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1 Abstract 
 
Deep reinforcement learning methods have been shown 
to be potentially powerful tools for de novo design. 
Recurrent neural network (RNN)-based techniques are 
the most widely used methods in this space. In this work, 
we examine the behaviour of RNN-based methods when 
there are few (or no) examples of molecules with the 
desired properties in the training data. We find that 
targeted molecular generation is often possible, but the 
diversity of generated molecules is often reduced, and it 
is not possible to control the composition of generated 
molecular sets. To help overcome these issues, we 
propose a new curriculum learning-inspired, recurrent 
Iterative Optimisation Procedure that enables the 
optimisation of generated molecules for seen and unseen 
molecular profiles and allows the user to control whether 
a molecular profile is explored or exploited. Using our 
method, we generate specific and diverse sets of 
molecules with up to 18 times more scaffolds than 
standard methods for the same sample size. However, our 
results also point to significant limitations of one-
dimensional molecular representations, as used in this 
space. We find that the success or failure of a given 
molecular optimisation problem depends on the choice 
of SMILES.  
 

2 Introduction 
Developing a novel drug is a complex and difficult 
problem plagued with failure at many stages.1–4 The 
efficiency of drug development could be improved by 
producing better early hits and generating novel 
molecules with specific properties which would improve 
cost, speed, and effectiveness.5 

Ideally, given a target and a required molecular profile, 
we would search for suitable molecules in all drug-like 
chemical space. However, given that there are an 
estimated 1060 synthetically accessible drug-like 

molecules6, of which approximately 108 have been 
synthesized7, experimental methods are not sufficient for 
comprehensive sampling of chemical space.  

Computational methods offer the promise of searching 
larger areas of chemical space and virtual screening is 
commonly used to search curated chemical libraries for 
potential hits.8–11 However, the chemical space available 
for assessment is only a tiny proportion of the possible 
space.12–14  
 
Instead of searching existing molecular datasets, 
computational de novo design models aim to create new 
sets of novel molecules11,15–18 Recently, deep learning 
molecular generation tools have become more prevalent, 
which are also often paired with  optimisation pipelines 
to produce focused sets of molecules with improved 
performance.19 Autoencoders20 are frequently used for 
generation and optimisation.21 Here the discrete 
representation of a molecule is converted to a continuous 
representation (encoded) from which its properties can be 
predicted and optimised. The resulting continuous 
representation is then converted back to a discrete 
molecular representation (decoded).22,23 Bayesian 
optimisation has been paired with variational 
autoencoders (VAE) to explore chemical space for 
specific molecular profiles. However, the transition from 
latent space to discrete molecular representations is 
oftentimes non-trivial.21 Generative Adversarial networks 
(GAN) have been applied to de novo drug design. 
Together with reinforcement learning (RL), these models 
have been shown to generate diverse libraries of realistic 
molecules with specific properties.24–26 Recent 
developments in state-of-the-art natural language 
processing (NLP) tools have been implemented in de novo 
design with the introduction of transformer models27 for 
SMILES generation.28–31 These tools have been reported 
with stable, and sometimes better, performance than 
older architectures.  
 
Like transformers, recurrent neural networks (RNNs) 
based molecular generation models were inspired by 
NLP tools and have proved popular due to their ability 
to model long term dependences in strings.32 Using the 



same training regime implemented in NLP, RNNs have 
successfully been applied to the generation of novel 
molecules while still utilising a simple network 
architecture.33,34 Unbiased RNNs have been shown to 
generate SMILES that cover large areas of chemical 
space (especially relative to training data). These models 
have also been shown to benefit from randomised 
SMILES with further performance improvements.11,35,36 
An early example of this approach used RNNs to 
generate a molecular library through a SMILES 
language model15, before fine-tuning the model on a 
smaller subset of molecules with desired properties.  
 
Another popular method for molecular generation is RL. 
In theory, RL methods allow users to generate a set of 
molecules with specific properties without explicit 
examples of molecules that match the reward profile. 
Successful hit generation requires new molecules with 
novel combinations of properties, which often do not 
exist in currently available datasets; therefore, for RL 
methods to be truly useful, they must be able to 
extrapolate. It is currently unclear how well these models 
can do so. It is also important that RL methods generate 
sets of molecules that explore chemical space for a 
complex molecular profile and produce a diverse library 
and exploit chemical space to generate focused molecular 
libraries. Here, based on previous on-policy RL models,37 
we explore scenarios where optimisation is attempted 
with little or no representation in the training data and 
investigate the extent of extrapolation. We manipulate 
the prevalence of specific properties, measured as a 
percentage of the entire training dataset, and test the 
limits of optimisation of individual properties. We find 
that the RL models tested can extrapolate beyond the 
training data, but often produce molecule sets with little 
diversity. We show that these models are frequently 
unable to generate molecules that satisfy complex 
molecular profiles. We go on to demonstrate a 
curriculum-learning-inspired optimisation procedure 
that enables the generation of specific and diverse sets of 
molecules that satisfy complex and unseen molecular 
profiles. We also highlight the limitations of SMILES-
based molecular generation tools. 

