pelvic plane and initializing the 2D/3D
registration of both pelvis and femur®#2. b, Surgical robotic tool detection.
Anillustration of the image-guided robotic surgical system is shown on the left.
Apicture of the continuum manipulator (CM) is shown in the top right corner. An
examplereal X-ray image and the corresponding segmentation and landmarks
ofthe CMis shown on the right. ¢, COVID-19 CXR lesion segmentation. A real CXR
image of COVID-19 infection is shown with its lesion segmentation mask.

Image Database'. The three-dimensional (3D) anatomical landmarks
were manually annotated and the anatomical structures were seg-
mented using the automatic method described in ref. >, which were
then projected to 2D as labels following the simulation X-ray geo-
metries. We evaluate the performance of our model on 366 real X-ray
images collected from 6 cadaveric specimens using the Siemens
CIOS Fusion imaging system and another 60 real X-ray images from
a separate cadaveric specimen using the BrainLab LoopX imaging
system. Onrealimages, ground-truth target structures were annotated
semi-automatically. This real dataset also serves as the basis for our
precisely controlled experiments thatisolate the effect of the domain
gap. We provide substantially more details on the creation, annota-
tion and synthetic duplication of this dataset in ‘Precisely matched
hip dataset’.

Surgical robotic tool detection

Automatic detection of the surgical tool fromintra-operative imagesis
animportant step for robot-assisted surgery as it enables vision-based
control®. Because training a detection model requires sufficientimage
data with ground-truth labels, developing such models is possible
only after the surgical robot is mature and deployed clinically.

We demonstrate Al model development for custom and pre-clinical
surgical robotic tools.

We consider a continuum manipulator (CM) as the target object.
CMs have been investigated in minimally invasive robot-assisted
orthopaedic procedures because of their substantial dexterity and
stiffness'”’%, but they are not currently used clinically nor easily manu-
factured for extensive cadaveric testing. Using SyntheX, we address CM
detection, which consists of segmenting the CM body and predicting
distinct landmarks in the X-ray images. The semantic segmentation
mask covers the 27 alternating notches that discern the CM from the
other surgical tools; the landmarks are defined as the start and end
points of the CM centreline'. Syntheticimages were generated using
CTscansselected from the New Mexico Decedent Image Database' and
acomputer-aided design model of the CM. Three-dimensional CM seg-
mentations and landmarklocations were determined through forward
kinematics and then projected to 2D as training labels using the X-ray
geometry. The performance was evaluated on 264 real X-ray images
of the CM during pre-clinical cadaveric testing. These images were
acquired at different scenarios, including different cadaver specimens,
with or without drilling toolinserted, positions of the tool, and multiple
scanner acquisition settings. We present example simulation and real
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X-ray images in Extended Data Fig. 1. On real images, ground-truth
segmentation masks and landmark locations were annotated manually.

COVID-19 lesion segmentation

Chest X-ray (CXR) has emerged as a major tool to assist in COVID-19
diagnosis and guide treatment. Numerous studies have proposed the
use of Almodels for COVID-19 diagnosis from CXR and efforts to collect
and annotate large amounts of CXR images are underway. Annotat-
ing these images in 2D is expensive and fundamentally limited in its
accuracy dueto theintegrative nature of X-ray transmission imaging.
While localizing COVID-19 presence is possible, deriving quantitative
CXR analysis solely from CXR images is impossible. Given the avail-
ability of CT scans of patients suffering from COVID-19, we demonstrate
lung-imaging applications using SyntheX.

Specifically, we consider the task of COVID-19 lesion segmenta-
tion, whichis possible also from CXR to enable comparison. We used the
open-source COVID-19 CT dataset released by ImagEnglab® and the CT
scans released by the University of Electronic Science and Technology
of China (UESTC)* to generate synthetic CXR images. A 3D infection
mask was created for each CT using the automatic lesion segmentation
method COPLE-Net”. We followed the same realistic X-ray synthesis
pipeline and generated synthetic images and labels using the paired
CT scan and segmentation mask from various geometries. The lesion
labels were projected following the same geometries. The segmenta-
tion performance was tested on the benchmark dataset QaTa-COV19%,
which contains 2,951 real COVID-19 CXR samples. Ground-truth seg-
mentation masks for the COVID-19 lesions in these CXR images are
supplied with the benchmark, and were created in ahuman-machine
collaborative approach.

Precisely controlled investigations on hip
imaging

Beyond presenting SyntheX for various clinical tasks, we present experi-
ments onaunique dataset for hipimaging that enables the isolation of
the effect that the domain gap has on Sim2Real Al model transfer. On
thetask of anatomical landmark detection and anatomy segmentation
in hip X-ray, we study the most commonly used domain generalization
techniques, namely, domain randomization and domain adaptation,
and further consider different X-ray simulators, image resolution and
training dataset size. We introduce details on these experiments next.

Precisely matched hip dataset

We created an accurately annotated dataset of 366 real hip fluoroscopic
images and corresponding high-resolution CT scans of six lower torso
cadaveric specimens withmanual label annotations'?, which constitutes
the basis of our unique dataset that enables precisely controlled bench-
marking of domain shift. For each of the real X-ray images, the X-ray
camera pose was accurately estimated using a comprehensive 2D/3D
image registration pipeline'>. We then generated synthetic X-ray images
(digitally reconstructed radiographs (DRRs)) that precisely recreate
the spatial configurations and anatomy of the real X-ray images and
differin only therealism of the simulation (Fig. 3a). Because synthetic
images precisely match the real dataset, all labels in 2D and 3D apply
equally. Details of the dataset creation are introduced in ‘Benchmark
hip-imaging investigation’.

We studied three different X-ray image simulation techniques:
naive DRR generation, xreg DRR'® and DeepDRR****, which we refer
to as naive, heuristic and realistic simulations. They differ in the
considerations of modelling realistic X-ray imaging physical effects.
Figure 3b shows a comparison of image appearance between the
different simulators and a corresponding real X-ray image.

We have collected data on an additional lower torso cadaveric
specimen using the Brainlab LoopX imaging system, which s different
from the Siemens CIOS Fusion C-arm system for collecting the 366
controlled study data. High-resolution CT scans of the specimen were

acquired. We collected 60 X-ray images of the cadaveric specimen to
test our model’s generalization performance. These data differ from
allimages previously used in the controlled investigations for training
and testinginregards toanatomy, acquisition protocol and X-ray scan-
ner characteristics. We performed the same 2D/3D image registration
pipeline and generated 2D segmentation and landmark labels.

Domainrandomization and adaptation

Domain randomization is a domain generalization technique that
inflicts marked changes on the appearance of the input images. This
produces training samples with markedly altered appearance, which
forcesthe network to discover more robust associations between input
image features and desired target. These more robust associations
have been demonstrated to improve the generalization of machine
learning models when transferred from one domain to another
(here, from simulated to real X-ray images, respectively). We imple-
mented two levels of domain randomization effects, namely, regular
domainrandomization and strong domain randomization. Details are
described in ‘Domain randomization’.

Other thandomain randomization, which does not assume knowl-
edge or sampling of the target domain at training time, domain adap-
tation techniques attempt to mitigate the domain gap’s detrimental
effect by aligning features across the source (training domain; here,
simulated data) and target domain (deployment domain; here, real
X-rayimages). As such, domain adaptation techniques require samples
from the target domain at training time. Recent domain adaptation
techniques have increased the suitability of the approach for Sim2Real
transfer because they now allow for the use of unlabelled data in the
target domain. We conducted experiments using two common domain
adaptation methods: CycleGAN, agenerative adversarial network with
cycle consistency® and adversarial discriminative domain adaptation
(ADDA)?. The two methods are similar in that they attempt to align
properties of real and synthetic domains, and differ based on what
properties they seek to align. While CycleGAN operates directly on the
images, ADDA seeks to align higher-level feature representations, that
is,image features after multiple convolutional neural network layers.
Example CycleGAN generated images are shown in Fig. 3b. More details
of CycleGAN and ADDA training are provided in ‘Domain adaptation’.

