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On-the-fly active learning of interpretable Bayesian force fields
for atomistic rare events
Jonathan Vandermause 1,2✉, Steven B. Torrisi1, Simon Batzner2,3, Yu Xie2, Lixin Sun2, Alexie M. Kolpak4 and Boris Kozinsky 2,5✉

Machine learned force fields typically require manual construction of training sets consisting of thousands of first principles
calculations, which can result in low training efficiency and unpredictable errors when applied to structures not represented in the
training set of the model. This severely limits the practical application of these models in systems with dynamics governed by
important rare events, such as chemical reactions and diffusion. We present an adaptive Bayesian inference method for automating
the training of interpretable, low-dimensional, and multi-element interatomic force fields using structures drawn on the fly from
molecular dynamics simulations. Within an active learning framework, the internal uncertainty of a Gaussian process regression
model is used to decide whether to accept the model prediction or to perform a first principles calculation to augment the training
set of the model. The method is applied to a range of single- and multi-element systems and shown to achieve a favorable balance
of accuracy and computational efficiency, while requiring a minimal amount of ab initio training data. We provide a fully open-
source implementation of our method, as well as a procedure to map trained models to computationally efficient tabulated force
fields.
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INTRODUCTION
Recent machine learned (ML) force fields have been shown to
achieve high accuracy for a number of molecular and solid-state
systems1–11. These methods provide a promising path toward
long, large-scale molecular dynamics (MD) simulations driven by
force predictions that approach the accuracy of quantum
mechanical methods like density functional theory (DFT). How-
ever, most currently available ML force fields return point
estimates of energies, forces, and stresses rather than predictive
distributions that reflect model uncertainty, making the incorpora-
tion of accurate uncertainty estimates into ML force fields an
outstanding challenge12–18. Without model uncertainty, a labor-
ious fitting procedure is required, which usually involves manually
or randomly selecting thousands of reference structures from a
database of first principles calculations. In production MD runs, a
lack of principled means to compute predictive uncertainties
makes it difficult to determine when the force field is trustworthy,
leading to unreliable results and lack of guidance on how to
update the model in the presence of new data.
Here, we show that active learning based on Gaussian process

(GP) regression can accelerate and automate the training of high-
quality force fields by making use of accurate internal estimates of
model error. By combining DFT with low-dimensional GP
regression models during molecular dynamics simulations,
accurate force fields for a range of single- and multi-element
systems are obtained with ~100 DFT calculations. Moreover, we
demonstrate that the model can be flexibly and automatically
updated when the system deviates from previous training data.
Such a reduction in the computational cost of training and
updating force fields promises to extend ML modeling to a wider
class of materials than has been possible to date. The method is
shown to successfully model rapid crystal melts and rare diffusive
events, and so we call our method FLARE: Fast Learning of

Atomistic Rare Events, and make the open-source software freely
available online (https://github.com/mir-group/flare).
The key contribution of this work that makes on-the-fly learning

possible is the development of a fully interpretable low-
dimensional and nonparametric force field that provides trust-
worthy estimates of model uncertainty. Typical ML force fields
involve regression over a high-dimensional descriptor space
chosen either on physical grounds19,20 or learned directly from
ab initio data6,10. These approaches involve highly flexible models
with many physically non-interpretable parameters, complicating
the task of inferring a posterior distribution over model
parameters. We instead bypass the need for a high-dimensional
descriptor by imposing a physical prior that constrains the model
to n-body interactions, with high accuracy observed in practice
with 2- and 3-body models. Because the low-dimensional
descriptor space of our models can be sampled with a small
amount of training data, our method avoids sparsification, a
procedure that is used in Gaussian approximation potentials to
make inference tractable with many-body descriptors like SOAP20–22,
but that requires approximate treatment of GP uncertainty
estimates23,24. The learning task is simplified as a result, making
it possible to automatically tune the model’s hyperparameters in a
data-driven fashion and derive trustworthy estimates of model
uncertainty. This opens the door to a practical uncertainty-driven
method for selecting training points “on the fly”25, allowing an
accurate force field to be trained with a minimal number of
relatively expensive first principles calculations.
The resulting GP-based force fields are interpretable in three

important respects. First, the underlying energy model of the GP is
a physically motivated sum over n-body contributions, such that
each cluster of n− 1 neighbors in an atom’s environment makes a
direct contribution to the force on that atom. This establishes a
connection to previous physically motivated force fields, most
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notably the Stillinger-Weber force field26, which also sums over
2- and 3-body contributions but is limited to a specific analytic
form. Our models, by contrast, learn nonparametric 2- and 3-body
functions directly from ab initio data, allowing the models to
generalize well to complex multi-element systems, as we show in
the Results section below. Second, the model does not require a
descriptor of the entire local environment of an atom, instead
relying on a kernel that directly compares interatomic distances of
small clusters of atoms. As a result, the only free parameters in the
model are a small set of hyperparameters of the GP kernel
function, each of which has a direct interpretation and can be
rigorously optimized by maximizing the log marginal likelihood of
the training data. Neural network and Gaussian approximation
potentials, on the other hand, rely on complex high-dimensional
descriptors of an atom’s environment, making it less apparent
how the force acting on an atom is related to the configuration of
its neighbors. Finally, and most importantly for active learning, the
uncertainty estimates of our GP models break down into two
contributions: the epistemic uncertainty σiα, which is assigned to
each atom i and force component α and is determined by distance
from the training set, and the noise uncertainty σn, which
characterizes fundamental variability in the training data that
cannot be captured by the model. The latter source of error arises
from several simplifying approximations that improve computa-
tional efficiency, including the exclusion of interactions outside
the cutoff radius of the model, the decomposition of global
energies into local contributions, and the restriction to 2- and 3-
body interactions4,22. By optimizing the noise uncertainty σn of the
GP, the combined magnitude of these errors can be learned
directly from the data (see Methods). The interpretable uncertain-
ties derived from the GP model provide a principled basis for
automated training, in which a local environment is added to the
training set of the model when the epistemic uncertainty σiα on a
force component exceeds a chosen multiple of the noise
uncertainty σn.
Other GP and active learning based methods for force field