3 Results & Discussion 
Deep RL molecular generation models are powerful tools 
for optimising molecular properties. However, their 
usefulness is dependent on their input training data. We 
show how these tools can optimise for specific property 
values; however, only within a property specific value 
range. We also show how these methods can generate 
molecular profiles that are not present in training data 
and how the representation of training data affects the 
composition of generated sets of molecules.  
 
By evaluating the performance of deep RL molecular 
generation methods with increasing proportions of 
training data that match a desired property profile, we 
show the effects of representation on generated 

molecules. To overcome the generated library 
restrictions caused by training data representation, we 
propose a curriculum learning inspired approach (rIOP) 
that allows for the optimisation of under-represented 
properties. rIOP also allows users to optimise generated 
molecules toward complex molecular profiles that are not 
possible with REINVENT while controlling the diversity 
of generated libraries. Our work highlights the strengths 
and limitations of using these tools on single parameter 
optimisation tasks. These strengths and limitations are 
important to understand before the discussed methods 
can be used for multiparameter optimisation in a drug 
discovery pipeline.     

 
3.1 Control of Generated Libraries 
 
A standard goal for de novo design deep RL tools is to 
produce novel molecules with controlled distribution of a 
single property or many properties. Previous studies using 
REINVENT and ReLeaSE have shown that it is possible 
to bias generated molecules towards specific properties 
such as hydrophobicity, melting point, or predicted 
activity against the DRD2 receptor.38,39 
 
We tested the optimisation performance of REINVENT 
by shifting the reward for cLogP and HBA count. Figure 
1a shows the property distribution of generated molecules 
for the reward ranges of cLogP between -15 and 20. It 
shows that it is possible to control the position of agent 
distributions with the reward range. However, in extreme 
cases (cLogP reward between -15 and -10), optimisation 
was unsuccessful, and we observe no change in the agent 
distribution; the training data distribution is reproduced.  
 
The same behaviour was observed for HBA counts 
(Figure 1b). Optimisation anywhere in the range of 0-20 
was possible; however, optimising the model to generate 
molecules with 20 HBA’s or more was unsuccessful (red 
distribution). As with cLogP, a distribution similar to the 
training data was reproduced. The training data included 
several molecules with more than 30 HBA’s. A complete 
breakdown of the generated molecular sets, reward 
ranges, and molecule examples can be found in 
Supplementary Information 2.  
 
We postulate that this failure occurs because in the 
extreme case, fewer molecules generated by the prior 
model return any reward during RL. If trained for an 
infinite time, the model will eventually randomly 
generate SMILES that will return a positive reward; 
nevertheless, poor representation can prevent effective 
optimisation. This ineffective optimisation then leads to 
the model repeatedly producing the same SMILES seen 
in training; thus, the training data is reproduced.  
 
3.2 Effect of percentage representation 
 
We have shown that using deep RL molecular generation 
tools, optimisation of under-represented properties is 



sometimes not possible. To investigate how widespread 
this issue is, we tested the ability of the models to generate 
molecules with properties within and outside the training 
data. We created several datasets in which the proportion 
of molecules that corresponded to the desired reward 
profile varied.  
 
Extended Data Table 1 shows that using REINVENT 
optimisation was successful for all properties across all 
percentage representations. In all cases, the generated set 
distributions were shifted toward our desired property 
profile relative to the training data. These results show 
that, for the properties tested, the model was able to learn 
the chemical-structural relationship from the 
surrounding molecules in the distribution; it is possible to 
learn without representation in the training data. 
 
Extended Data Table 1 also shows that the composition 
of each generated library depends on the representation 
of the desired property in the training data. For example, 
we can generate sets where most molecules have a HBA 
count > 8 (the reward threshold), but a higher percentage 
representation leads to molecules with higher HBA 
counts with the same reward function. The mean of the 
0% representation is 9 HBAs compared to 20 for the 10% 
experiment. Directional changes across each experiment 
can be seen for all properties tested (supplementary 
information 3). We postulate that the trends in the 
generated molecules mirror the training data. For 
example, for a specific reward property value (e.g. HBA 
= 5) if, as the percentage representation of that property 
profile increases, the diversity of the training data 
increases, you will see an increase in the diversity of the 
generated library. Conversely, if all the training data 
examples were very similar, you would observe a 
reduction in training data diversity and generated library 
diversity. Therefore, for most properties, we expect that 
a lower percentage representation would lead to a less 
diverse generated library.  
 
These results show that it is possible to generate 
molecular profiles that are not seen during training and 
that the composition of the generated molecular sets 
depends on the degree to which the desired molecular 
profile is prevalent in the training data. Therefore, 
depending on the use case for these models, different 
percentage representations for training may be suitable. 
However, when the aim is to generate an unseen 
molecular profile (0% representation), standard methods 
leave the user without control over the composition of the 
generated library. 
 
3.3 Curriculum Learning for Generated 

Library Control 
 
We have shown that it is possible to generate molecules 
with unseen molecular profiles in training data (Extended 
Data Table 1). However, the model’s ability to do this is 
limited at the extremes of the property distribution 
(Figure 1). The composition of each generated set 

depends on the prevalence of molecules in the training 
data with the desired molecular profile. Building on 
previous work40, we postulate that higher training data 
representations would often lead to greater diversity for 
generated molecules, as the model would often have a 
more diverse set of examples to learn chemical-structural 
relationships.  
  