Model and evaluation paradigm

Asthefocus of our experiments is to demonstrate convincing Sim2Real
performance, werely on a well-established backbone network architec-
ture, namely, TransUNet”, for all tasks. TransUNet is a state-of-the-art
medicalimage segmentation framework, which has shown convincing
performance across various tasks”. Segmentation networks for all
clinical applications are trained to minimize the Dice loss (L.,)**, which
evaluates the overlap between predicted and ground-truth segmen-
tation labels. For hip-image analysis and surgical tool detection, we
adjust the TransUNet architecture as shownin Extended Data Fig. 2 to
concurrently estimate landmark locations. Reference landmark loca-
tions are represented as symmetric Gaussian distributions centred on
the true landmark locations (zero when the landmark is invisible). This
additional prediction targetis penalized using (L,;), the mean squared
error between network prediction and reference landmark heatmap.

For evaluation purposes, we report the landmark accuracy as the
[, distance between predicted and ground-truth landmark positions.
Further, we use the Dice score to quantitatively assess segmentation
quality for hipimaging and surgical tool detection. The COVID-19 lesion
segmentation performanceis reported using confusion matrix metrics
to enable comparison with previous work?.

For all three tasks, we report both Sim2Real and Real2Real
(reality-to-reality) performances. The Sim2Real performance was
computed on all testing real X-ray data. The Real2Real experiments
were conducted using k-fold cross-validation, and we report the perfor-
mance as anaverage of all testing folds. For the hip-imaging benchmark
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poses. Using these poses, synthetic X-rays can be generated from the CT scans
that precisely match the real X-ray datain all aspects but appearance. b, Changes
in (synthetic) X-ray appearance based on simulation paradigm.

studies, we further carefully designed the evaluation paradigm in a
leave-one-specimen-out fashion. For each experiment, the training and
validation data consisted of all labelled images from all but one speci-
menwhilealllabelled images from the remaining specimen were used
astest data. The same datasplit was strictly preserved also for training
of domain adaptation methods to avoid leakage and optimistic bias.
Onthescaled-up dataset, we used all syntheticimages for training and
evaluated on all real data in the benchmark dataset.

Aspecially designed assessment curvature plotis used for report-
ing pelvic landmark detection performance. This way of measuring
landmark detection performance provides detailed information on the
two desirable attributes of such an algorithm: (1) completeness and (2)
precision of detected landmarks. The direct network output for each
landmark predictionis aheatmap intensity image (/). To distinguish the
landmark prediction confidence, we compute a normalized
cross-correlation between / and the Gaussian landmark heatmap
Igaussr NCC(, Igs)">. Landmarks are considered valid (activated) if
ncc(l, Iy, is higher than a confidence threshold, ¢, (ncc(/, Iy, > ).
The kth predicted landmark location x’;, is reported using the image
coordinate of the maximum intensity pixel. Given the ground-truth
location xk the mean landmark detection error (€') is reported
as the average L, dlstance error over all activated landmarks:
eld =2 Zk o IIxE = XEl12.(k € {ncc (K, I¢,,,5) > @), where K is the total
number of actlvated landmarks Theratio (p) of theactivated landmarks
over all landmarks is afunction of ¢p. Thus, we created plots to demon-
strate the relationship between €' and p, which shows the change of the
error as we lower the threshold to activate more landmarks. Ideally,
we would like a model to have a 0.0 mm error with a100% activation
percentage, corresponding to a measurement in the bottom right
corner of the plotsin Fig. 4. Following the convention in previous work™?,
we selected a threshold of 0.9 (ncc(/, I,,,s,) > 0.9) toreport the numeric
results for all ablation study methods in Table 1. This threshold selects
the network’s confident predictions for evaluation.

Results

Primary findings

We find that across all three clinical tasks, namely, hip imaging, surgical
robotic tool detection and COVID-19 lesion segmentation, models

trained using the SyntheX Sim2Real model transfer paradigm when
evaluated on real data perform comparably to or even better than
models trained directly on real data. This finding suggests that
SyntheX, that is, the realistic simulation of X-ray images from CT
combined with domain randomization, is a feasible cost- and
time-effective, and valuable approach to the development of
learning-based X-ray image analysis algorithms that preserve
performance during deployment on real data.

Hip imaging

We present the multi-task detection results of hip imaging on images
with360 x 360 pxin Extended Data Tables1and 2. Bothlandmark detec-
tion and anatomical structure segmentation performance achieved
using SyntheX Sim2Real model transfer are superior to those of Real-
2Real when considering averaged metrics. The Sim2Real predictions
are more stable with respect to their standard deviation: landmark
error of 3.52 mm, Dice score 0of 0.21, compared with 8.21 mmand 0.25,
respectively, for Real2Real. We attribute thisimprovement to the flex-
ibility of the SyntheX approach, providing the possibility of simulating
aricher spectrum of image appearances from more hip CT samples and
varied X-ray geometries compared with the limited data sourced from
complex real-world experiments.

Our Sim2Real model’s performance on the 60 real X-ray images
acquired by the BrainLab LoopX imaging system achieves ameanland-
mark detection error of 6.16 + 5.15 mm and a Dice score of 0.84 + 0.12,
whichis similar to the performance reported on the 366 Siemens real
X-rays. This result suggests the strong generalization ability of the
SyntheX-trained model across differentimaging acquisition systems.

Considering individual anatomical landmark and structure, we
have noticed that the Sim2Real detection accuracies of most land-
marks are superior or comparable to Real2Real accuracies, expect
for superior pubic symphysis and inferior pubic symphysis. This is
potentially because the left and right positions of superior pubic sym-
physis and inferior pubic symphysis are very close, and thus their local
geometric features are ambiguous during simulation. The Sim2Real
segmentation performance is consistently better than Real2Real in
all six structures. The detection accuracy of landmark ASIS and the
segmentation accuracy of structure Sacrum are the worst in both
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Fig. 4 | Plots of average landmark detection error with respect to activated
landmark percentage. The Real2Real performance on the controlled dataset
isshowningold. Anideal curve should approach the bottom right corner: all
landmarks detected with perfect localization. Each plot compares the baseline
Real2Real performance curve to various Sim2Real methods that are evaluated
onthesamereal data test set. The Sim2Real technique of the specific method is
identified in the top legend of each plot. We use real, realistic, heuristic and naive
to refer to the image domains with decreasing level of realism, which are defined
in‘Benchmark hip-imaging investigation’. Domain names followed by ‘CycleGAN’

Activated landmark percentage (%)

Activated landmark percentage (%)

mean the training data are generated using CycleGAN trained between the
specificimage domain and the real image domain; ‘reg DR’ and ‘str DR’ refer to
regular domain randomization and strong domain randomization, respectively.
a-cPerformance comparison of methods trained on precisely matched datasets.
d-f,i, Evaluation of the added effect of using domain adaptation techniques again
using precisely matched datasets. g,h, Improvements in Sim2Real performance
onthesamereal data test set when a larger, scaled-up synthetic training set is
used. All the results correspond to input image size of 360 x 360 px.

Sim2Real and Real2Real, which is because the feature appearances
change more drastically in varying projection geometries than the
other landmarks and structures.

In addition, we particularly studied the Sim2Real performance
change with respect to the number of generated training datasamples.
In the hip-imaging task, we generated an increasing number of
scaled-up simulation images as training data using CT scans from the
New Mexico Decedent Image Database'. We generated 500 synthetic
X-ray images for every CT scan following the same randomized geom-
etry distribution, and created four training datasets that contain1,000,
2,000, 5,000and 10,000 images. We trained the same network model
using the same hyperparameters on these four datasets until conver-
gence and reported testing performance on the 366 real hip X-ray

images. The landmark performance curves are presented in Extended
DataFig.3.Numericresultsare presentin Extended Data Table 3. We can
clearly observe that the Sim2Real performances consistently improve
asthe number of training dataincreases.