training have been proposed in the literature, and we discuss
them briefly here to put our method in context. Bartók et al.
pioneered the use of GP-based force fields in the Gaussian
approximation potential (GAP) framework21,22, with subsequent
applications combining 2- and 3-body descriptors with the many-
body SOAP kernel to achieve high accuracy for a range of
extended systems4,7,20. Recent GAP studies have reported
uncertainty estimates on local energy predictions8 and introduced
self-guided protocols for learning force fields based on random
structure searching rather than uncertainty-driven active

learning7,27. Rupp et al.28 and more recently Uteva et al.29 used
GP regression to model potential energy surfaces of small
molecular systems with active learning, and Smith et al. recently
proposed a query-by-committee procedure for actively learning
neural network force fields for small molecules30. On-the-fly force
field training for extended systems was first proposed by Li,
Kermode, and De Vita25, but the method relied on performing DFT
calculations to evaluate model error due to a lack of correlation
between the internal error of their GP model and true model
error31. Podryabinkin and Shapeev developed an on-the-fly
method for their linear moment tensor potentials32 using the D-
optimality criterion, which provides an internal information-
theoretic measure of distance from the training set13, with
subsequent applications to molecules, alloys, and crystal structure
prediction18,33,34. The D-optimality criterion is usually restricted to
linear models and does not provide direct error estimates on
model predictions. More recently, Jinnouchi et al. combined a
multi-element variant of the SOAP kernel with Bayesian linear
regression to obtain direct Bayesian error estimates on individual
force components, which was used to perform on-the-fly training
of force fields to study melting points and perovskite phase
transitions35,36. This approach relies on a decomposition of the
atomic density of each atom into many-body descriptors based on
spherical Bessel functions and spherical harmonics, with the
number of descriptors growing quadratically with the number of
elements in the system37. The machine learned force fields
presented here possess four important features that have not
been simultaneously achieved before: they are nonparametric,
fully Bayesian, explicitly multi-element, and can be mapped to
highly efficient tabulated force fields, making our automated
method for training these models widely applicable to a range of
complex materials.

RESULTS
FLARE: an on-the-fly learning method
The goal of FLARE is to automate the training of accurate and
computationally efficient force fields that can be used for large-
scale molecular dynamics simulations of multi-element systems.
The low-dimensional GP kernel that we use throughout this work,
sketched in Fig. 1a, is calculated by comparing interatomic
distances of clusters of two and three atoms, similar to the single-
element kernel presented by Glielmo, Zeni, and De Vita38 but here
generalized to arbitrarily many chemical species. If the two
clusters are not of the same type, as determined by the chemical
species of the atoms in the cluster, the kernel is assigned a value

Fig. 1 Fast learning of atomistic rare events (FLARE): an on-the-fly learning method for automatically training force fields during
molecular dynamics. a The 2- and 3-body multi-element kernels used in this work. The local environment of the central atom (gold) consists
of all atoms within the 2- and 3-body cutoff spheres (dotted and dashed lines, respectively), including images of atoms in the primary periodic
cell (solid square). The kernel is calculated by comparing clusters of two and three atoms of the same type, as determined by the chemical
species of the atoms in the cluster. b An overview of the on-the-fly learning algorithm. Left loop: molecular dynamics steps are proposed by
the current GP force field, with the epistemic uncertainties σiα on all force components monitored at each step. Right loop: if the epistemic
uncertainty on a force component rises above a chosen multiple of the optimized noise uncertainty σn of the GP, DFT is called and the training
set of the GP is updated with the highest uncertainty local environments.
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of zero, allowing the GP to differentiate between chemical species
while remaining low-dimensional (see Methods). Restricting the
model to a sum over two- and three-dimensional contributions
reduces the cost of training the model, allowing the descriptor
space to be systematically sampled with a relatively small number
of DFT calculations, and also reduces the cost of production MD
runs with the final trained model, since the GP can be mapped
onto efficient cubic spline models that allow the 2- and 3-body
contributions to the force on an atom to be directly evaluated38.
We have implemented this mapping as a pair style in the
molecular dynamics software LAMMPS, allowing us to study multi-
element systems containing more than ten thousand atoms over
nanosecond timescales (Fig. 5 below).
The low dimensionality of our models also makes it practically

feasible to rigorously optimize the hyperparameters of the kernel
function, which leads to trustworthy estimates of model
uncertainty. The reliability of these uncertainties is the key feature
of our approach that enables FLARE, an adaptive method for
training force fields on the fly during molecular dynamics. As
sketched in Fig. 1b, the algorithm takes an arbitrary structure as
input and begins with a call to DFT, which is used to train an initial
GP model on the forces acting on an arbitrarily chosen subset of
atoms in the structure. The GP then proposes an MD step by
predicting the forces on all atoms, at which point a decision is
made about whether to accept the predictions of the GP or to
perform a DFT calculation. The decision is based on the epistemic
uncertainty σiα of each GP force component prediction (defined in
Eq. (5) of Methods), which estimates the error of the prediction
due to dissimilarity between the atom’s environment and the local
environments stored in the training set of the GP. In particular, if

any σiα exceeds a chosen multiple of the current noise uncertainty
σn of the model, a call to DFT is made and the training set is
augmented with the forces acting on the N added highest
uncertainty local environments, the precise number of which
can be tuned to increase training efficiency. All hyperparameters,
including the noise uncertainty σn, are optimized whenever a local
environment and its force components are added to the training
set, allowing the error threshold to adapt to novel environments
encountered during the simulation (see Methods).