To improve the efficacy of deep RL generation methods, 
we propose a new curriculum learning-inspired 
approach, called recurrent iterative optimization 
procedure (rIOP). Our method allows deep RL 
generation methods to maximise the diversity of 
generated molecules for seen and unseen molecular 
profiles during optimisation. It also enables the model to 
generate molecules that perform more complex 
optimisation tasks where standard methods fail.   

 
3.3.1 Iterative Optimization Procedure to Improve 

Diversity 
 
To demonstrate how rIOP can increase the diversity of 
simple optimisation tasks, we undertook a TPSA 
optimisation task with SrIOP and REINVENT’s 
standard implementation. Standard methods do generate 
molecules in this range; however, we expect that with 
SrIOP we will see an improvement in the diversity of 
generated molecules. TPSA shift is a simple optimisation 
task; therefore, we only sampled the agent of the previous 
step when training the current prior (see Methods 5.3).  
 
Figure 2 shows each step of the SrIOP procedure and the 
change in property distribution at each stage to match the 
reward function. To measure the diversity of each 
generated library, we calculated the number of unique 
Murcko scaffolds generated. With each SrIOP step, we 
see a reduction in the number of scaffolds generated. This 
is expected as we are moving toward the limit of the full 
TPSA property distribution, where there are fewer ways 
to achieve these property values. Extended Data Table 2 
shows that in our last step (SrIOP 4) we produce 18 times 
more scaffolds using SrIOP (55 scaffolds) compared to 
REINVENT (3 scaffolds). Furthermore, SrIOP generates 
more molecules from the 500 sampled that match the 
reward profile (494 compared to 476 for SrIOP and 
REINVENT, respectively). Extended Data Table 2 also 
shows the internal diversity of generated sets and the 
proportion of generated molecules that were present in 
the training dataset. Examples of generated molecules 
can be found in the data repository section 6. 
 
3.3.2 Iterative optimisation Procedure for Diversity 

Control 
 
For de novo design tools to be effective, it should be 
possible to control the specificity of the generated 
molecules. We have shown how the representation of a 
desired profile during training can affect the composition, 
and hence the specificity, of generated sets of molecules. 
Our results also show how the use of our new method, 



SrIOP, can improve the diversity of molecules generated 
during simple optimisation tasks.  
 
To test this, we aimed to generate druglike molecules 
(QED > 0.8) from training with a dataset containing no 
high QED molecules (QED < 0.8). Figure 3 shows how 
with and without diversity filters it is possible to generate 
molecules with high QED values. Figure 3b also shows 
that a wider distribution of molecules is produced with a 
diversity filter enabled. Of the 500 molecules sampled, 
SrIOP generates 490 molecules that match the reward 
function compared to only 317 using REINVENT. Of 
the 490 molecules, SrIOP generated 22 scaffolds. 
Standard methods produced more with 130 scaffolds 
across those 317 molecules. However, with DF enabled, 
we observed a significant increase in SrIOP performance, 
with scaffold diversity increasing from 22 to 297 in the 
301 generated molecules. We also see a change using 
REINVENT; the model generates 234 scaffolds across 
236 molecules. These results show how, using our SrIOP, 
we can generate a specific library of molecules (without 
DF), and a diverse library with DF enabled. In contrast, 
REINVENT is only able to generate diverse molecules, 
eliminating the user’s ability to control the composition 
of the generated sets. Each generated dataset with 
example molecules is available in the data repository 
(Data Availability 6).  
 
SrIOP gives the user more control over the specificity of 
the generated library. If they wish to exploit a property, 
SrIOP used without DF filters will return a very narrow 
selection of molecules that match your reward profile. In 
contrast, if a diverse library is required, enabling diversity 
filters with SrIOP will produce one.  In this example, we 
chose a simple optimisation task as there are many ways 
to increase QED for a molecule. Therefore, we expected 
that the standard method would perform well. SrIOP still 
outperforms REINVENT in both specific (no diversity 
filter) and diverse (diversity filter used) set generation; 
however, we expect the difference in performance to 
increase for more complex optimisation tasks.  
 
3.4 Comparison to other curriculum 

learning methods 
 
Curriculum learning has long been used as a tool to 
overcome complex machine learning problems in various 
applications.41 However, its use in deep RL molecular 
generation tools is limited. There is one implementation 
of a similar method by the original authors of 
REINVENT40, that applies a curriculum learning 
approach to solve complex optimisation tasks, which we 
call ReCL.  
 

3.4.1 Iterative Optimisation Procedure 
for Complex Tasks 

 
One common use case of deep learning RL models is to 
optimise for molecules similar to a target structure. In 
such scenarios there may be few examples of the target 

structure in training data. To determine how useful 
SrIOP is in this practical situation, we have used it to 
generate molecules similar to target structures (Extended 
Data Figure 1) with increasing difficulty. 
 
Table 1a shows how for a simple molecule (Extended 
Data Figure 1a) it is possible to generate molecules 
identical to the target. Both SrIOP and ReCL perform 
well, with SrIOP generating more molecules with a 
tanimoto similarity between 0.9 and 1.0 (486 and 325 for 
SrIOP and ReCL, respectively).  
 