Surgical robotic tool detection

The results of the surgical tool detection task are summarized in
Extended Data Tables 4 and 5. The landmark detection errors of
Sim2Real and Real2Real are comparable to ameanlocalizationaccuracy
of 1.10 mm and 1.19 mm, respectively. However, the standard devia-
tion of the Sim2Real error is substantially smaller: 0.88 mm versus
2.49 mm. Further, with respect to segmentation Dice score, Sim2Real
outperforms Real2Real by alarge margin achievingamean Dice score
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Table 1| Hip-imaging landmark detection errors and segmentation Dice scores

Training domain Landmark detection errors (mm) Dice score
Regular DR Strong DR Regular DR Strong DR
Mean Cl Mean Cl Mean Cl Mean Cl

RealXray (Real2Real) 6.90+10.69 0.39 6.46+8.21 0.30 0.80+0.24 0.01 0.79+0.25 0.01
Realistic 7.59+13.80 0.51 6.44+7.05 0.26 0.78+0.25 0.01 0.80+0.23 0.01
Heuristic 6.83+9.39 0.35 718+7.93 0.29 0.76+0.27 0.01 0.79+0.24 0.01
Naive 8.23+14.18 0.53 10.50+12.34 0.47 0.69+0.29 0.01 0.73+0.26 0.01
Realistic-Cyc 6.57+£8.22 0.30 6.62+6.82 0.25 0.79+0.25 0.01 0.80+0.23 0.01
Naive-Cyc 7.35+12.10 0.44 8.66+13.16 0.48 0.78+0.25 0.01 0.79+0.23 0.01
Realistic-ADDA 7.33+13.21 0.48 6.41£6.27 0.23 079+0.24 0.01 0.80+0.23 0.01
Naive-ADDA 7.82+13.25 0.49 10.38+13.50 0.51 0.70+0.29 0.01 0.73+0.26 0.01
Realistic-Scaled 571:4.31 0.16 5.95+3.52 013 0.85+0.23 0.01 0.86+0.21 0.01
Realistic-Cyc-Scaled 5.88+3.73 0.13 6.20+3.56 013 0.84+0.23 0.01 0.85+0.21 0.01
Realistic-Scaled (HD) 519+3.95 0.14 5.48+3.37 012 0.84+0.23 0.01 0.87+0.20 0.01

The landmark errors are reported at a heatmap threshold of 0.9. All errors are reported as a mean of sixfold individual testing on 366 real hip X-ray images. The lower landmark errors
correspond to better performance. The Dice score ranges from O to 1, with larger values corresponding to better segmentation performance The best performance result is bolded. Real2Real
refers to training and testing both in real domain datasets. Cl refers to confidence intervals. They are computed using the 2-tailed z-test with a critical value for a 95% level of confidence

(p < 0.05) DR, domain randomization; Cyc, CycleGAN; ‘-Scaled’, training on scaled-up dataset; HD, higher image resolution of 480x480 px.

0f 0.92 + 0.07 compared with 0.41 + 0.23, respectively. Overall, the
results suggest that SyntheX is a viable approach to developing deep
neural networks for this task, especially when the robotic hardware is
inthe prototypic stages.

COVID-19 lesion segmentation

Theresults of COVID-19 lesion segmentation are presented in Extended
Data Table 6. The overall mean accuracy of SyntheX training reaches
85.03% compared with 93.95% for the real data training. The Sim2Real
performanceis similar to Real2Real in terms of sensitivity and specific-
ity, but falls shortin the other metrics. As the 3D CT scans for training
X-ray image generation were from different patients compared with
thereal X-rays and the lesion annotations were performed by different
expert clinicians, there is an inconsistency in the lesion appearance
between training data and real X-ray data, which potentially causes
the performance deterioration. Similar effects have previously
been reported for related tasks, such as lung nodule detection® and
thoracic disease classification®. The results suggest that SyntheX is
capable of handling soft tissue-based tasks, such as COVID-19 lesion
segmentation.

Sim2Real benchmark findings

Onthe basis of our precisely controlled hip-imaging ablation studies,
including comparisons of (1) simulation environment, (2) domain
randomization and domain adaptation effects, and (3) image resolu-
tion, we observed that training using realistic simulation with strong
domainrandomization performs onapar with models trained onreal
data or models trained on synthetic databut with domainadaptation,
yet, does not require any real data at training time. Training using
realistic simulation consistently outperformed naive or heuristic
simulations. The above findings canbe observedinFig.4 and Table1,
where the model trained with realistic simulation achieved a mean
landmark detection error of 6.44 + 7.05 mm, and amean Dice score of
0.80 + 0.23. The mean landmark and segmentation results of the Real-
2Real and realistic-CycleGAN models were 6.46 + 8.21 mm, 0.79 + 0.25,
and 6.62 + 6.82 mm, 0.80 + 0.23, respectively. The mean landmark
errors of heuristic and naive models were all above 7 mm, and their
meanDicescoreswereallbelow 0.80. Training using scaled-up realistic
simulation data with domain randomization achieved the best per-
formance onthis task, even outperformingreal data-trained models

duetotheeffectiveness of larger training data. The best performance
results are highlighted in Table 1. Thus, realistic simulation of X-ray
images from CT combined with domain randomization, which we
refer to as the SyntheX model transfer concept, is a most promis-
ing approach to catalyse learning-based X-ray image analysis. The
specially designed landmark detection error metric plot, which sum-
marizes the results across all ablations onimages with 360 x 360 px,
isshownin Fig. 4. We plotted the Real2Real performance using gold
curves as abaseline comparison with all the other ablation methods.

The effect of domain randomization

Across all experiments, we observed that networks trained with strong
domain randomization consistently achieved better performance than
those with regular domain randomization. This is expected because
strong domain randomization introduces more drastic augmentations,
which samples amuch wider spectrum of possible image appearance
and promotesthe discovery of more robust features that are less prone
to overfitting. The only exceptionis the training on naively simulated
images, where training with strong domain randomization results in
much worse performance compared with regular domain randomiza-
tion. We attribute this to the fact that the contrast of bony structures,
which are most informative for the task considered here, are already
much less pronounced in naive simulations. Strong domain randomi-
zationthen further increases problem complexity, to the point where
performance deteriorates.

From Fig. 4a-c, we see that realistic simulation (DeepDRR) out-
performs all other X-ray simulation paradigmsin both regular domain
randomization and strong domain randomization settings. Realistic
simulation trained using strong domain randomization even outper-
forms Real2Real with regular domain randomization. As our experi-
ments were precisely controlled and the only difference between the
two scenarios is the image appearance due to varied simulation para-
digminthetraining set, this result supports the hypothesis that realistic
simulation of X-rays using DeepDRR performs best for model transfer
to real data. The strong domain randomization scheme includes a
rich collection of image augmentation methods. The Sim2Real test-
ing results on real X-ray images acquired from a different acquisition
system, the BrainLab LoopX system, have shown similar performance.
This suggests that models trained with SyntheX generalize to images
across acquisition settings.
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The effect of domain adaptation

From Fig. 4d,f, we observe that both realistic-CycleGAN and
naive-CycleGAN achieve comparable performance to Real2Real. This
means that images generated from synthetic images via CycleGAN
have similar appearance, despite the synthetic training domains being
different. Theimprovements over training purely on the respective syn-
thetic domains (Fig. 4a,c) confirms that CycleGAN is useful for domain
generalization. ADDA training also improves the performance over
non-adapted transfer, but does not perform at the level of CycleGAN
models. Interestingly, ADDA with strong domain randomization shows
deteriorated performance compared with regular domain randomiza-
tion (Fig. 4e,i). This is because the marked and random appearance
changes due to domain randomization complicate domain discrimina-
tion, whichin turn has adverse effects on overall model performance.

Scaling up the training data
Weselected the best performing methods from the above domain rand-
omizationand domainadaptation ablations onthe controlled dataset.
These methods were realistic simulation with domain randomization
and CycleGAN training based on realistic simulation, respectively, and
trained onthe scaled-up dataset, which containsamuchlarger variety of
anatomical shape and imaging geometry, that s, synthetic C-arm poses.
With more training data and geometric variety, we found that
all scaled-up experiments outperform the Real2Real baseline on
the benchmark dataset (Fig. 4g,h). The model trained with strong
domain randomization on realistically synthesized but large data
(SyntheX, asreported above) achieved amean landmark distance error
0f5.95 + 3.52 mm, and amean Dice score of 0.86 + 0.21. For segmenta-
tion performance, SyntheX is substantially better than the Real2Real
baseline (P=2.3 x 107 using a one-tailed ¢-test). Landmark detection
also performedbetter, but theimprovement was not significantat the
P=0.05 confidence level (P=0.14 using a one-tailed t-test), suggest-
ing that our real dataset was adequate to train landmark detection
models. Figure 5 presents a collection of qualitative visualizations of
the detection performance of this synthetic-data-trained model when
applied to real data. This result suggests that training with strong
domainrandomization and/or adaptation onlarge-scale, realistically
synthesized datais afeasible alternative to training on real data. Train-
ing on large-scale data processed by CycleGAN achieved comparable
performance (6.20 + 3.56 mm) as pure realistic simulation with domain
randomization, but comes with the disadvantage that real data with
sufficient variability must be available at training time to enable Cycle-
GAN training.