Characterization of model uncertainty
To justify an on-the-fly learning algorithm, we first characterize the
noise and epistemic uncertainties of GP models constructed with
the 2- and 3-body kernels described above, and compare them
against test errors on out-of-sample structures. Importantly, the
optimized noise uncertainty σn and epistemic uncertainties σiα are
found to provide a sensitive probe of true model error, with the
noise uncertainty capturing the baseline error level of model
predictions on local environments that are well represented in the
training set, and the epistemic uncertainties capturing error due to
deviation from the training data. In Fig. 2a–c, we test the
relationship between GP uncertainties and true error by perform-
ing a set of plane-wave DFT calculations on a 32-atom supercell of
FCC aluminum with the atoms randomly perturbed from their
equilibrium sites. In Fig. 2a, we examine the noise uncertainty σn
as a function of the cutoff radius of the model, which determines
the degree of locality of the trained force field. 2- and 2+3-body
GP models were trained on forces acting on atoms in a single
structure and then tested on an independently generated
structure, with the atomic coordinates in both cases randomly

Fig. 2 Tests of Gaussian process (GP) uncertainties. a Optimized noise uncertainty σn (solid) and root mean squared error (RMSE, dotted) of
GPs trained on an aluminum structure as a function of the cutoff radius rcut of the local environment for 2- and 2+3-body GP models (green

and blue, respectively). b Average GP uncertainty
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2n þ σ2iα

q
(solid) versus true RMSE (dotted) as a function of the number of training

environments. c Mean epistemic uncertainty σiα (solid) and RMSE (dotted) on test structures with atomic coordinates perturbed from δ=
1–50% of the lattice parameter, with the upper bound on the epistemic uncertainty (dashed) approached for δ > 20%. d Uncertainties of
individual force components for a GP model trained on bulk local environments. Each atom is colored by the most uncertain force component
acting on the atom, with atoms closer to the vacancy having more uncertain forces. e Comparison of GP uncertainties and true model error
for individual force components predicted on 10 randomly perturbed Al vacancy structures, with most true errors falling within two standard
deviations σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2n þ σ2iα
p

of the predictive posterior distribution of the GP (dotted). f Learning curves of GP models trained on 5-element high
entropy alloy structures, with training environments selected randomly (red) and with active learning (blue). The RMSE on force components
of an independent test structure is plotted along with the distribution of uncertainties, shown as a band between the minimum and
maximum uncertainties on force components in the structure.
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perturbed by up to 5% of the lattice parameter, alat= 4.046Å. For
the 2-body models, the cutoff radius was swept from 3.5 to 8Å in
increments of 0.5Å, and for the 2+3-body models, the 2-body
cutoff was held fixed at 6Å and the 3-body cutoff was swept from
3 to 4.5Å. The optimized noise uncertainty σn plotted in Fig. 2a
closely tracks the root mean squared error (RMSE) on the test
structure for the range of examined cutoff values. The observed
correlation provides a principled way to select the cutoff radius of
the GP, showing that the expected error of a model with a given
cutoff can be directly estimated from the optimized noise
uncertainty σn when the GP model has been trained on sufficient
data.
When the GP model is trained on insufficient data, the

epistemic uncertainties σiα rise above the noise uncertainty σn,
indicating that the model requires additional training data to
make accurate force estimates. The utility of the epistemic
uncertainty is illustrated in Fig. 2b, which examines GP uncertain-
ties as a function of the amount of data in the training set. Using
the same training and test structures as Fig. 2a, a 2+3-body GP
model with a 6-Å 2-body cutoff and 4-Å 3-body cutoff was
constructed by adding local environments one by one to the
training set and evaluating the RMSE and GP uncertainty after

each update. The average GP uncertainty
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
n þ σ2iα

q
closely tracks

the RMSE, where σiα is the mean epistemic uncertainty over all
force components in the test structure.
We also demonstrate in Fig. 2c that the epistemic uncertainty

provides an accurate indicator of model error when the model is
forced to extrapolate on local environments that are significantly
different from local environments in the training set. To system-
atically investigate distance from the training set, a 2+3-body GP
model was trained on a single aluminum structure with atomic
coordinates perturbed by δ= 5% of the lattice parameter and
tested on structures generated with values of δ ranging from 1 to
50%, with δ= 50% giving rise to a highly distorted structure with a
mean absolute force component of 28.6 eV/Å and a maximum
absolute force component of 200.5 eV/Å (compared to a mean of
0.50 eV/Å and maximum of 1.48 eV/Å for the training structure).
As shown in Fig. 2c, the mean epistemic uncertainty σiα increases
with δ and exceeds the optimized noise uncertainty of σn= 11.53
meV/Å for δ > 5%, demonstrating the ability of the GP to detect
when it is predicting on structures that are outside the training set.
This capability is crucial for on-the-fly learning, as the model must
be able to flag when additional training data is needed in order to
accurately estimate forces. We furthermore observe that the error
is substantially underestimated for large values of δ due to an
upper bound on the epistemic uncertainty imposed by the signal
variance hyperparameters of the kernel function, with the bound
nearly saturated for δ > 20% (see Methods for the definition of this
bound). This emphasizes the importance of re-optimizing the
hyperparameters when additional data is introduced to the
training set, allowing the model to adapt to novel structures.
In Fig. 2d, e we demonstrate that GP uncertainties on individual

force components can also provide valuable information about
the expected errors on structures not represented in the training
set. Figure 2d shows individual GP uncertainties