For a more complex molecule (Extended Data Figure 
1b), ReCL is less successful (Extended Data Figure 2b and 
Extended Data Figure 2c) because it cannot generate any 
molecules with a high similarity to the target structure 
(tanimoto similarity greater than 0.7). For SrIOP almost 
all (497 of 500 sampled) generated molecules have a high 
similarity to the target structure.  
 
Another benefit of our method is the ability to control the 
diversity of the generated library.  
 
Table 1 shows how, without a diversity filter, all 497 
molecules sampled have the same scaffold. However, 
with diversity filters enabled, SrIOP generates 142 
scaffolds across 447 molecules. In this example, we 
highlight the ability of SrIOP to fulfil more complex 
reward functions where similar CL methods fail. We 
show how it can also be used to control the diversity of 
the generated library through the inclusion of diversity 
filters.  
 
3.5 Limitations of SMILES-Based 

Molecular Generators 
 
We have investigated the performance of, and proposed 
novel, SMILES-based, deep learning, molecular 
generation tools. These tools learn to generate novel one-
dimensional SMILES representations of three-
dimensional molecular structures (see Methods 5). 
SMILES-based tools are popular because they only 
require simple architectures and can be trained quickly. 
However, SMILES do present challenges; namely, they 
do not detail the three-dimensional structure of a 
molecule beyond atomic connections, and there are 
several ways to represent the same molecule. Canonical 
SMILES provide a standard method to generate 
SMILES; however, it has been shown that SMILES-
based models trained on random SMILES show 
improved model coverage and a reduction in 
overfitting.36  
 
The lack of structural information and inherent 
redundancy in SMILES can cause SMILES-based 

models to struggle to fully understand the chemical 
and structural relationships between molecules. This is 
because the similarity between two SMILES is not well 
correlated with the similarity between the chemical 
structures they represent. This limitation of SMILES-



based methods and its effects can be seen in our study. 
For example, when we tried to generate molecules with 
increasingly complex structures, the performance of the 
model was heavily dependent on the strings used to 
represent each substructure. We found that for the best 
performance, the difference between each string 
representing a new target structure should be minimised.  
 
We found that the choice of SMILES directly affects the 
performance of the models. We aimed to generate 
molecules with a specific substructure, however, we used 
several alternate SMILES to represent each identical 
substructure during RL. Approximately a quarter of all 
substructure generation attempts failed (no molecules 
were generated with the final target substructure) across 
all molecules (Extended Data Table 3). But, for each 
failed attempt, an alternative series of SMILES 
representing the same molecules was successful. We 
observed these successful and unsuccessful attempts for 
near identical molecules. This highlights how the 
likelihood of success is more dependent on the choice of 
SMILES over molecule complexity. Figure 4 shows the 
total number of SMILES sampled from the final agent 
that included the desired substructure and the total 
number of distinct scaffolds present in successful attempts 
for two structurally similar molecules (A and B). For 
molecule A, both ReCL and SrIOP fail to generate the 
final target substructure at least once, and both methods 
fail in the final step (supplementary information 7). For 
molecule B, we were able to generate substructures 
regardless of the choice of SMILES even though the 
intermediate and final substructures were almost 
identical compared to those of molecule A. This further 
highlights the issues caused by SMILES as you would 
expect similar performance across both models given the 
targets' structural similarity. Instead, the SMILES used 
has the largest effect on model performance.  
 
The choice of SMILES also has a large effect on the 
diversity of the generated molecules. For molecule B 
using SrIOP series 3 (Figure 4c) we generated more than 
250 distinct scaffolds across the 500 molecules sampled, 
while all other SMILES series generated between 50 and 
150 scaffolds with ReCL and SrIOP. Similar fluctuations 
in performance were observed for both ReCL and SrIOP 
across all molecules tested (supplementary information 
Figure 13).  
 
Molecular representations such as SELFIES42 and Deep-
SMILES43 attempt to overcome some of the issues of 
SMILES in machine learning. However, higher 
dimensional representations that include structural 
information are likely to be a more powerful way to 
represent molecules.   

4 Conclusions 
We have investigated how well deep RL molecular design 
methods can search beyond the chemical space 
represented in training data and the effects of the 

composition of the training data on generated molecular 
sets. The results show that it is possible to control the 
distribution of molecules generated by altering the 
reward function. However, we demonstrate how 
standard methods (REINVENT) can fail towards the 
edge of the training data distribution. We found that it is 
possible to generate molecules with properties that are 
not present in the training data; nevertheless, we showed 
that the representation of the desired molecular profile 
affects the distribution of the generated molecular library. 
We highlight the lack of control standard methods 
provide in terms of composition, particularly diversity, of 
generated molecules and the limitations of SMILES-
based molecular generation methods. To overcome some 
of these issues, we propose a new curriculum learning 
approach, recurrent iterative optimisation procedure 
(rIOP), to help boost the diversity of generated molecules 
when few or no examples of the desired molecular profile 
are present in the training data. Using this method, we 
generate structures similar to a series of unseen target 
structures and outperform other curriculum learning 
approaches (ReCL). We describe SrIOP and DrIOP, 
which enable a user to control the diversity of generated 
molecules for simple and complex optimisation tasks. 
Using several SMILES representations of the same 
molecule when generating target structures, we show how 
the choice of SMILES directly affects the success and 
performance of SMILES-based tools. Therefore, our 
method, like any method based on SMILES or other one-
dimensional representations, will be hampered by the 
lack of direct structural information.  