Discussion
We present general use cases of SyntheX for various scenarios, includ-
ing purely bony anatomy (the hip), ametallicartificial surgical tool and
soft tissue (lung COVID-19 lesion). Our experiments on three varied
clinical tasks demonstrate that the performance of models trained
using SyntheX—on real data—meets or exceeds the performance of
real-data-trained models. We show that generating realistic synthetic
datais aviableresource for developing machine learning models and
is comparable to collecting largely annotated real clinical data.
Using synthetic data to train machine learning algorithms is
receiving increasing attention. In general computer vision, the Sim-
2Real problem has been explored extensively for self-driving per-
ception® ¢ and robotic manipulation® *, In diagnostic medical
image analysis, GAN-based synthesis of novel samples has been used
to augment available training data for magnetic resonance imag-
ing®™*®, CT***°, ultrasound®®, retinal®'~>, skin lesion®***> and CXR*®
images. In computer-assisted interventions, early successes on the
Sim2Real problem include analysis on endoscopic images*>’* and
intra-operative X-ray®®*2, The controlled study here validates this
approach in the X-ray domain by showing that Sim2Real compares
favourably to Real2Real training.

The hip-imaging ablation experiments reliably quantify the effect
ofthe domaingap onreal data performance for varied Sim2Real model
transfer approaches. This is because all aleatoric factors that usually
confound such experiments are precisely controlled for, with altera-
tions to image appearances due to the varied image simulation para-
digmsbeing the only source of mismatch. The aleatoric factors that we
controlledinclude anatomy, imaging geometries, ground-truth labels,
network architectures and hyperparameters. The number of training
samples is the same for all experiments. Use of domain randomiza-
tion and adaptation techniques does not create additional samples
but merely changes the appearance of samples on the pixel level. In
particular, the viewpoints and 3D scene recreated in the simulation
were identical to the real images, which to our knowledge has not yet
beenachieved. Fromtheseresults, we draw the following conclusions.

 Physics-based, realistic simulation of training data using the Deep-
DRR framework resultsin models that generalize better to the real
datadomain compared with models trained on lessrealistic, that
is, naive or heuristic, simulation paradigms. This suggests, not
surprisingly, that matching the real image domain as closely as
possible directly benefits generalization performance.

« Realistic simulation combined with strong domain randomization
(SyntheX) performs ona par with both the best domain adaptation
method (CycleGAN with domain randomization) and real-data
training when models are trained on matched datasets. How-
ever, because SyntheX does not require any real data at training
time, this paradigm has clear advantages over domain adapta-
tion. Specifically, it saves the effort of acquiring real data early in
development or designing additional machine learning architec-
tures that perform adaptation. This makes SyntheX particularly
appealing for the development of novel instruments or robotic
components, real images of which can simply not be acquired
early during conceptualization.

Realistic simulation using DeepDRR is as computationally efficient as
naive simulation, both of which are orders of magnitude faster than
Monte Carlo simulation®, Further, realistic simulation using Deep-
DRR brings substantial benefits in regards to Sim2Real performance
and self-contained data generation and training. These findings are
encouraging and strongly support the hypothesis that training on
synthetic radiographs simulated from 3D CT is a viable alternative to
realdatatraining, or ata minimum, a strong candidate for pre-training.

Compared with acquiring real patient data, generating large-scale
simulation data is more flexible, time efficient, low-cost and avoids
privacy concerns. For the hip-image analysis use case, we performed
experiments based on 10,000 syntheticimages from 20 hip CT scans.
Training with realistic simulation and strong domain randomization
outperformed Real2Real training at the 90% activation level but gene-
rally improved performance as seen by a flattened activation versus
error curve (Fig.4g). The performance of training with CycleGAN with
larger datasets was similar. These findings suggest that scaling-up data
for training is an effective strategy toimprove performance bothinside
and outside of the training domain. Scaling up training datais costly or
impossible in real settings, but in comparison is easily possible using
data synthesis. Having access to more varied data samples during
training helps the network parameter optimization find amore stable
solution that also transfers better.

We have found that Sim2Real model transfer performs best for
scenarios where real data and corresponding annotations are particu-
larly hard to obtain. This is evidenced by the change in the performance
gap between Real2Real and Sim2Real training, where Sim2Real per-
forms particularly well for scenarios where little real data are available,
such as for hip imaging and robot tool detection, and hardly matches
Real2Real performance for use cases where abundant real data exist,
such as COVID-19 lesion segmentation. The value of SyntheX thus
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Fig. 5| Qualitative results of the segmentation and landmark detection.
The results are presented as overlays on testing data using the model trained
with scaled-up SyntheX data. Anatomical segmentation structures are blended
with various colours. Landmark heatmap responses are visualized in green. The

projection geometries corresponding to the images relative to a 3D bone mesh
model of the anatomy are presented in the centre. The X-ray sources are shown as
greendots and the principal rays are shown as green lines.

primarily derives from the possibility of generating large synthetic
training datasets for innovative applications, for example, including
custom-designed hardware'*** or novel roboticimaging paradigms®*®,
the data for which could not otherwise be obtained. Second, SyntheX
can complement real datasets by providing synthetic samples that
exhibit increased variability in anatomies, imaging geometries or
scene composition. Finally, the SyntheX simulation paradigm enables
generation of precise annotations, for example, the lesion volume in
the COVID-19 use case, that could not be derived otherwise.
Interestingly, although domain adaptation techniques (CycleGAN
and ADDA) have access to data in the real domain, these methods
outperformed domain generalization techniques (here, domain
randomization) by only a small margin in the controlled study. The
performance of ADDA training heavily depends on the choices of
additional hyperparameters, such as the design of the discriminator,
number of training cycles between task and discriminator network
updates, and learning rates, among others. Thus, it is non-trivial to

find the best training settings, and these settings are unlikely to apply
to other tasks. Because CycleGAN performs image-to-image transla-
tion, acomplicated task, it requires sufficient and sufficiently diverse
datainthe real domain to avoid overfitting. Further, using CycleGAN
requires an additional training step of alarge model, whichis memory
intensive and generally requires long training time. In certain cases,
CycleGAN models could also introduce undesired effects. A previous
study found that the performance of CycleGAN is highly dependent
on the dataset, potentially resulting in unrealistic images with less
information content than the original images®. Moreover, although
ref.“ showed thatimage-to-image translation may closer approximate
real X-rays according to image similarity metrics, our study shows that
the advantage over domain randomization in terms of downstream
task performance is marginal. Finally, because real domain data are
beingusedinboth domainadaptation paradigms, adjustments to the
real-data target domain, for example, use of a different C-arm X-ray
imaging device or design changes to surgical hardware, may require
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de novo acquisition of real data and re-training of the models. In con-
trast, SyntheX resembles a plug-and-play module, to be integrated
into any learning-based medicalimaging tasks, whichis easy to set up
and use. Similar to multiscale modelling®® and in silico virtual clinical
trials®*’°, SyntheX has the potential to envision, implementand virtually
deploy solutions for image-guided procedures and evaluate their
potential utility and adequacy. This makes SyntheX a promising tool
that may replicate traditional development workflows solely using
computational tools.