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2iα þ σ2

n

p
on the

predicted force components of a relaxed vacancy structure when
the GP was trained on bulk local environments only. Each atom is
colored according to the maximum uncertainty of the three
predicted force components acting on the atom, with atoms
closer to the defect tending to have higher uncertainties. This test
was repeated for ten randomly perturbed vacancy structures, with
the true error plotted in Fig. 2e against the GP uncertaintyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
iα þ σ2

n

p
of each force component, showing that higher

uncertainties coincide with a wider spread in the true error.
We finally demonstrate in Fig. 2f that the GP uncertainties are

trustworthy for more complex multi-element systems. In this test,
two GP models were trained on the five-element high entropy

alloy (HEA) DFT forces of Zhang et al.10, with training environ-
ments selected randomly for the first GP model and with active
learning for the second. Specifically, thirty-nine HEA structures
were drawn from the “rand 1” portion of this dataset, and for each
structure, twenty training environments were selected either at
random or by identifying the highest uncertainty environments in
the structure. After each update to the training set, both the GP
uncertainties and true model error on an independent HEA
structure were evaluated (with the test structure taken from the
“rand2” portion of the dataset and having a different random
allocation of elements). The distribution of total uncertaintiesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
iα þ σ2

n

p
on force components in the test structure is shown for

both models in Fig. 2f by plotting a band between the minimum
and maximum uncertainties, which encloses the true RMSE.
Actively selecting environments based on model uncertainty has
the effect of shifting the learning curve downward, with the
actively trained GP reaching a RMSE of 0.445 eV/Å on the test
structure. The GP model obtained with active learning was
subsequently mapped to a tabulated force field in order to rapidly
evaluate forces on the entire "rand2” test set of Zhang et al.10,
which consisted of 149 HEA structures with elements placed at
random lattice sites. The RMSE averaged over all test structures
was found to be 0.466 eV/Å for the tabulated GP model,
comparable to the RMSE of 0.410 eV/Å reported for the deep
neural network model of Zhang et al.10 and outperforming the
Deep Potential model of Zhang et al.9, which achieved a RMSE of
0.576 eV/Å on the same test set. We note that both neural
network models were trained on 400 HEA structures10, which
exceeds the number of structures the GP was trained on by more
than an order of magnitude.

Aluminum crystal melt
As a first demonstration of on-the-fly learning driven by GP
uncertainties, we consider a 32-atom bulk aluminum system
initialized in the FCC phase at low temperature, with N added ¼ 1
local environment added to the training set whenever the
epistemic uncertainty on a force component exceeds the current
noise uncertainty, σthresh= σn. As shown in Fig. 3a, DFT is called
often at the beginning of the simulation as the GP model learns a
force field suitable for FCC aluminum. After about 30 time steps,
the model needs far fewer new training points, requiring fewer
than 50 DFT calls in the first 5 ps of the simulation. To test the
model’s ability to adapt to changing conditions, the crystal is
melted at time t= 5 ps by rescaling the velocities of the atoms to
give the system an instantaneous temperature of 104 K, well
above the experimental melting point of aluminum (933 K) due to
the strong finite size effects of the 2 × 2 × 2 supercell. The
subsequent temperature in the remaining 5 ps of the simulation
stabilizes around 5000 K with a radial distribution function
consistent with the liquid phase (Fig. 3c). As shown in Fig. 3b,
which plots the cumulative number of DFT calls made during the
training run, the GP model makes frequent calls to DFT
immediately after the crystal melts, as the local environments in
the liquid phase of aluminum are significantly different from the
previous solid-state training environments. The noise uncertainty
σn of the model, shown in red in Fig. 3b, sharply increases as the
system enters the liquid phase, reflecting the fact that it is more
difficult to model, involving more diverse local environments and
significantly larger force fluctuations. Because the error threshold
σthresh is set equal to the optimized noise uncertainty σn, the
threshold in the liquid phase is higher, and as a result the GP
model requires a roughly similar number of DFT calls to learn the
solid and liquid phases. Fewer than 100 calls are needed in total
during the 10 ps of dynamics, with the majority of DFT calls made
at the beginning of the simulation and immediately after melting.
The obtained force field is validated by testing the model on

two independent 10-ps ab initio molecular dynamics (AIMD)
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simulations of the solid and liquid phases of aluminum.
100 structures were sampled from the AIMD trajectories with
0.1-ps spacing between structures. Force predictions on all test
structures were obtained with a tabulated version of the GP
force field of Fig. 3a and compared against the corresponding
DFT values, with the RMSE in eV/Å plotted in Fig. 3d. For
reference, the models are compared against recent EAM and
AGNI ML force fields, which were also trained on plane-wave
DFT calculations with GGA exchange-correlation functionals
and PAW pseudopotentials12,39, though we note that they were
not trained on exactly the same DFT calculations as our models.
Also included for comparison is the performance of a 2-body
FLARE model trained on the same local environments as the
2+3-body model. Each force field was tested on the same
structures, with the FLARE force field reaching the lowest force
errors for both trajectories. This is due in part to the fact that
FLARE optimizes the force field for the specific simulation of
interest, only augmenting the training set when necessary. This
bypasses the need to anticipate all possible phases which a
system might explore when creating the force field. To assess
computational efficiency, 1000 MD steps were performed with
the LAMMPS implementations of these four force fields on a
single CPU core for a system of 1372 bulk Al atoms, with the
cost of each force field plotted in Fig. 3e in s/atoms/timestep.
The cost of the current LAMMPS implementation of the
tabulated 2-body FLARE force field is found to be 5.6 × 10−6

s/atom/timestep, which is the same order of magnitude as the
EAM cost of 2.2 × 10−6 s/atom/timestep. The 2+3-body model
is about an order of magnitude slower at 4.9 × 10−5 s/atom/
timestep, but still faster than AGNI, which directly predicts
forces with a small neural network. This makes FLARE
considerably less expensive than many-body models like GAP,
with the cost of the recent GAP silicon model reported as 0.1 s/
atom/timestep8.