5 Methods 
We assessed the performance of a popular on-policy 
SMILES generation model, REINVENT38, to determine 
the limits of deep RL tools in molecular design. Like 
earlier RL molecular generation tools39, REINVENT 
involves a two-step process. The first is to train a prior 
RNN to generate SMILES through supervised learning. 
This model is trained to correctly predict the next 
character of a SMILES string given a starting token or an 
incomplete string. The second is to fine-tune the prior 
model, producing an agent model able to generate a 
focused library through a reward-feedback loop. During 
this second step, the model learns a policy that maximises 
the likelihood of generating a molecule with a favourable 
reward (Figure 5). Full details of the models can be found 
in the work of Olivecrona et al.38 
 
For all experiments described in the following, the model 
was trained on subsets of 1.5 million drug-like molecules 
from ChEMBL44. After the model was fully trained, we 
sampled 500 molecules unless otherwise stated. We chose 
to generate 500 molecules as this provided a large enough 
sample from which we could draw clear conclusions 
about the distribution of generated molecules.  
 



5.1 Property Characterisation 
 
Hydrogen bond acceptors (HBA), donors (HBD), 
molecular weight (MW), topological polar surface (TPSA) 
and cLogP were calculated using the chemical descriptor 
module from RDKit45 Synthetic accessibility (SA)46, 
QED35, and Tanimoto similarities were also calculated 
using RDKit. 
 
For the analysis of generated molecular sets, only unique 
molecules (all valid SMILES generated once repeats are 
removed) were considered. To compare the diversity of 
training and generated datasets, Murcko scaffolds47 were 
generated using RDKit. The generated library internal 
diversity scores were calculated using MOSES.48 
 
5.2 Reinforcement Learning 
 
To successfully optimise for a property, a suitable reward 
function must be provided. For simplicity, throughout 
our study, we used the same step reward function 
(examples available in the Supplementary Information 1). 
Any invalid SMILES did not return a reward, and all 
valid SMILES that met the reward criteria returned a 
reward of one.  
 
5.2.1 Optimisation Success 

We initially determined the success of optimisation using 
the proportion of molecules in the generated library that 
fell within the reward range. However, after several 
properties were tested at increasing representations, it 
became clear that the difference between the proportion 
of optimised molecules in successful and unsuccessful 
optimisation attempts was large enough so that a success 
threshold was not appropriate. Instead, optimisation 
attempts that showed an increase in the proportion of 
optimised molecules were deemed successful. This was 
possible because all unsuccessful attempts resulted in zero 
optimised molecules. 

5.2.2 Controlling Generated Libraries 
 
To determine the degree to which the property 
distribution of the molecules generated by the agent 
(agent distribution) can be controlled, we set 
REINVENT the task of shifting the distribution of cLogP 
or HBA counts across their respective ranges. These 
properties or the property ranges tested may not be the 
most important in a drug discovery context; however, 
these experiments allow us to assess optimisation 
performance. If it is possible to control the distribution of 
generated molecular sets, we expect to observe changes 
in the composition of these sets as the reward range 
changes. During RL, all valid SMILES that satisfy the 
reward function are given a reward of one. All other 
molecules, valid or not, receive zero reward.  
 

5.2.3 Effects of Percentage Representation 
 
In our study, our aim was to determine the effect that 
training data representation on the generated molecules. 
To do this, we prepared several training datasets in which 
the proportion of molecules that matched the desired 
reward profile varied. We chose reward profiles 
(supplementary information 1) at the upper end of the full 
ChEMBL training data distribution such that at least 
10% of the training data matched the reward function. 
Once the reward range was calculated, all molecules that 
matched the reward profile were removed from the full 
training data set. Then smaller random samples equal in 
size to 0%, 2%, 5%, 7% and 10% of the entire training 
dataset were put back and used to train the model from 
scratch.  
 
5.3 Recurrent iterative optimization 

procedure 
 
We propose a novel, curriculum learning inspired 
recurrent Iterative Optimisation Procedure (rIOP). 
Curriculum learning is a method used to teach models 
how to complete difficult tasks through the gradual 
introduction of more complex examples during 
training.49 For single-step optimisation attempts, it is 
common for RL methods to exploit molecular motifs 
found to return positive rewards, leading to generated sets 
with low diversity (specialisation). We expect that the 
greater the difference between the reward profile and 
training data, the more prevalent this behaviour is. By 
splitting the optimisation task into a series of smaller tasks, 
we reduced the difference between the molecules 
generated by the prior and the desired reward profile at 
each step. Thus, reducing the likelihood of early 
specialisation. Repeating a prior/agent training loop with 
a series of small changes in the reward profile, we 
encouraged each agent model to shift its property 
distribution toward the final, desired, distribution. The 
resulting agent was then used as the prior in the next step. 
Splitting the final optimisation task into a series of 
increasingly complex subtasks allowed the model to 
satisfy increasingly difficult molecular profiles that 
directed it toward the final goal.  
 