Our scaled-up hip-imaging experiments using SyntheX achieved
amean landmark detection error of 5.95 + 3.52 mm. A pelvic landmark
detection error of 5-6 mmis frequently reported in the literature: ref.
reported amean error of 5.0 mm'and and ref. *reported amean error
of 5.6 £ 4.5 mm. This accuracy was tested to be effective ininitializing
the 2D/3D pelvis registration and achieving less than 1° error for 86%
of the images™. We consider this detection accuracy to be sufficient
for related hip-imaging tasks. Extended Data Fig. 4 shows histograms
ofthe C-arm geometry variations in the real hip-imaging dataset. The
C-arm geometry is reported as the rotation difference of each view’s
pelvis registration pose with respect to the standard anterior/posterior
pose. We have observed that most of the C-arm geometries are within
30°. This range of C-arm geometry distribution is typical for pelvic
procedures, such as osteotomy™.

Despite the promising outlook, our study has several limitations.
First, while the real X-ray and CT datasets of cadaveric specimens
used for the hip imaging and robotic tool segmentation task are of a
respectable size for this type of application, it is small compared with
some dataset sizes in general computer vision applications. However,
the effort, facilities, time and, therefore, costsrequired to acquire and
annotate adataset of even this size are substantial due to the nature of
the data. Further, we note that using a few hundred images, as we do for
the hip-imaging X-ray tasks, is a typical size in the literature®>”* 7, and
most of the existing work on developing machine learning solutions
for intra-operative X-ray analysis tasks, such as 2D/3D registration,
do not develop nor test their methods on any real data™. In summary,
while datasets of the size reported here may not accurately reflect all
of the variability one may expect during image-based surgery, the
models trained on our datasets performed well on held-out data, using
both leave-one-subject-out cross-validations and an independent
test set, and performed comparably to previous studies on larger
datasets™”’.

Second, the performance we report is limited by the quality of
the CT and annotations. The spatial resolution of CT scans (between
0.5 mm and 1.0 mm in hip imaging and surgical robot tool segmenta-
tion; between 1.0 mm and 2.0 mm in COVID-19 lesion segmentation,
isotropic) imposed alimitation ontheresolutionthat canbeachieved
in 2D simulation. Pixel sizes of conventional detectors are as small
as 0.2 mm, smaller than the highest-resolution scenario considered
here. However, contemporary computer vision algorithms for image
analysis tasks have considered only downsampled imagesinthe ranges
described here. Anotherissue arises from annotation mismatch, espe-
cially when annotations are generated using different processes for
SyntheX training and evaluation onreal 2D X-ray images. This challenge
arose specifically in the COVID-19 lesion segmentation task, where
3D lesion labels generated from the pre-trained lesion segmentation
network and used for SyntheX training are not consistent with the anno-
tations on real 2D X-ray data. This is primarily for two reasons. First,
because CT scans and CXR images were not from the same patients,
COVID-19 disease stages and extent of lesions were varied; second,
becausereal CXRs were annotated in2D, smaller or more opaque parts
of COVID-19 lesions may have been missed due to the projective and
integrative nature of X-ray imaging. This mismatch in ground-truth
definition is unobserved but establishes an upper bound on the pos-
sible Sim2Real performance. Further, realism of simulation can be
improved with higher-quality CT scans, super-resolution techniques

and advanced modelling techniques to more realistically represent
anatomy at higher resolutions.

Third, SyntheX performs X-ray image synthesis from existing
human models, which does not manipulate pathologies/lesions within
healthy patient scans. For example, in the application of COVID-19
lesion segmentation, the CT scans were acquired from patients that
were infected by COVID-19 and contained lesions naturally. Our X-ray
synthesis model followed the same routine to generate images from
the CTrecordings, which then present lesions inthe 2D domain as well.
Future work will consider expanding on our current work by research-
ing possibilities to advance human modelling.

Conclusion

In this paper, we demonstrated that realistic simulation of image for-
mation from human models combined with domain generalization or
adaptation techniques is a viable alternative to large-scale real-data
collection. We demonstrate its utility on three variant clinical tasks,
namely hip imaging, surgical robotic tool detection and COVID-19
lesion segmentation. On the basis of controlled experiments on a pel-
vic X-ray dataset, which is precisely reproduced in varied synthetic
domains, we quantified the effect of simulation realism and domain
adaptationand generalization techniques on Sim2Real transfer perfor-
mance. We found promising Sim2Real performance of all models that
were trained onrealistically simulated data. The specific combination
of training on realistic synthesis and strong domain randomization,
which werefer to as SyntheX, is particularly promising. SyntheX-trained
models performon apar withreal-data-trained models, making realistic
simulation of X-ray-based clinical workflows and procedures a viable
alternative or complement to real-data acquisition. Because SyntheX
doesnotrequire real dataat training time, it is particularly promising
for the development of machine learning models for novel clinical
workflows or devices, including surgical robotics, before these solu-
tions exist physically.

Methods

Weintroduce further details on the domain randomization and domain
adaptation methods applied inour studies. We then provide additional
information on experimental set-up and network training details of the
clinical tasks and benchmark investigations.

Domain randomization

Domain randomization effects were applied to the input images
during network training. We studied two domain randomization levels:
regular and strong domain randomization. Regular domain randomiza-
tion included the most frequently used data augmentation schemes.
For strong domain randomization, we included more drastic effects
and combined them together. We use x to denote a training image
sample. The domain randomization techniques we introduced are
as follows.

Regular domainrandomizationincluded the following. (1) Gaussian
noise injection: x + N(0, o), where N is normal distribution and o was
uniformly chosen from the interval (0.005, 0.1) multiplied by theimage
intensity range. (2) Gamma transform: norm(x)", where x was normal-
ized by its maximum and minimum value and y was uniformly selected
fromtheinterval (0.7,1.3). (3) Random crop: xwas cropped at random
locations using a square shape, which has the dimension of 90% x
size. Regular domain randomization methods were applied to every
trainingiteration.

Strong domainrandomizationincluded the following. (1) Inverting:
max(x) — x, where the maximum intensity value was subtracted from
allimage pixels. (2) Impulse/pepper/salt noise injection: 10% of pixels
in x were replaced with one type of noise including impulse, pepper
and salt. (3) Affine transform: a random 2D affine warp including
translation, rotation, shear and scale factors was applied. (4) Con-
trast: x was processed with one type of the contrast manipulations
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including linear contrast, log contrast and sigmoid contrast. (5) Blur-
ring: x was processed with a blurring method including Gaussian blur
N(u=0,0=3.0), where uis the mean of normal distribution, and aver-
age blur (kernel size between 2 x 2 and 7 x 7). (6) Box corruption: a
random number of box regions were corrupted with large noise. (7)
Dropout: either randomly dropped1-10% of pixelsinxto O, or dropped
theminarectangular region with 2-5% of the image size. (8) Sharpening
and embossing: sharpenxblended the originalimage with asharpened
version with an alpha between 0 and 1 (no and full sharpening effect).
Embossing added the sharpened version rather than blending it. (9)
One of the pooling methods was applied to x: average pooling, max
pooling, min pooling and median pooling. All of the pooling kernel
sizeswere between 2 x 2and 4 x 4. (10) Multiply: either changed bright-
ness or multiplied x element wise with 50-150% of the original value.
(11) Distort: distorted local areas of x with a random piece-wise affine
transformation. For each image, we still applied basic domain rand-
omization but only randomly concatenated up to two strong domain
randomization methods during each training iteration to avoid too
heavy augmentation.

Domain adaptation

We sselect the two most frequently used domain adaptation approaches
for our comparison study, which are CycleGAN* and ADDA*. CycleGAN
was trained using unpaired synthetic and real images before task net-
work training. All synthetic images were then processed with trained
CycleGAN generators, to alter their appearance to match real data.
We strictly enforced the data split used during task-model training so
thatimages fromthetest set were excluded during both CycleGAN and
task network training. ADDA introduced an adversarial discriminator
branchasanadditional loss to discriminate between features derived
fromsynthetic and realimages. We followed the design of ref. ** to build
the discriminator for ADDA training on the task of semantic segmenta-
tion. Both CycleGAN and ADDA models were tested using realistic and
naive simulationimages.