Bulk vacancy and surface adatom diffusion
We next demonstrate that FLARE can be used to train force fields
that dramatically accelerate simulations of rare-event dynamics
over timescales spanning hundreds of picoseconds by applying
the method to aluminum bulk vacancy diffusion and surface
adatom diffusion. For bulk vacancy training, a 1-ns simulation was
initialized by removing one atom from an equilibrium 32-atom
FCC structure and setting the instantaneous initial temperature to
1500 K, giving a mean temperature of 734 K across the simulation.
The GP model was constructed with a 2-body kernel with cutoff
rð2Þcut ¼ 5:4Å, resulting in a final optimized noise uncertainty of
σn= 70.2 meV/Å. Discarding the 3-body contribution was found to
significantly accelerate the simulation while still achieving low
force errors due to the simplicity of the single-defect bulk
crystalline phase, opening up nanosecond timescales during
training. As shown in Fig. 4a, most DFT calls are made early on in
the simulation, and after the first ~400ps, no additional DFT calls
are required. The model predicts vacancy hops every few hundred
picoseconds, which appear as sharp jumps in the mean squared
displacement plotted in Fig. 4a. To check the accuracy of the
underlying energy model of the GP, DFT energies were computed
along the high symmetry transition path sketched in the inset of
Fig. 4b, with a nearest neighbor migrating into the vacancy while
all other atoms in the simulation cell were kept frozen at their fcc
lattice sites. GP forces and energies along the transition path were
evaluated to give an estimate of the energy barrier, showing close
agreement with the ab initio DFT values (Fig. 4c), with the DFT
forces lying within one standard deviation of the GP force
predictions (Fig. 4b). The entire FLARE training run, including DFT
calculations, GP hyperparameter optimization, force evaluations
and MD updates, were performed on a 32-core machine in 68.8 h
of wall time. Individual DFT calls required over a minute of wall
time on average, making FLARE over 300 times faster than an

Fig. 3 Active learning of a multi-phase aluminum force field. a Instantaneous temperature during a 10-ps on-the-fly MD trajectory
generated with the FLARE learning algorithm. The simulation begins in the FCC phase at low temperature and is melted at t= 5 ps. When the
epistemic uncertainty σiα on a force component rises above the current noise uncertainty σn of the model, DFT is called (black dots). b The
number of DFT calls (solid) and optimized noise uncertainty (dotted) throughout the simulation. A sharp increase is observed when the crystal
is melted, illustrating the model's ability to actively learn the liquid phase. c During the first 5 ps of the simulation, the radial distribution
function (RDF) is consistent with that of an fcc crystal (solid line), while in the final half of the simulation, the system exhibits an RDF
characteristic of the liquid phase (dashed). d RMSE on AIMD forces of a tabulated version of the resulting force field compared with EAM,
AGNI, and a tabulated 2-body FLARE force field. e Computational cost of LAMMPS implementations of these force fields on a single CPU core
in s/atom/timestep.
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equivalent AIMD run (see Supplementary Table 2 for a breakdown
of GP prediction costs).
To test the accuracy of FLARE on a subtler transition with a

significantly lower energy barrier, we consider aluminum adatom
diffusion on a four-layer (111) aluminum slab, with a representa-
tive structure shown in the inset of Fig. 4d. As revealed in previous
ab initio studies, an isolated Al adatom on the (111) Al surface
exhibits a small but surprising preference for the hcp site40,41,
making this system an interesting and challenging test for a
machine learned force field. For this system, 3-body contributions
were found to considerably increase the accuracy of the force
field, with a 7-Å 2-body cutoff and 4.5Å 3-body cutoff giving an
optimized noise uncertainty of σn= 44.2 meV/Å after the final DFT
call at t= 62.2 ps (Fig. 4d). To validate the energetics of the force
field, a 7-image nudged elastic band (NEB) calculation character-
izing the transition from the hcp to fcc adatom sites was
performed using the Atomic Simulation Environment42 with the
GP energy predictions shown in blue in Fig. 4f. The DFT energies
of each image of the NEB calculation are shown in black, showing
agreement to within ≈20meV for each image and confirming the
GP’s prediction of a slight energetic preference for the hcp site in
equilibrium, which is not reproduced by the EAM model of Sheng
et al.39 (red line in Fig. 4f). An independent DFT NEB calculation
was performed for the same transition, showing good agreement
with the DFT energies of the FLARE NEB images.

Fast-ion diffusion in AgI
As a third and more challenging example of diffusion, we apply
FLARE to the fast-ion conductor silver iodide (AgI), which exhibits
a structural phase transition at 420 K from the low-temperature

γ∕β-phase to a cubic "superionic” α-phase, with silver ions in the
α-phase observed to have a liquid-like diffusivity43. A 2+3-body
FLARE model was trained in a 15 ps on-the-fly simulation of 48 AgI
atoms in the α-phase, with the temperature increased at 5 and
10 ps (Fig. 5a). The uncertainty threshold was set to twice the
noise uncertainty, σthresh= 2σn, making the model slightly less
sensitive to changing temperature and contributing to the 1-ps
delay observed between the temperature increase at 5 ps and the
next call to DFT at t= 6.121 ps. Thirty-nine calls to DFT were made
in total, with the N added ¼ 10 highest uncertainty local environ-
ments added to the training set after each DFT calculation.
After training, the model was mapped to a tabulated cubic

spline model in LAMMPS, which was used to perform 1-ns
simulations at zero pressure and fixed temperature, with each
simulation requiring about three hours of wall time on 32 cpu
cores (≈3.2 × 10−5 cpu ⋅ s/atom/timestep). Ten MD simulations
were performed in total with temperatures ranging from 200 to
650 K in intervals of 50 K. In each simulation, the system was
initialized in a pristine 14 × 14 × 14 α-phase supercell (10,976
atoms total), with the silver ions placed at the energetically
preferred tetragonal interstices of the bcc iodine sublattice. The
diffusion coefficients of the Ag ions are plotted in Fig. 5b, showing
a sharp increase between 400 K and 450 K, in good agreement
with the experimental fast-ion transition temperature of 420 K.
The diffusion coefficients are compared with an AIMD study of the
α-phase of AgI44, which used a similar exchange-correlation
functional, showing excellent agreement at 450 K and above. Both
FLARE and AIMD show good agreement with experimentally
observed α-phase Ag diffusion coefficients45, with a slight vertical
offset but comparable activation energies of 0.107, 0.114, and

