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Predicting adsorption ability of adsorbents at arbitrary sites for
pollutants using deep transfer learning
Zhilong Wang 1,2,4, Haikuo Zhang1,2,4, Jiahao Ren1,2, Xirong Lin1,2, Tianli Han3, Jinyun Liu 3✉ and Jinjin Li 1,2✉

Accurately evaluating the adsorption ability of adsorbents for heavy metal ions (HMIs) and organic pollutants in water is critical for
the design and preparation of emerging highly efficient adsorbents. However, predicting adsorption capabilities of adsorbents at
arbitrary sites is challenging, with currently unavailable measuring technology for active sites and the corresponding activities.
Here, we present an efficient artificial intelligence (AI) approach to predict the adsorption ability of adsorbents at arbitrary sites, as a
case study of three HMIs (Pb(II), Hg(II), and Cd(II)) adsorbed on the surface of a representative two-dimensional graphitic-C3N4. We
apply the deep neural network and transfer learning to predict the adsorption capabilities of three HMIs at arbitrary sites, with the
predicted results of Cd(II) > Hg(II) > Pb(II) and the root-mean-squared errors less than 0.1 eV. The proposed AI method has the same
prediction accuracy as the ab initio DFT calculation, but is millions of times faster than the DFT to predict adsorption abilities at
arbitrary sites and only requires one-tenth of datasets compared to training from scratch. We further verify the adsorption capacity
of g-C3N4 towards HMIs experimentally and obtain results consistent with the AI prediction. It indicates that the presented
approach is capable of evaluating the adsorption ability of adsorbents efficiently, and can be further extended to other
interdisciplines and industries for the adsorption of harmful elements in aqueous solution.
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INTRODUCTION
Recent studies have shown that when artificial intelligence (AI)
meets material design and discovery, it means reducing the time
and cost going from lab to practical applications by greatly
improving the research efficiency1–3. Heavy metal ions (HMIs) and
organic pollutants are major sources for water pollution4,5, causing
persistent harm through the accumulation in food chain,
threatening ecological conditions and human health6,7. Pioneers
have designed and synthesized several adsorbents that exhibit
high adsorption ability for removing HMIs and organic pollutants
from water8–13. Adsorption ability of an adsorbent relies on the
active sites and the corresponding activity intensities, which is
currently hardly detectable14,15. Theoretical prediction provides an
alternative approach for understanding the mechanism of the
adsorption process and for exploring highly efficient adsorbents.
Researchers spend a lot of time to allocate, model, and wait for
first-principle calculations16–19, which can determine the adsorp-
tion capacity of materials at special sites in advance. However, the
configurational space offered by the wide variety of materials and
the complex relationships between active sites and activity
intensities of adsorbents indicates that a conventional approach
for structural optimization, based on inherently time-consuming
ab initio methods, is particularly challenging.
Recently, the means that are based on mechanism have been

partly displaced by machine learning (ML), which is an AI method
containing three elements: models, strategies, and algorithms, so
as to speed up the computational process and obtain complex
physical and chemical properties that are not accessible with
conventional approaches20–22. While significant research progress
has been achieved by improving the material descriptors over

many years, the applications of ML for material prediction is in
general plagued by several significant challenges23–25. For
example, for some tasks, to achieve a high prediction accuracy,
the ML method requires a sufficient amount of effective data to
capture the correlations between physical properties and features
or uses repeated iterations to train different models, which
inevitably consumes time and reduces the efficiency of ML26–28.
To address those issues, in this study, we present a popular ML
model to investigate the HMI trapping and quantitatively
determine the adsorption ability of adsorbent to HMIs at arbitrary
sites. The transfer learning (TL) method is adopted in the model29–32,
which has hardly been mentioned and applied in the adsorption
energy prediction model. Since two-dimensional materials com-
monly possess enriched adsorption active sites at several positions
(such as defect and boundary) with abundant surface functional
groups, especially, the ultra-thin two-dimensional materials can
have large surface area because the material can maintain the
maximum plane size while maintaining the atomic thickness33–35,
they have been considered promising adsorbents for many fields
including water purification. Herein, we choose a typical two-
dimensional (2D) graphitic-C3N4 (g-C3N4) adsorbent as a case
study to evaluate the adsorption characteristics towards three
representative HMIs including Pb(II), Hg(II), and Cd(II).
Unlike most ML approaches that use different models for