CycleGAN. CycleGAN was applied to learn mapping functions between
two image domains X and Y given training samples {xi}f.vzl where x;e X
and {VJ},/-ZI where y;e Y. Letters i andjindicate the sample index of the
total sample number N and M, respectively. The model includes two
mapping functions G: X > Yand F: Y > X, and two adversarial discrimina-
tors Dy and D,. The objective contains two terms: adversarial loss to
match the distribution between generated and target image domain;
and cycle-consistency loss to ensure learned mapping functions are
cycle-consistent. For one mapping function G: X - Ywithits discrimina-
tor D,, the first term, adversarial loss, can be expressed as:

Lean(G. Dy, X, Y) = Eyopy,, 09 [108 Dy(Y)]
HE e pgary 0 [108 (1= DHGO)],

)]

where G generates images G(x) with an appearance similar to images
from domain Y, while D, tries to distinguish between translated
samples G(x) and real samples y. Overall, G aims to minimize this
objective against an adversary D that tries to maximize it. Similarly,
there is an adversarial loss for the mapping function F: Y > X with its
discriminator D,.

The second term, cycle-consistency loss, can be expressed as:

Leye(G,F) = Expy o [ FIGO0) = x|
+Eypea) [I| GED) =Yl ],

(¥)]

where for each image x from domain X, x should be recovered after
one translation cycle, that is, x > G(x) > F(G(x)) = x. Similarly, each
imagey from domain Yshould be recovered as well. A previous study?
argued that learned mapping functions should be cycle-consistent to
further reduce the space of possible mapping functions. The above

formulation using domain discrimination and cycle consistency
enables unpaired image translation, that is, learning the mappings
G(x) and F(y) without corresponding images.

The overall objective for CycleGAN training is expressed as:

L(G,F,Dy,Dy) = Lian(G, Dy, X, Y)

+Lcan(F, Dx, YV, X) (3)
+AL ey (G, F),

where A controls the relative importance of cycle-consistency loss,
aiming to solve:

G*,F* = arg min glzgyw((?, F, Dy, Dy). @

For the generator network, 6 blocks for 128 x 128 images and
9blocksfor256 x 256 and higher-resolution trainingimages were used
withinstance normalization. For the discriminator network,a70 x 70
PatchGAN was used.

Adversarial discriminative domain adaptation. We applied the idea
of ref. ?° on our pelvis segmentation and landmark localization task.
The architecture consists of three components: segmentation and
localization network, decoder, and discriminator. The input to the
segmentation and localization network is image (x) and the output
prediction featureis z. The lossis L, and L4 as introduced in ‘Clinical
tasks’. The decoder shared the same TransUNet architecture, takes z
asinputand the outputis the reconstruction R(z). The reconstruction
1088, L ccons, is the mean squared error betweenxand z. The discriminator
was trained using an adversarial loss:

Las(2) = ——— 3" slog(D
ais(2) waEvs 0g(D(2)) s
+(1 - s)log(1 - D(2)),

where Hand W are the dimensions of the discriminator output, s=0
when D takes target domain prediction (Y;) as input, and s =1when
taking source domain prediction (¥;) asinput. The discriminator con-
tributed an adversarial loss during training to bring in domain transfer
knowledge. The adversarial loss is defined as:

LX) = 1= 1og(D(z0). ®)
hw

where ¢ refers to the target domain. Thus, the total training loss can
be written as:

Lt(XSth) = Lseg(xs) + le(xs) + /ladeadv(Xt) (7)

+/lreconsl- recons (xt)’

whereA,4,and A, are weight hyperparameters, which are empirically
chosentobe 0.001and 0.01, as suggested by ref. *°.

Clinical tasks experimental details

The SyntheX simulation environment was set up to approximate a
Siemens CIOS Fusion C-Arm, whichhasimage dimensions of1,536 x 1,536,
isotropic pixel spacing of 0.194 mm per pixel, a source-to-detector
distance of 1,020 mm and a principal point at the centre of the image.

Hip imaging. Synthetic hip X-rays were created using 20 CT scans from
the New Mexico Decedent Image Database'*. During simulation, we uni-
formly sampled the CT volumerotationin [-45°, 45°], and translation
left/rightin[-50 mm, 50 mm)], interior/superiorin[-20 mm, 20 mm],
and anterior/posterior in [-100 mm, 100 mm]. We generated 18,000
images for training and 2,000 images for validation. Ground-truth
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segmentation and landmark labels were projected from 3D using the
projection geometry.

We consistently trained the model for 20 epochs and selected the
final converged model for evaluation. Strong domain randomization
was applied at training time (see ‘Domain randomization’). During eval-
uation, a threshold of 0.5 was used for segmentation and the landmark
prediction was selected using the highest heatmap response location.

Robotic surgical tool detection. We created 100 voxelized models
of the CM in various configurations by sampling its curvature con-
trol point angles form a Gaussian distribution N(uz =0, 0=2.5°). The
CM base pose was uniformly sampled left and right anterior oblique
views (LAO/RAO) in [-30°,30°], cranio and caudal views (CRAN/
CAUD) in [-10°, 10°], source-to-isocentre distance in [600 mm,
900 mm], and translation in x, y axes following a Gaussian distribu-
tion N(u =0 mm, 0 =10 mm). We created DeepDRR synthetic images
by projectingrandomly selected hip CT scans fromthe 20 New Mexico
Decedent Image Database CT scans used for hipimaging together with
the CM model, whichinclude 28,000 for training and 2,800 for valida-
tion. Ground-truth segmentation and landmark labels were projected
following each simulation geometry.

The network training details are in ‘Network training details’, and
strong domain randomization was applied (see ‘Domain randomiza-
tion’). The network was trained for tenepochs and the final converged
model was selected for evaluation. The performance was evaluated
on 264 real CM X-ray images with manual ground-truth label annota-
tions. During evaluation, athreshold of 0.5 was used for segmentation
and the landmark prediction was selected using the highest heatmap
response location. The network was trained for 50 epochs for the five-
fold Real2Real experiments. The testing and evaluation routines are
the same.

COVID-19 lesion segmentation. We used 81 high-quality CT scans
from ImagEng lab®® and 62 CT scans with resolution less than 2 mm
from UESTC?, all diagnosed as COVID-19 cases, to generate synthetic
CXRdata. The 3D lesion segmentations of CTs from ImagEng lab were
generated using the pre-trained COPLE-Net?. During DeepDRR simula-
tion, we uniformly sampled the view pose of CT scans, rotation from
[-5°, 5°Tinall three axes and source-to-isocentre distance in [350 mm,
650 mm], resulting in 18,000 training images and 1,800 validation
images with aresolution of 224 x 224 px. Arandom shearing transfor-
mationfrom[-30°,30°] was applied on the CT scanand segmentations
were obtained with a threshold of 0.5 on the predicted response. The
corresponding lesion mask was projected from the 3D segmentation
using the simulation projection geometry.

The network training set-ups follow the descriptionsin ‘Network
training details’. Strong domain randomization was applied during
training time (see ‘Domain randomization’). We trained the network
for20 epochs and selected the final converged model for testing. The
performance was evaluated on a2,951real COVID-19 benchmark data-
set”. During evaluation, the network segmentation mask was created
using a threshold value of 0.5 on the original prediction. The network
was trained for 50 epochs for the fivefold Real2Real experiments. The
testing and evaluation routines are the same.

Benchmark hip-imaging investigation. For every X-ray image,
ground-truth X-ray camera posesrelative to the CT scan were estimated
using an automatic intensity-based 2D/3D registration of the pelvis
andboth femurs®. Every CT scan was annotated with segmentation of
anatomical structures and anatomical landmark locations defined in
Fig.2a. Two-dimensional labels for every X-ray image were then gener-
ated automatically by forward projecting the reference 3D annotations
using the corresponding ground-truth C-arm pose.

We generated synthetic data using three DRR simulators: naive
DRR, xreg DRR and DeepDRR. Naive DRR generationamounts to simple

ray-casting and does not consider any imaging physics. Thisamounts to
the assumption of amono-energetic source, single material objects and
noimage corruption, for example, due to noise or scattering. Heuristic
simulation performs a linear thresholding of the CT Hounsfield units
todifferentiate materials between air and anatomy before ray-casting.
While this resultsinamorerealisticappearance of the resulting DRRs,
inthatthetissue contrastisincreased, the effect does not modelimag-
ing physical effects. Realistic simulation (DeepDRR) simulatesimaging
physics by considering the full spectrum of the X-ray source, and relies
on machine learning for material decomposition and scatter estima-
tion. It also considers both signal-dependent noise as well as readout
noise together with detector saturation.