Fig. 4 On-the-fly learning of vacancy and adatom diffusion in aluminum. a Mean squared displacement during a FLARE training run of
duration 1 ns for a 31-atom fcc aluminum structure with a vacancy (see inset). The majority of DFT calls occur at the beginning of the run, with
no additional calls required after the first 400 ps. b x-component of the force predicted by the resulting force field for vacancy migration along
a high symmetry transition path (see inset), in close agreement with the ab initio barrier (dotted). c Predicted energies along the transition
path (blue) compared with DFT (black). d On-the-fly learning of adatom diffusion on a (111) aluminum surface, with sharp jumps in the MSD
signaling movement of the adatom on the surface. e x-component of the force on the adatom in nudged elastic band images of the hcp-to-
fcc transition computed with the trained GP model (blue line), along with the epistemic uncertainty σix (dark blue) and total uncertaintyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ix þ σ2n

p
(light blue). DFT forces are computed for each image (black). f Predicted energies of the FLARE-generated NEB images (blue)

relative to the first image. DFT energies are computed for each image (black), showing good agreement with the energies of an independent
NEB calculation performed with DFT (green). NEB images with the EAM force field from39 are shown for comparison (red).
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0.093 eV for FLARE, AIMD, and experiment, respectively. Below the
transition temperature, the FLARE force field correctly predicts a
phase transition to a non-diffusive and non-cubic hcp phase with
a nearest neighbor I-I coordination of 12, consistent with the γ and
β phases of AgI46. This accounts for the discrepancy between the
FLARE and AIMD diffusion coefficients in the low-temperature
regime, as the latter simulations were conducted in the α-phase
with a fixed cubic cell. Example structures from the 400 and 450 K
FLARE MD simulations are illustrated in Fig. 5c, with the low-
temperature structure giving a c∕a ratio of 1.46 and the high-
temperature structure having a lattice parameter of alat= 5.30Å,
in fair agreement with the corresponding experimental values of
c∕a= 1.63 and alat= 5.07Å near these temperatures (for the
β- and α-phases, respectively)47.

General applicability
Finally, we demonstrate in Fig. 6 that FLARE can be widely applied
to diverse systems, including covalently bonded insulators and
semiconductors, as well as oxides, alloys, and two-dimensional
materials. FLARE training runs were performed for five represen-
tative systems—carbon, silicon, aluminum oxide, nickel titanium,
and two-dimensional boron nitride—with the instantaneous
temperature of each system rescaled at t= 5 ps to illustrate the
model’s ability to detect and adapt to novel local environments
(see the left half of Table 1 for training details). To accelerate
training of the nickel titanium model, which required expensive
DFT calculations, the error threshold was set to twice the noise

uncertainty, σthresh= 2σn, significantly reducing the total number
of DFT calls needed to ~20 (as shown in Fig. 6d and Table 1).
Adding multiple local environments to the training set after each
DFT call also had the effect of reducing the total number of DFT
calls needed, as apparent in the aluminum oxide training run, for
which N added ¼ 30 local environments were added after every
DFT call and only 16 DFT calls were needed in total to train the
model. Each training run was performed on a 32-core machine
and took between 11.3 and 64.4 h of wall time (for silicon and
carbon, respectively). We emphasize that the training procedure
for each material is fully automatic, with the training set and
hyperparameters updated on the fly without any human
guidance.
To validate the models, independent NVE molecular dynamics

trajectories of duration 10 ps were generated with each GP force
field, with DFT calculations performed for ten MD frames spaced
equally across the simulation and compared against the
corresponding GP predictions. We find low root mean squared
errors (RMSE) of around 0.1 eV/Å for four of the five systems, and
for carbon we find a RMSE of 0.42 eV/Å due to the much higher
temperature of the carbon validation run. The RMSE over all force
component predictions in the ten representative frames is
reported in Table 1. In order to illustrate the range of force
magnitudes present in the simulation, we also report the 95th
percentile of the absolute force components in these frames, with
the ratio of the two reported in the final column of Table 1. The
resulting ratios lie between 3 and 10%, similar to the ratios

Fig. 5 On-the-fly learning of fast-ion diffusion in silver iodide. a Temperature during a FLARE training simulation of duration 15 ps for a
48-atom silver iodide structure in the α-phase (see inset), with the instantaneous temperature of the simulation increased at 5 ps and 10 ps.
b Silver diffusion coefficients (blue dots) computed with a tabulated version of the resulting force field from 1 ns NPT simulations of 10,976 AgI
atoms. The computed coefficients for the α-phase of AgI are in good agreement with the AIMD simulations of Wood and Marzari44 (black) and
experimental data reported by Kvist and Tärneberg45 (red), with the fast-ion phase transition at 420 K (dashed line) correctly modeled.
c Structures drawn from simulations at 400 K (left) and 450 K (right), illustrating the solid-solid structural phase transition that occurs between
these temperatures.
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reported in a recent study of amorphous carbon with a Gaussian
approximation potential4.

DISCUSSION
In summary, we have presented a method for automatically
training low-dimensional Gaussian process models that provide
accurate force estimates and reliable internal estimates of model
uncertainty. The model’s uncertainties are shown to correlate well
with true out-of-sample error, providing an interpretable, prin-
cipled basis for active learning of a force field model during
molecular dynamics. The nonparametric 2- and 3-body FLARE
models described here require fewer training environments than

high-dimensional machine learning approaches, and are therefore
well-suited to settings where large databases of ab initio
calculations are too expensive to compute. Our models have a
simple, accurate, and physically interpretable underlying energy
model, which we have shown can be used to map the GP to a
faster regression model approaching the speed of a classical force
field. This provides a path toward force fields tailored to individual
applications that give good agreement with DFT at several orders
of magnitude lower computational cost, which we expect to
considerably expand the range of materials that can be accurately
studied with atomistic simulation. Particularly promising is the
application of the FLARE framework to dynamical systems
dominated by rare diffusion or reaction events that are very
difficult to treat with existing ab initio, classical force field, or
machine learning methods.
Extending this active learning method to complex systems like

polymers and proteins is an important open challenge. The
Bayesian force fields presented here may serve as a useful guide
for selecting small, uncertain fragments from these systems that
can then be evaluated with DFT to refine the force field, similar to
other recent approaches that train on small portions of larger
structures48,49. This may provide a path toward accurate machine
learned force fields for chemical and biological systems that are
currently outside the reach of DFT and other quantum mechanical
methods.