training and testing based on enough data to ensure accuracy and
avoid overfitting, the TL method can transfer knowledge from one
dataset to another in the different but related domains with high
reliability, making full use of the feature similarity between
models. For the prediction of similar material properties, TL
alleviates the issues of time-consuming and data scarcity by
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switching the multi-model training to single-model training,
decreasing a large amount of training data to a small amount of
effective data. TL is able to utilize the chemical and physical
properties and similarities between the structure descriptors
learned by Pb(II)/g-C3N4 model, as well as Hg(II)/g-C3N4 and Cd(II)/
g-C3N4 models. Based on the TL method, the adsorption ability
towards Hg(II), Cd(II) at arbitrary sites can be predicted accurately
and quickly by a small amount of training data, through training
the adsorption ability of Pb(II) on the surface of g-C3N4 in
advance.
In our study, 7000 adsorption energies calculated by the ab

initio density functional theory (DFT) were used to predict the
adsorption sites and adsorption capacity of Pb(II)/g-C3N4 through
the deep neural network (DNN), which served as the initial model
to be learned. Based on the TL method, the adsorption capacity of
the remaining HMIs on the same adsorbent can be predicted by a
small amount of DFT data. Here, only 700 adsorption energies
were calculated to quickly predict the adsorption capacity of Hg(II)
and Cd(II) on the surface of g-C3N4 through TL. DNN prediction
indicated that compared with the edges of adsorbent material,
HMIs were more likely to be adsorbed at the center of g-C3N4

adsorbent, with predicted RMSEs all less than 0.1 eV. A RMSE of
0.1 eV by a prediction model with only a few hundreds of DFT
calculations is treated as a remarkable feat, which provides a
powerful guarantee for predicting the adsorption capacity of
adsorbent towards HMIs accurately27,36. The presented AI method
has the same accuracy as the ab initio DFT calculation, but is ten
times faster than the training from scratch in the training stage
(only requires one-tenth of datasets than training from scratch)
and millions of times faster than the DFT in prediction stage. In
addition to the adsorption ability prediction of g-C3N4 for Pb(II),
Hg(II), and Cd(II), the proposed method can be easily extended to
predict the adsorption ability of other adsorbents for different
HMIs, organic contaminants, etc., which is significant for the
environmental treatment of removing harmful pollutants
from water.

RESULTS
Adsorption ability prediction of g-C3N4 for Pb(II)
We started with the determination of the adsorption ability of Pb
(II) adsorbed at the arbitrary site of the surface of g-C3N4. The
corresponding adsorption model is presented as Pb(II)/g-C3N4. To
ensure the unbiased statistical results, a total of 7000 single-point
adsorption energies with different potential active sites were
calculated by DFT. The Deep Potential-Smooth Edition (DeepPot-
SE), an end-to-end deep neural network-based (DNN) potential
energy surface (PES) model, was performed to evaluate the
adsorption ability to Pb(II) adsorbed on the surface of g-C3N4 at
arbitrary site in the feature space. Figure 1 shows the schematic
model of the adsorption process of HMIs on the surface of g-C3N4,
where the active sites and activity intensities of Pb(II) adsorbed on
the surface of g-C3N4 were calculated by DFT and trained by the
DNN model, while the corresponding adsorption ability of Hg(II)
and Cd(II) can be predicted by a small amount of data via TL
method. Supplementary Fig. 1 in Supplementary Materials (SM)
shows the calculated structures of Pb(II)/g-C3N4, Hg(II)/g-C3N4, and
Cd(II)/g-C3N4.
The dataset of Pb(II)/g-C3N4 contains 7000 DFT-based single-