Network training details

We used Pytorch for all implementations and trained the networks
fromthe pre-trained vision transformer model’®. The use of pre-trained
model is suggested in the TransUNet paper?. The networks were
trained using stochastic gradient descent with aninitial learning rate
of 0.1, Nesterov momentum of 0.9, weight decay of 0.00001 and a
constant batch size of 5images. The learning rate was decayed with
agamma of 0.5 for every 10 epochs during training. The multi-task
network training loss is equally weighted between landmark detec-
tion loss and segmentation loss. All experiments were conducted on
an Nvidia GeForce RTX 3090 Graphics Card with 24 GB memory. It
takes around 2 h to generate 10,000 synthetic hip-imaging images.
The average network training time for 10,000 data is about 5 h until
convergence.

Reporting summary
Furtherinformation onresearch designis availablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

We provide access web links for public dataused in our study. The DOI
link to the dataset is https://doi.org/10.7281/T1/2PGJQU (ref.”®). The
hip-imaging CT scans are selected fromthe New Mexico Decedent Image
Database at https://nmdid.unm.edu/resources/data-information. The
hip-imaging real cadaveric CT scans and X-rays can be accessed at
https://github.com/rg2/DeepFluoroLabeling-IPCAI2020. The COVID-19
lung CT scans can be accessed at https://www.imagenglab.com/news-
ite/covid-19/. The COVID-19 real CXR data can be accessed at https://
www.kaggle.com/datasets/aysendegerli/qatacov19-dataset. The
COVID-19 3D lesion segmentation pre-trained network module and
associated CT scans can be accessed upon third-party restriction at
https://github.com/HiLab-git/COPLE-Net.

Code availability

The codes developed for this study are available in the SyntheX GitHub
repository available at https://github.com/arcadelab/SyntheX (ref. °).
An updated repository for DeepDRR is available at https://github.
com/arcadelab/deepdrr. The xReg registration software module is at
https://github.com/rg2/xreg. We used the open-source software 3D
Slicer 4.10.2 for processing the CT scans (https://www.slicer.org/).
We used the open-source software labelme v5.0.0 for annotating the
2D segmentation masks of X-ray data (https://github.com/wkentaro/
labelme). We used the open-source software ImageJ Version 2.3.0/1.53q
tooverlay the 2D image data and labels (https://imagej.nih.gov/ij/).
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Extended Data Fig. 1| X-ray Images of the continuum manipulator. Upper Row: Example synthetic X-ray images of the continuum manipulator. Lower Row: Example
real X-ray images of the continuum manipulator.
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Extended Data Fig. 4 | Histogram of C-arm Geometries for Hip Imaging Data.
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Extended Data Table 1| Individual Landmark Error (mm) for hip imaging as a mean of 6-fold individual testing on 366 real hip

X-ray images

Sim2Real Real2Real

Mean CI Mean CI

LFH | 5.20+£1.66 0.23 3.51+1.53 0.21

RFH | 6.14+4.12 0.60 8.48+4.41 0.64

L.GSN | 6.08+£2.90 0.38 6.68 +4.43 0.58
R.GSN | 5484+2.58 0.35 8.204+3.93 0.55
LIOF | 5.154+2.49 0.34 6.41 £8.42 1.20
R.IOF | 3.62+3.26 0.45 4.68+4.76  0.67
L.MOF | 3.75+£2.37 0.30 | 5.4243.57 0.46
RMOF | 4.85+2.71 0.35 8.601+4.01 0.51
L.SPS | 9.48+£2.99 0.35 5.32+4.70  0.55
R.SPS | 7.214+2.68 034 | 587+£5.20 0.62
LIPS | 6.324+2.64 034 | 4.11+2.45 0.31
RIPS | 448+1.63 0.21 3.56 +1.87 0.23
L.ASIS | 6.85+£5.02 0.76 | 12.624+9.47 1.62
R.ASIS | 9.054+£5.40 0.88 | 13.50+30.46 5.34
All 595+3.52 0.13 6.46 +8.21 0.3

CI refers to confidence intervals. They are computed using the
2-tailed z-test with a critical value for a 95% level of confidence
(p<0.05). Real2Real refers to training and testing both in real
domain datasets. Sim2Real means training in simulation dataset
and testing in real dataset.
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Extended Data Table 2 | Individual Dice Score for hip imaging as a mean of 6-fold individual testing on 366 real hip X-ray
images

Sim2Real Real2Real
Mean CI Mean CI
L.Pel | 0.89+£0.21 0.02 | 0.86+0.19 0.02
R.Pel | 0.894+0.18 0.02 | 0.88+0.15 0.02
Verteb | 0.79+£0.19 0.02 | 0.69+0.27 0.03
Sacrum | 0.744+0.13 0.01 | 0.55+£0.19 0.02
LFem | 0.95+£0.14 0.01 | 0.914+£0.21 0.02
R.Fem | 0.884+0.27 0.03 | 0.864+:0.28 0.03

All 0.86t0.21 0.01 | 0.79£0.25 0.01

CI refers to confidence intervals. They are computed using
the 2-tailed z-test with a critical value for a 95% level of
confidence (p<0.05). Real2Real refers to training and testing
both in real domain datasets. Sim2Real means training in
simulation dataset and testing in real dataset.
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Extended Data Table 3 | Average Landmark Error (mm) for hip imaging as a mean of 6-fold individual testing on 366 real hip
X-ray images

Landmark Error (mm) Dice Score
Mean CI Mean CI
Real 6.46 +8.21 0.13 0.794+0.25 0.01

Sim 1k | 6.61 £7.27 0.26 0.82+0.23 0.01
Sim 2k | 6.56+£4.78 0.17 0.81£0.24 0.01
Sim Sk | 5.82+4.52 0.16 0.82+0.24 0.01
Sim 10k | 5.95+£3.52 0.13 0.86£0.21 0.01

CI refers to confidence intervals. They are computed using the
2-tailed z-test with a critical value for a 95% level of confidence
(p<0.05). The Sim numbers from 1k to 10k in the left most column
refer to the size of scaled-up simulation dataset.
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Extended Data Table 4 | Average landmark error (mm) for surgical tool detection as a mean of 5-fold individual testing on
264 real X-ray images of the continuum manipulator

Sim2Real Real2Real
Mean CI Mean CI

Base | 1.09+0.69 0.09 | 1.094+:0.89 0.11
Tip | 1.124+1.04 0.13 | 1.294+:3.40 043

All | 1.10+£0.88 0.08 | 1.194+£2.49 0.22

Cl refers to confidence intervals. They are computed using
the 2-tailed z-test with a critical value for a 95% level of
confidence (p<0.05). Real2Real refers to training and test-
ing both in real domain datasets. Sim2Real means training
in simulation dataset and testing in real dataset.
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Extended Data Table 5 | Average Dice Score for surgical tool detection as a mean of 5-fold individual testing on 264 real
X-ray images of the continuum manipulator

Sim2Real Real?2Real
Mean CI Mean CI
0.92+0.07 0.01 | 0.41+0.23 0.03

CI refers to confidence intervals. They are com-
puted using the 2-tailed z-test with a critical
value for a 95% level of confidence (p<0.05).
Real2Real refers to training and testing both in
real domain datasets. Sim2Real means training in
simulation dataset and testing in real dataset.
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Extended Data Table 6 | Average performance metrics (%) for COVID-19 infected region segmentation as a mean of 5-fold
individual testing on 2,951 real COVID-19 real chest X-ray images

Sensitivity Specifcity Precision F1-Score F2-Score Accuracy
Sim2Real | 80.28+15.74 87.41+6.78 48.67+27.23 54.69+23.06 63.81+25.51 85.22+5.89
Real2Real | 79.83+17.37 96.924+3.51 75.16+£25.71 73.544+20.35 76.09+25.45 94.05+4.54

Real2Real refers to training and testing both in real domain datasets. Sim2Real means training in simulation dataset and testing
in real dataset.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
/N 0nly common tests should be described solely by name; describe more complex techniques in the Methods section.