METHODS
Gaussian process force fields
As observed by Glielmo et al.38,50,51, the task of fitting a force field can be
dramatically simplified by assuming that only small clusters of atoms in the
local environment of an atom i contribute to its local energy Ei. We define
the n-body local environment ρðnÞi of atom i to be the set of atoms within a
cutoff distance rðnÞcut from atom i, and a cluster of n atoms to be the atom i
and n− 1 of the atoms in ρ

ðnÞ
i . The energy εsi;i1 ;:::;in�1

ðdi;i1 ;:::;in�1 Þ of each
cluster of n atoms is assumed to depend on the species of the atoms in the
cluster, si;i1 ;:::;in�1 ¼ ðsi ; si1 ; ::; sin�1 Þ, and on a corresponding vector of
interatomic distances between the atoms, di;i1 ;:::;in�1 . For example, for
clusters of two atoms, this vector consists of a single scalar, di;i1 ¼ ðri;i1 Þ;
where ri;i1 is the distance between the central atom i and atom i1, and for
clusters of three atoms, di;i1 ;i2 ¼ ðri;i1 ; ri;i2 ; ri1 ;i2 Þ. The local energy assigned
to atom i may then be written as

Ei ¼
XN
n¼2

X
in�1>:::>i12ρðnÞi

εsi;i1 ;:::;in�1
ðdi;i1 ;:::;in�1 Þ; (1)

where the outer sum ranges over each n-body contribution to the energy
up to a chosen maximum order N and the inner sum ranges over all
clusters of n atoms inside the n-body environment ρðnÞi . The regression task
is to learn the functions εsi;i1 ;:::;in�1

ðdi;i1 ;:::;in�1 Þ, which for small n have much
lower dimensionality than the full potential energy surface.
To learn the cluster contributions εsi;i1 ;:::;in�1

, we use ab initio force data to
construct Gaussian process (GP) models, an established Bayesian approach
to describing probability distributions over unknown functions23. In GP
regression, the covariance between two outputs of the unknown function
is related to the degree of similarity of the inputs as quantified by a kernel
function. For our GP force fields, the covariance between n-body energy
contributions (εsi;i1 ;:::;in�1

in Eq. (1)) is equated to a kernel function kn that
directly compares the interatomic distance vectors while preserving
rotational invariance. The local energy kernel between two local
environments ρi, ρj is expressed as a sum over kernels between clusters
of atoms,

kðρi ; ρjÞ ¼
XN
n¼2

X
in�1>¼>i12ρ

ðnÞ
i

jn�1>¼>j12ρ
ðnÞ
j

X
Pn

δsi;i1 ; ¼ ; in�1 ;Pnsj;j1 ; ¼ ; jn�1
knðdi;i1 ; ¼ ; in�1 ;Pndj;j1 ; ¼ ; jn�1 Þ:

(2)

Importantly, this kernel function explicitly distinguishes between distinct
species, with the delta function δ evaluating to 1 if the species vectors
si;i1 ;:::in of the clusters under comparison are equal and 0 otherwise. The

Fig. 6 On-the-fly force field learning applied to a range of single-
and multi-element systems. In each training run, the instantaneous
temperature (blue) was increased at time t= 5.0 ps, triggering DFT
calls and updates to the GP model (black dots) caused by model
detection of novel local environments. Example structures from
each simulation are shown in the insets.
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innermost sum of Eq. (2) is over all permutations Pn of indices of the
species and distance vectors of the second cluster, guaranteeing
invariance of the model under permutation of atoms of the same species.
The resulting force kernel describing the covariance between force
components is obtained by differentiating the local energy kernel with
respect to the Cartesian coordinates r!iα; r

!
jβ of the central atoms of ρ1

and ρ2,

kα;βðρi ; ρjÞ ¼
∂2kðρi ; ρjÞ
∂ r!iα∂ r!jβ

; (3)

giving an exactly rotationally covariant and energy conserving model of
interatomic forces5,38,50. For completeness, we provide in Supplementary
Table 4 the formulas involved in computing the 3-body derivative kernel
described by Eq. (3), along with its derivatives with respect to the
hyperparameters of the kernel, which are used to calculate the gradient of
the log marginal likelihood during hyperparameter optimization.
In this work, we choose N= 3, restricting the sum to 2- and 3-body

contributions, as we have found the resulting GP models to be sufficiently
expressive to describe with high accuracy a range of single- and multi-
element systems while remaining computationally efficient. This is
consistent with the findings of Glielmo et al.38, which compared the
performance of 2-, 3-, and many-body kernels and found that many-body
models required substantially more training data while only modestly
improving performance for several crystals, nanoclusters, and amorphous
systems. Further investigation of model accuracy as a function of the
maximum order N of the kernel for different types of materials is an
interesting area for future study, as it may provide a systematic data-driven
approach to characterizing many-body interactions in complex materials.
For the pair and triplet kernels k2 and k3, we choose the squared

exponential kernel multiplied by a smooth quadratic cutoff function fcut
that ensures the model is continuous as atoms enter and exit the cutoff
sphere,

k2ðri;i1 ; rj;j1 Þ ¼ σ2s;2 exp � ðri;i1�rj;j1 Þ2
2‘22

� �
f cutðri;i1 ; rj;j1 Þ;

k3ðdi;i1 ;i2 ;dj;j1 ;j2 Þ ¼ σ2s;3 exp � jjdi;i1 ;i2�dj;j1 ;j2 jj2
2‘23

� �
f cutðdi;i1 ;i2 ;dj;j1 ;j2 Þ;