point adsorption energies (ΔE). The parallelogram-shaped single
layer g-C3N4 was fully scanned with respect to the Pb(II) position,
as depicted in Fig. 2a. The energy landscape of Pb(II) on the
surface of g-C3N4 shows that the calculated 7000 ΔE were widely
distributed between −0.07 and −4.144 eV with the absolute
maximum of 4.144 eV (the black points in Fig. 2a). The randomly
placed Pb(II) and g-C3N4 have different degrees of adsorption
interaction (ΔE < 0), indicating the rationality of the required
structural sampling in a real space. Different colors represent
different adsorption energies, with the strongest ones locating at
the center of a dashed triangle (see discussion in Supplementary
Note 1). To reach an accuracy of 0.1 eV27,36, the accurate DNN
predictions for ΔE were needed and an appropriate descriptor was
selected. To preserve all natural symmetries of the system, a local
environment matrix (LEM) was used as a structural descriptor37,38,
which is an extensive, continuously differentiable approach and
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Fig. 1 Schematic model of adsorption process towards HMIs on the surface of g-C3N4. (a) Pb(II), (b) Hg(II), and (c) Cd(II). The Pb(II) (black
atoms), Hg(II) (pink atoms), and Cd(II) (yellow atoms) were adsorbed randomly at the arbitrary sites of optimized g-C3N4. The dataset of Pb(II)/
g-C3N4 contains 7000 DFT-based adsorption energies (ΔE), with training from scratch, while Hg(II)/g-C3N4 and Cd(II)/g-C3N4 contain 700 DFT-
based adsorption energies (ΔE) respectively, with training based on transfer learning.
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linear to the size of the system. Compared to traditional kernels
and hand-crafted features, LEM performs well in many systems,
such as organic molecules and metal materials28, thus serving as a
feature space for DNN input in this study. From Fig. 2a, most of the
yellow and green points (with absolute energies below 3 eV) were
adsorbed at the edges of the parallelogram-shaped single layer g-
C3N4, while the red and black points with strong adsorption
energies were located in the center from the top view. The
position scan of Pb(II) in Fig. 2a shows that Pb(II) is more favorably
adsorbed at the center of the g-C3N4 rather than at the edges
from the top view.
Figure 2b shows the correlation plot of ΔE between DFT and

DNN calculations of Pb(II)/g-C3N4, including 6000 training points
and 1000 testing points. From the dashed line errors, the points
are uniformly distributed on both sides of the dashed line around
y= x from −0.07 and −4.144 eV. The determination coefficient
(R2) of Pb(II)/g-C3N4 model obtained from these scattered points is
0.99 (as shown in Table 1), this indicated that the DNN prediction
for energy distribution is in good agreement with the DFT, and the
maximum deviation between DFT and DNN is 0.133 eV. Especially,
on a single-CPU, it takes only a few milliseconds for DNN to
predict an adsorption energy, which is millions of times faster than
the DFT calculations. Therefore, our method can not only predict
the adsorption ability of g-C3N4 towards Pb(II) at the arbitrary site,
but also maintains the DFT level of accuracy. In addition, in the
training stage, this AI method is ten times faster than the training
from scratch (only requires one-tenth of datasets than training
from scratch), while millions of times faster than the DFT in the
prediction stage.

Adsorption abilities of g-C3N4 for Hg(II) and Cd(II)
To evaluate the adsorption ability of g-C3N4 towards Pb(II), 7000
adsorption energies were calculated by the DFT method which
was a time-consuming but worthwhile process since such
sufficient data ensured the prediction accuracy of initial predic-
tion. To maintain the same prediction accuracy as Pb(II)/g-C3N4

but shorten the calculation time, we used the TL method to
evaluate the adsorption abilities towards Hg(II) and Cd(II). TL
enabled the transfer of feature representation learned for a
specific predictive modeling task from a large data source set to
small target datasets in a similar domain (Fig. 3)29–32, thus it could
transfer the DNN prediction of Pb(II)/g-C3N4 into similar systems
with less data and higher reliability. Compared with the Pb(II)/g-
C3N4 prediction with 7000 DFT adsorption energies, the adsorp-
tion ability predictions for Hg(II)/g-C3N4 and Cd(II)/g-C3N4 were
achieved by the calculations of 700 adsorption energies,
respectively. The energy landscapes of Hg(II) and Cd(II) scans at
the arbitrary sites of the surface of parallelogram-shaped g-C3N4

were plotted in Supplementary Figs. 2, 3, where only 700
adsorption energies (one-tenth of data of Pb(II)/g-C3N4) were
calculated by the DFT method.
Table 1 shows the predicted root-mean-squared errors (RMSEs)