X| A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

X

D

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection in this study.

Data analysis We used the open source software, 3D Slicer 4.10.2, for processing the CT scans (https://www.slicer.org/). We used the open source
software, labelme v5.0.0, for annotating the 2D segmentation masks of X-ray data (https://github.com/wkentaro/labelme). We used the open
source software, Image) Version 2.3.0/1.53q, to overlay the 2D image data and labels (https://imagej.nih.gov/ij/).

The public CycleGAN source code was used in the study to train Sim2Real models in the comparison experiments (https://github.com/
junyanz/CycleGAN). There is no version number for the CycleGAN software code. Heuristic X-ray simulation (xreg DRR) was performed using
the open source software xReg (https://github.com/rg2/xreg) version v2020.12.13.0. The public TransUNet source code was used in this study
to develop the custom software (https://github.com/Beckschen/TransUNet). There is no version number for the TranUNet software code. We
used our custom designed python-based software for data processing, deep neural network building and training, and result analysis. We
have made our code publicly available to a github repository: https://github.com/arcadelab/SyntheX.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

We provide access web links for public data used in our study:

The hip imaging CT scans are selected from the New Mexico Decedent Image Database: https://nmdid.unm.edu/resources/data-information.
The hip imaging real cadaveric CT scans and X-rays can be accessed here: https://github.com/rg2/DeepFluoroLabeling-IPCAI2020.

The COVID-19 lung CT scans can be accessed here: https://www.imagenglab.com/newsite/covid-19/.

The COVID-19 real chest X-ray data can be accessed here: https://www.kaggle.com/datasets/aysendegerli/gatacov19-dataset.

The COVID-19 3D lesion segmentation pre-trained network module and associated CT scans can be accessed here upon third-party restriction: https://github.com/
HilLab-git/COPLE-Net.

The custom collected data for robotic surgical tool detection will be made available upon publication at https://github.com/arcadelab/.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The training/testing data sample size is determined based on related work in literature. The size is sufficient to justify the conclusion of X-ray
image analysis in this study. The related work references are as follows: Grupp et al. reported the performance for automatic hip landmark
annotation using the same 366 images [1]. Bier et al. proposed a multi-stage landmark detection algorithm, which was tested on 106 real X-
ray images [2]. Grimm et al. proposed an automatic hip X-ray to CT registration framework, which was evaluated on 113 real X-rays [3].
Further, work by other groups include: Miao et al. using 100, 7, and 96 X-ray images for three tasks respectively in [4]. Miao et al. relying on
20 real X-ray images (augmented in various ways) to validate a pose regression model in [5]. Zhang et al. demonstrating domain adaptation
using CycleGAN and X-ray segmentation using 300 real X-ray images in [6] and [7], respectively, and Shiode et al. proposing a model for 3D
reconstruction of the forearm on 105 X-ray images in [8].

[1] Grupp, R.B., Unberath, M., Gao, C., Hegeman, R.A., Murphy, R.J., Alexander, C.P., Otake, Y., McArthur, B.A., Armand, M. and Taylor, R.H.,
2020. Automatic annotation of hip anatomy in fluoroscopy for robust and efficient 2D/3D registration. International journal of computer
assisted radiology and surgery, 15(5), pp.759-769.

[2] Bier, B., Goldmann, F., Zaech, J.N., Fotouhi, J., Hegeman, R., Grupp, R., Armand, M., Osgood, G., Navab, N., Maier, A. and Unberath, M.,
2019. Learning to detect anatomical landmarks of the pelvis in X-rays from arbitrary views. International journal of computer assisted
radiology and surgery, 14(9), pp.1463-1473.

[3] Grimm, M., Esteban, J., Unberath, M. and Navab, N., 2021. Pose-dependent weights and domain randomization for fully automatic x-ray to
ct registration. IEEE Transactions on Medical Imaging, 40(9), pp.2221-2232.

[4] Miao, S., Wang, Z. J., & Liao, R. (2016). A CNN regression approach for real-time 2D/3D registration. IEEE transactions on medical imaging,
35(5), 1352-1363.

[5] Miao, S., Piat, S., Fischer, P., Tuysuzoglu, A., Mewes, P., Mansi, T., & Liao, R. (2018, April). Dilated FCN for multi-agent 2D/3D medical image
registration. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1).

[6] Zhang, Y., Miao, S., Mansi, T., & Liao, R. (2018, September). Task driven generative modeling for unsupervised domain adaptation:
Application to x-ray image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp.
599-607). Springer, Cham.

[7] Zhang, Y., Miao, S., Mansi, T., & Liao, R. (2020). Unsupervised X-ray image segmentation with task driven generative adversarial networks.
Medical image analysis, 62, 101664.

[8] Shiode, R., Kabashima, M., Hiasa, Y., Oka, K., Murase, T., Sato, Y., & Otake, Y. (2021). 2D-3D reconstruction of distal forearm bone from
actual X-ray images of the wrist using convolutional neural networks. Scientific Reports, 11(1), 1-12.
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Data exclusions | No data was excluded from analysis
Replication The experimental findings are replicatable using the data and custom software that we developed.

Randomization  The results report in our study do not have randomization. All test data are fully used to report the performance. We did not randomly sub
sample the test dataset.

Blinding Our study does not include clinical human or animal trials. Blinding is not applicable to our study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data

XX NXXNXNXX s
OoOoooogd

Dual use research of concern

=
Q
=
c
=
(D
=
(D
(Y4
(D
Q
=
(@)
o
=
D
o
o
=
=ts
)
(@]
wv
C
3
Q
>
s




	Synthetic data accelerates the development of generalizable learning-based algorithms for X-ray image analysis

	Clinical tasks

	Hip imaging

	Surgical robotic tool detection

	COVID-19 lesion segmentation


	Precisely controlled investigations on hip imaging

	Precisely matched hip dataset

	Domain randomization and adaptation


	Model and evaluation paradigm

	Results

	Primary findings

	Hip imaging

	Surgical robotic tool detection

	COVID-19 lesion segmentation

	Sim2Real benchmark findings

	The effect of domain randomization

	The effect of domain adaptation

	Scaling up the training data


	Discussion

	Conclusion

	Methods

	Domain randomization

	Domain adaptation

	CycleGAN
	Adversarial discriminative domain adaptation

	Clinical tasks experimental details

	Hip imaging
	Robotic surgical tool detection
	COVID-19 lesion segmentation
	Benchmark hip-imaging investigation

	Network training details

	Reporting summary


	Acknowledgements

	Fig. 1 Overall concept of SyntheX.
	Fig. 2 Clinical tasks.
	Fig. 3 Precisely controlled hip-imaging X-ray database.
	Fig. 4 Plots of average landmark detection error with respect to activated landmark percentage.
	Fig. 5 Qualitative results of the segmentation and landmark detection.
	Extended Data Fig. 1 X-ray Images of the continuum manipulator.
	Extended Data Fig. 2 Multi-task network architecture.
	Extended Data Fig. 3 Scaled-up dataset landmark detection performance comparison.
	Extended Data Fig. 4 Histogram of C-arm Geometries for Hip Imaging Data.
	Table 1 Hip-imaging landmark detection errors and segmentation Dice scores.
	Extended Data Table 1 Individual Landmark Error (mm) for hip imaging as a mean of 6-fold individual testing on 366 real hip X-ray images.
	Extended Data Table 2 Individual Dice Score for hip imaging as a mean of 6-fold individual testing on 366 real hip X-ray images.
	Extended Data Table 3 Average Landmark Error (mm) for hip imaging as a mean of 6-fold individual testing on 366 real hip X-ray images.
	Extended Data Table 4 Average landmark error (mm) for surgical tool detection as a mean of 5-fold individual testing on 264 real X-ray images of the continuum manipulator.
	Extended Data Table 5 Average Dice Score for surgical tool detection as a mean of 5-fold individual testing on 264 real X-ray images of the continuum manipulator.
	Extended Data Table 6 Average performance metrics (%) for COVID-19 infected region segmentation as a mean of 5-fold individual testing on 2,951 real COVID-19 real chest X-ray images.