(4)

where σs,(2, 3) is the signal variance related to the maximum uncertainty of
points far from the training set, ℓ(2, 3) is the length scale of the 2- and 3-
body contributions, and ∣∣. ∣∣ denotes the vector 2-norm.
The force component fiα on each atom i and the square of the epistemic

uncertainty σ2iα assigned to that force component are computed using the
standard GP relations23,

fiα ¼ k
T
iα K þ σ2nI
� ��1

y

σ2iα ¼ kα;αðρi ; ρiÞ � k
T
iα K þ σ2nI
� ��1

kiα;
(5)

where kiα is the vector of force kernels between ρi and the local
environments in the training set, i.e. kiα;jβ ¼ kα;βðρi ; ρjÞ, K is the covariance
matrix Kmα,nβ= kα,β(ρm, ρn) of the training points, y is the vector of forces
acting on the atoms in the training set, and σn is a hyperparameter that
characterizes observation noise. The total uncertainty on the force
component, corresponding to the variance of the predictive posterior
distribution of the predicted value, is obtained by adding σ2n , the square of
the noise uncertainty23. Notice that the square of the epistemic uncertainty

is bounded above by kα,α(ρi, ρi), which for our kernel function is
determined by the signal variances σ2s;2 and σ2s;3.
In all models in this work, the hyperparameters θ= {σ2, σ3, ℓ2, ℓ3, σn}

are optimized with SciPy’s implementation of the BFGS algorithm52

by maximizing the log marginal likelihood of the training data ρ=
{ρ1, ρ2, . . ., ρn}, which takes the form23

log pðyjρ; θÞ ¼ � 1
2
yTðKþ σ2nIÞ

�1
y� 1

2
log jKþ σ2nIj �

n
2
log 2π: (6)

To efficiently maximize this quantity with BFGS, the gradient with respect
to all hyperparameters is calculated with the analytic expression23,

∂

∂θi
log pðyjρ; θÞ ¼ 1

2
tr ðα αT � Ky�1Þ ∂Ky

∂θj

� �
; (7)

where α ¼ K�1
y y and Ky ¼ K þ σ2nI. The formulas for the kernel derivatives

with respect to the hyperparameters that appear in this expression, ∂Ky
∂θj
, can

be exactly calculated, and we list them in Supplementary Table 4 for the
case of the 3-body kernel. The BFGS algorithm is terminated once the log
marginal likelihood gradient falls below a threshold value ϵ= 10−4. Note
that computation of the log marginal likelihood and its gradient involves
inverting the covariance matrix K and is efficient if the model is trained on
fewer than ~1000 points. This data-driven approach to selecting model
hyperparameters stands in contrast to other GP force fields, in which
hyperparameters are chosen heuristically4.

Mapping to tabulated spline models
As shown by Glielmo et al.38 for single-element systems, GP models built on
n-body kernels can be mapped to efficient cubic spline models, eliminating
the expensive loop over training points involved in the calculation of the
kernel vector kiα in Eq. (5). We have extended this mapping procedure to
our multi-element kernels by constructing cubic spline interpolants for each
n-body force contribution � d

d r!i

εsi;i1 ;:::;in�1
ðdi;i1 ;:::;in�1 Þ. The 2- and 3-body

contributions require 1- and 3-dimensional cubic splines, respectively. The
resulting spline model can be made arbitrarily accurate relative to the
original GP model by increasing the number of control points of the spline.
In Supplementary Table 3, we report the grid of control points used for
each mapped force field in this work.

Computational details
All DFT calculations were performed using Quantum Espresso 6.2.1, with
pseudopotentials, k-point meshes, plane-wave energy cutoffs, and charge
density energy cutoffs for all calculations reported in Supplementary Table 1.
The on-the-fly learning algorithm is implemented with the FLARE package
(https://github.com/mir-group/flare), which couples our Python-based MD
and GP code with Quantum ESPRESSO53. Kernel and distance calculations
are accelerated with the open-source just-in-time compiler Numba to
enable training simulations spanning hundreds of picoseconds54. All on-
the-fly molecular dynamics trajectories were performed in the NVE
ensemble using the Verlet algorithm. LAMMPS simulations of AgI were
performed in the NPT ensemble at zero pressure. Atomistic visualizations
were created using Atomeye55.

Table 1. Training and validation details of the FLARE models shown in Fig. 6.

Training Validation

N atoms r2 (Å) r3 (Å) σthresh N added N DFT twall (hours) T (K) RMSE (eV/Å) P95 (eV/Å) Ratio

C 64 4.0 2.75 σn 1 107 11.3 3710 0.42 7.45 0.056

Si 64 6.0 4.2 σn 5 133 64.4 620 0.077 1.54 0.050

Al2O3 80 4.5 3.5 σn 30 16 20.6 533 0.14 1.85 0.076

NiTi 54 4.48 3.2 2σn 10 18 33.3 510 0.10 1.00 0.104

BN 72 5.1 4.0 σn 1 237 31.4 677 0.092 3.24 0.029

Training: N atoms is the number of atoms in the training simulation, r2 and r3 are the 2- and 3-body cutoffs of the GP models, σthresh is the uncertainty threshold
that determines when DFT is called, N added is the number of local environments added each time DFT is called, and twall is the total wall time of the training
simulation. Validation: T is the mean temperature during the validation simulation, RMSE is the root mean squared error on ten snapshots from the validation
run, and P95 is the 95th percentile of force components in these 10 snapshots. The ratio between the RMSE and P95 is reported in the final column.
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