for Pb(II)/g-C3N4, Hg(II)/g-C3N4, and Cd(II)/g-C3N4. The RMSE of
0.1 eV obtained from the prediction model by only a few hundred
DFT calculations is a remarkable achievement, which provides a
powerful guarantee for the statistical prediction of adsorption
capacity of materials to HMIs. As expected, based on the structural
descriptor of LEM, we can fleetly predict the adsorption energy of
Pb(II) at the arbitrary site with an accuracy of 0.051 eV for the 1000
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Fig. 2 Dataset of Pb(II)/g-C3N4 and ML results. a Pb(II) position scan at the arbitrary sites of the surface of a parallelogram-shaped g-C3N4,
with the corresponding energy landscape calculated by DFT. The blue, yellow, green, red, and black open triangles represent the adsorption
energies from −0.07 and −4.144 eV, with the absolute maximum of 4.144 eV. b Correlation plot of adsorption energy against DFT and DNN,
along with histograms of predicted (blue) and calculated (gray) energy distributions.

Table 1. The RMSEs (eV) and R2 of Pb(II)/g-C3N4, Hg(II)/g-C3N4, and Cd(II)/g-C3N4, based on DNN and TL methods.

Datasets RMSE (eV) R2

Training Testing Training (FS) Testing (FS) Training (TL) Testing (TL) FS TL

Pb(II) 6000 1000 0.034 0.051 – – 0.99 –

Hg(II) 600 100 0.033 0.423 0.014 0.012 0.79 0.99

Cd(II) 600 100 0.099 0.121 0.029 0.043 0.90 0.99

The Pb(II)/g-C3N4 structure was predicted with 7000 DFT adsorption energies, while the Hg(II)/g-C3N4 and Cd(II)/g-C3N4 were predicted with 700 energies,
respectively.
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testing data, while the testing RMSEs for Hg(II) and Cd(II) are
0.012 eV and 0.043 eV for 100 testing data, respectively.
To clarify the rationality and accuracy of the TL method in

processing small datasets, Fig. 4 shows the performance
comparison of trained models from scratch (FS) and transfer
learning (TL) in each iteration for Hg(II)/g-C3N4 and Cd(II)/g-C3N4,
based on 700 single-point adsorption energies by DFT calculation.
In the FS method, the model parameters were initialized randomly
from a uniform distribution and all feature attributes were learned
from the input training data. The 700 adsorption energies were
randomly divided into 600 training data and 100 testing data. The
red and orange curves in Fig. 4a are the training and testing RMSE
of Hg(II)/g-C3N4 and Cd(II)/g-C3N4 based on FS, where the RMSE
decreases as the increasing of iterations. However, during the
iterations of 200–400 and 1000–2200, the training RMSE based on
FS exhibits abnormal decreasing while the testing RMSE increases
with the increasing of iterations. This is a typical overfitting effect
induced by FS, resulting in large prediction errors for training and
test data and poor generalization ability of the model. The same
overfitting effect can also be found in the Cd(II)/g-C3N4 structure
in Fig. 4b. The green and purple curves in Fig. 4a, b show the
training and testing RMSEs based on the TL method. Different
from the FS method with randomly initialized parameters, the
model parameters for Hg(II)/g-C3N4 and Cd(II)/g-C3N4 coming from
TL were initialized based on the well-trained model of Pb(II)/g-
C3N4 and fine-tuned in the next training. Table 1 lists the training
errors, test errors and R2 of Hg(II)/g-C3N4 and Cd(II)/g-C3N4

obtained by TL and FS methods, where the testing errors for Hg
(II) are 0.423 eV with FS and 0.012 eV with TL, and the ones for Cd
(II) are 0.121 eV with FS and 0.043 eV with TL. The prediction
RMSEs based on TL are several times smaller than those of the FS,
highlighting the advantages of TL. Figure 4c, d shows the
correlation plots of adsorption energies between DFT calculations
and DNN predictions (based on FS and TL) of Hg(II)/g-C3N4 and Cd
(II)/g-C3N4, along with the related distributions of ΔE. The R2 for Hg
(II) is 0.79 with FS and 0.99 with TL, and the ones for Cd(II) are 0.90
with FS and 0.99 with TL. The correlation plots of ΔE between DFT
(black curves) and TL (pink curve for Hg(II) and yellow curve for Cd
(II)) line up over each other, indicating the similar prediction
accuracy of TL and DFT, while the blue dots and blue curves based
on FS are away from the DFT calculations. Furthermore, in Table.
S1, for Hg(II), the maximum deviations of DFT and DNN are
1.266 eV with FS and 0.056 eV with TL, and the ones for Cd(II) are