We demonstrate the use of two implementations of rIOP, 
that can be used in on-policy RL training regimes. The 
first, single model rIOP (SrIOP), only samples from the 
previous agent when training the current model. The 
second, double model (DrIOP), samples from the 
previous two models. Unless otherwise stated, for DrIOP 
we sampled the current agent once every five times the 
previous agent was sampled.   
 
5.3.1 Diversity Filters 
 
To control diversity, where appropriate, we incorporated 
the diversity filters described by Blaschke et al.50 With 
diversity filters (DF) enabled, the model will only give a 
positive reward for the first n molecules that satisfy the 



reward function for a given scaffold. Once n molecules 
that match the reward profile have been generated, 
molecules with this scaffold are no longer rewarded. This 
prevents the model from entering a local optimisation 
minimum by producing many molecules with the same 
scaffold and small structural differences to satisfy the 
reward function.  
 
5.3.2 RIOP for Diversity Control 
 
To demonstrate how rIOP can be used to control the 
diversity of generated molecules, we conducted two 
experiments. Firstly, we generated molecules with a 
reward for TPSA between 250 and 300 using SrIOP and 
REINVENT’s standard implementation. Secondly, we 
created a set of molecules in which our aim was to 
maximise QED. We use no molecules with QED greater 
than 0.8 during training, then iteratively increased the 
QED reward profile at each step. Diversity filters were 
also used to further improve the diversity of generated 
molecules. 
 
5.3.3 rIOP for Complex Optimisation Tasks 
 
To showcase rIOP’s ability to complete complex 
optimisation tasks, we generated molecules similar to 
target structures with no relevant examples in the training 
data. We removed all molecules with tanimoto similarity 
greater than 0.4 to each target from the training data and 
then increased the tanimoto similarity reward threshold 
by 0.1 at each step. 
 
5.3.4 Limitations of SMILES 
 
To examine the limitations of SMILES-based molecular 
generators, we attempted to generate molecules that 
included a target substructure using multiple different 
SMILES strings to represent the intermediate 
substructures. We used ReCL and SrIOP to generate 
molecules with a series of increasingly complex 
substructures. For each molecule, we enumerated five 
alternate SMILES for each target intermediate 
substructure. The intermediate SMILES across each 
series were kept constant.  
 

6 Data Availability 
 
The trained generative model used in some of our work 
is already published by Patronov et al40 and is available at: 
https://github.com/m-
mokaya/RIOP/blob/main/models/random.prior.new.  
 
All other raw data needed to reproduce the experiments 
in this work are provided at: https://github.com/m-
mokaya/RIOP/blob/main/data. 

7 Code Availability 
 
The code used in this study is available at 
https://github.com/m-mokaya/RIOP. Example 
notebooks for each experiment are available at 
https://github.com/m-
mokaya/RIOP/tree/main/notebooks. 
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11 Tables 
 
Table 1: Breakdown of generated sets using SrIOP 
and ReCL in target similarity optimisation for (a) 
simple molecules and (b) complex molecules. For 
simple molecules, (a),  a high similarity was all  
molecules with tanimoto similarity greater than 0.9. 
For complex molecules, (b),  the threshold was a 
tanimoto similarity greater than 0.7. Diversity f i lters 
(DF) were used on the complex molecule. 

(a) 

Method # High similarity # Scaffolds 
SrIOP 486 1 
ReCL 448 2 

 

(b) 

Method # High similarity # Scaffolds 
SrIOP 497 1 
SrIOP (DF) 447 142 
ReCL 0 0 
ReCL (DF) 3 3 

 



12 Figures Legends/Captions 
 
Figure 1: Distribution of generated libraries for (a) cLogP 
optimisation and (b) number of HBA’s optimisation. 
Each line corresponds to the property distribution of the 
molecules sampled by an agent trained with a reward 
range detailed in the legend. Both figures show that 
optimisation is possible within a specific range (e.g., 0-20 
HBA’s), outside this range optimisation fails. The model 
is unable to generate appropriate molecules, so the 
training data distribution is recreated. 
 
Figure 2: TPSA distribution of molecules sampled from 
each intermediate (1-3) and final (4) agent trained during 
rIOP. We show that we can shift the distribution 
iteratively towards target property values. TPSA reward 
range for each step were (1) 100 – 150, (2) 150-200, (3) 
200-250, (4) 250-300.   
 
Figure 3: Comparison of SrIOP to REINVENT (STD) 
for generation of druglike molecules (a) without diversity 
filters, (b) with diversity filters. SrIOP (blue), standard 
(orange), prior (green) and training data (dotted) 
distributions for the generation of high QED molecules 
(QED > 0.90). Only low QED molecules (< 0.8) were 
used in training, then the QED reward range was 
increased each SrIOP step. Both methods can generate 
the desired molecules, however, SrIOP generates more 
molecules in the desired range in both cases.  
 
Figure 4: Effects of SMILES choice on substructure 
generation performance using ReCL and SrIOP. For 
each molecule 5 sets of different intermediate SMILES 
were generated, then used during optimisation. Each 
SMILES variation at each step represented the same 
molecule. (a) and (c) are the total number of SMILES 
sampled from the final agent that included the target 
substructure (500 molecules were sampled). SrIOP (pink) 
and ReCL (blue).  (b) and (d) are the total number of 
distinct scaffolds present in the successful samples. SrIOP 
(orange) and ReCL (green). (a) and (b) correspond to 
molecule A, while (c) and (d) correspond to molecule B. 
The figure shows that the SMILES choice directly affects 
optimisation performance and diversity of generated 
molecules. For example, optimisation of molecule A 
failed (no molecules matching the desired substructure) at 
least once with both methods, despite intermediate 
SMILES at each step across all sets representing the same 
structure.   
 
Figure 5: High-level diagram displaying the architecture 
of the deep reinforcement learning model used by 
Popova et al and Olivecrona et al.38,39 (a) Supervised 
learning language model. The prior model learns to 
generate novel SMILES from a large dataset of SMILES 
from ChEMBL.31 (b) Reinforcement Learning. The 
agent model (based on the prior model) is trained to 
generate SMILES that return a favourable reward. 
 

13 References 
 
 1. Schneider, P. & Schneider, G. De Novo Design at the 

Edge of Chaos. J. Med. Chem. 59, 4077–4086 (2016). 
2. Waring, M. J. et al. An analysis of the attrition of drug 

candidates from four major pharmaceutical companies. 
Nat. Rev. Drug Discov. 14, 475–486 (2015). 

3. Hay, M., Thomas, D. W., Craighead, J. L., Economides, 
C. & Rosenthal, J. Clinical development success rates for 
investigational drugs. Nat. Biotechnol. 32, 40–51 (2014). 

4. Bunnage, M. E. Getting pharmaceutical R&D back on 
target. Nat. Chem. Biol. 7, 335–339 (2011). 

5. Hughes, J., Rees, S., Kalindjian, S. & Philpott, K. 
Principles of early drug discovery: Principles of early drug 
discovery. Br. J. Pharmacol. 162, 1239–1249 (2011). 

6. Bohacek, R. S., McMartin, C. & Guida, W. C. The art 
and practice of structure-based drug design: A molecular 
modeling perspective. Med. Res. Rev. 16, 3–50 (1996). 

7. Kim, S. et al. PubChem Substance and Compound 
databases. Nucleic Acids Res. 44, D1202–D1213 (2016). 

8. Romano, J. D. & Tatonetti, N. P. Informatics and 
Computational Methods in Natural Product Drug 
Discovery: A Review and Perspectives. Front. Genet. 10, 
368 (2019). 

9. Lin, X., Li, X. & Lin, X. A Review on Applications of 
Computational Methods in Drug Screening and Design. 
Molecules 25, (2020). 

10. Besnard, J. et al. Automated design of ligands to 
polypharmacological profiles. Nature 492, 215–220 (2012). 

11. Gómez-Bombarelli, R. et al. Automatic Chemical Design 
Using a Data-Driven Continuous Representation of 
Molecules. ACS Cent. Sci. 4, 268–276 (2018). 

12. Stumpfe, D. & Bajorath, J. Similarity searching. WIREs 
Comput. Mol. Sci. 1, 260–282 (2011). 

13. Horvath, D. A Virtual Screening Approach Applied to the 
Search for Trypanothione Reductase Inhibitors. J. Med. 
Chem. 40, 2412–2423 (1997). 

14. Surabhi, S. & Singh, B. K. COMPUTER AIDED DRUG 
DESIGN: AN OVERVIEW. J. Drug Deliv. Ther. 8, 504–
509 (2018). 

15. Segler, M. H. S., Kogej, T., Tyrchan, C. & Waller, M. P. 
Generating Focused Molecule Libraries for Drug 
Discovery with Recurrent Neural Networks. ACS Cent. Sci. 
4, 120–131 (2018). 

16. Mauser, H. & Stahl, M. Chemical Fragment Spaces for de 
novo Design. J. Chem. Inf. Model. 47, 318–324 (2007). 

17. Hartenfeller, M., Proschak, E., Schüller, A. & Schneider, 
G. Concept of Combinatorial De Novo Design of Drug-
like Molecules by Particle Swarm Optimization. Chem. 
Biol. Drug Des. 72, 16–26 (2008). 

18. Dey, F. & Caflisch, A. Fragment-Based de Novo Ligand 
Design by Multiobjective Evolutionary Optimization. J. 
Chem. Inf. Model. 48, 679–690 (2008). 

19. Elton, D. C., Boukouvalas, Z., Fuge, M. D. & Chung, P. 
W. Deep learning for molecular design - a review of the 
state of the art. (2019) doi:10.1039/C9ME00039A. 

20. Baldi, P. Autoencoders, Unsupervised Learning, and 
Deep Architectures. in Proceedings of ICML Workshop on 
Unsupervised and Transfer Learning (eds. Guyon, I., Dror, G., 
Lemaire, V., Taylor, G. & Silver, D.) vol. 27 37–49 
(PMLR, 2012). 

21. Jin, W., Barzilay, R. & Jaakkola, T. Junction Tree 
Variational Autoencoder for Molecular Graph 
Generation. (2018) doi:10.48550/ARXIV.1802.04364. 



22. Weininger, D. SMILES, a Chemical Language and 
Information System: 1: Introduction to Methodology and 
Encoding Rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988). 

23. Lim, J., Ryu, S., Kim, J. W. & Kim, W. Y. Molecular 
generative model based on conditional variational 
autoencoder for de novo molecular design. J. 
Cheminformatics 10, 31 (2018). 

24. Goodfellow, I. J. et al. Generative Adversarial Networks. 
ArXiv14062661 Cs Stat (2014). 

25. Putin, E. et al. Reinforced Adversarial Neural Computer 
for de Novo Molecular Design. J. Chem. Inf. Model. 58, 
1194–1204 (2018). 

26. Guimaraes, G. L., Sanchez-Lengeling, B., Outeiral, C., 
Farias, P. L. C. & Aspuru-Guzik, A. Objective-Reinforced 
Generative Adversarial Networks (ORGAN) for Sequence 
Generation Models. (2017) 
doi:10.48550/ARXIV.1705.10843. 

27. Vaswani, A. et al. Attention Is All You Need. (2017) 
doi:10.48550/ARXIV.1706.03762. 

28. Grechishnikova, D. Transformer neural network for 
protein-specific de novo drug generation as a machine 
translation problem. Sci. Rep. 11, 321 (2021). 

29. Bagal, V., Aggarwal, R., Vinod, P. K. & Priyakumar, U. 
D. MolGPT: Molecular Generation Using a 
Transformer-Decoder Model. J. Chem. Inf. Model. 62, 
2064–2076 (2022). 

30. Zheng, S. et al. Deep scaffold hopping with multimodal 
transformer neural networks. J. Cheminformatics 13, 87 
(2021). 

31. He, J. et al. Transformer Neural Network for Structure Constrained 
Molecular Optimization. 
https://chemrxiv.org/engage/chemrxiv/article-
details/60c7578c702a9b118b18cafe (2021) 
doi:10.26434/chemrxiv.14416133.v1. 

32. Goldberg, Y. A Primer on Neural Network Models for 
Natural Language Processing. (2015) 
doi:10.48550/ARXIV.1510.00726. 

33. Kotsias, P.-C. et al. Direct steering of de novo molecular 
generation with descriptor conditional recurrent neural 
networks. Nat. Mach. Intell. 2, 254–265 (2020). 

34. Bjerrum, E. J. & Threlfall, R. Molecular Generation with 
Recurrent Neural Networks (RNNs). (2017) 
doi:10.48550/ARXIV.1705.04612. 

35. Arús-Pous, J. et al. Exploring the GDB-13 chemical space 
using deep generative models. J. Cheminformatics 11, 20 
(2019). 

36. Arús-Pous, J. et al. Randomized SMILES strings improve 
the quality of molecular generative models. J. 
Cheminformatics 11, 71 (2019). 

37. Williams, R. J. Simple statistical gradient-following 
algorithms for connectionist reinforcement learning. 
Mach. Learn. 8, 229–256 (1992). 

38. Olivecrona, M., Blaschke, T., Engkvist, O. & Chen, H. 
Molecular de-novo design through deep reinforcement 
learning. J. Cheminformatics 9, 48 (2017). 

39. Popova, M., Isayev, O. & Tropsha, A. Deep 
reinforcement learning for de novo drug design. Sci. Adv. 
4, eaap7885 (2018). 

40. Guo, J. et al. Improving de novo molecular design with 
curriculum learning. Nat. Mach. Intell. 4, 555–563 (2022). 

41. Soviany, P., Ionescu, R. T., Rota, P. & Sebe, N. 
Curriculum Learning: A Survey. (2021) 
doi:10.48550/ARXIV.2101.10382. 

42. Krenn, M., Häse, F., Nigam, A., Friederich, P. & Aspuru-
Guzik, A. Self-referencing embedded strings (SELFIES): 
A 100% robust molecular string representation. Mach. 
Learn. Sci. Technol. 1, 045024 (2020). 

43. O’Boyle, N. & Dalke, A. DeepSMILES: An Adaptation of 
SMILES for Use in Machine-Learning of Chemical Structures. 
https://chemrxiv.org/engage/chemrxiv/article-
details/60c73ed6567dfe7e5fec388d (2018) 
doi:10.26434/chemrxiv.7097960.v1. 

44. Gaulton, A. et al. ChEMBL: a large-scale bioactivity 
database for drug discovery. Nucleic Acids Res. 40, D1100–
D1107 (2012). 

45. Landrum, G. RDKit: Open-source cheminformatics. 
(2006). 

46. Ertl, P. & Schuffenhauer, A. Estimation of synthetic 
accessibility score of drug-like molecules based on 
molecular complexity and fragment contributions. J. 
Cheminformatics 1, 8 (2009). 

47. Bemis, G. W. & Murcko, M. A. The Properties of Known 
Drugs. 1. Molecular Frameworks. J. Med. Chem. 39, 2887–
2893 (1996). 

48. Polykovskiy, D. et al. Molecular Sets (MOSES): A 
Benchmarking Platform for Molecular Generation 
Models. ArXiv181112823 Cs Stat (2020). 

49. Elman, J. L. Learning and development in neural 
networks: the importance of starting small. Cognition 48, 
71–99 (1993). 

50. Blaschke, T. et al. REINVENT 2.0: An AI Tool for De 
Novo Drug Design. J. Chem. Inf. Model. 60, 5918–5922 
(2020). 

 

 