1.515 eV with FS and 0.054 eV with TL. For the training from
scratch, the maximum error exceeds 1.0 eV (the relative error is
more than 50%), which is likely to result in very inaccurate model
predictions.
Table 1 displays the reliability and effectiveness of the TL

method, where the prediction errors of Hg(II)/g-C3N4 and Cd(II)/g-
C3N4 based on the TL method and 700 DFT energies are 0.012 eV
and 0.043 eV, respectively. Although the 700 data size is small, the
prediction errors for Hg(II)/g-C3N4 and Cd(II)/g-C3N4 are far below
than those of Pb(II)/g-C3N4 based on FS and 7000 DFT energy
(0.051 eV). Therefore, even if the dataset is very small (like the Hg
(II)/g-C3N4 and Cd(II)/g-C3N4 calculations with only about 600 sam-
ples for fine-tuning), the proposed TL method can work effectively
even if the target domain has a small amount of data, as long as
an accurate model is established on the source domain (see
Supplementary Note 2). Supplementary Fig. 4 shows the
comparison of FS predictions for Pb(II)/g-C3N4, Hg(II)/g-C3N4, and
Cd(II)/g-C3N4, with 7000, 700, and 700 adsorption energies,
respectively, where the FS performs well for the 7000 energies
of Pb(II)/g-C3N4, but poorly for the 700 energies of Hg(II)/g-C3N4 or
Cd(II)/g-C3N4. Therefore, the size of training dataset in ML has a
significant impact on the model performance27,39, where FS fails
to predict the system with small size of dataset, but TL can. More
statistical information of adsorption energies are provided in
Supplementary Figs. 5–7 and Supplementary Table 1.

Adsorption ability comparison and verification
The above adsorption ability prediction for Pb(II)/g-C3N4, Hg(II)/g-
C3N4, and Cd(II)/g-C3N4 was based on 7000, 700, and 700 single-
point adsorption energies by DFT calculations, respectively. To
compare the adsorption abilities of three HMIs, we filled the
datasets of Hg(II)/g-C3N4 and Cd(II)/g-C3N4 with 6300 adsorption
energy points, making them the same sizes as the datasets of Pb
(II)/g-C3N4, based on the TL prediction rather than DFT calculation.
By using the proposed heavy metal ion-transfer learning (HMI-TL)
model, such large datasets enable us to obtain the unbiased and
reliable statistical results without computational cost. Figure 5
shows the frequency histograms of g-C3N4 towards three HMIs,
where the blue, pink, and yellow curves represent the energy
distributions of Pb(II), Hg(II), and Cd(II) with 7000 adsorption
energies, respectively. Table 1 shows the energy distributions of
three HMIs adsorbed on the surface of g-C3N4 at arbitrary sites,

Fig. 3 Schematic diagram of transfer learning. The model of Pb(II)/g-C3N4 was chosen as the source domain, with massive structures and ΔE,
while the models of Hg(II)/g-C3N4 and Cd(II)/g-C3N4 were target domains, with a few structures and ΔE. In the training of Hg(II)/g-C3N4 and Cd
(II)/g-C3N4, the parameters in Pb(II)/g-C3N4 model were taken as the starting points for Hg(II)/g-C3N4 and Cd(II)/g-C3N4, instead of randomly
initializing parameters, and then the parameters were further fine-tuned for training.
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where the adsorption energies of Pb(II) on the surface of g-C3N4

distributed between −4.144 eV and −0.07 eV, while the adsorp-
tion energies of Hg(II)/g-C3N4 and Cd(II)/g-C3N4 are distributed
between −2.136 eV and −0.139 eV, and −2.048 and −0.051 eV,

respectively. The mean adsorption energies for Pb(II), Hg(II), and
Cd(II) are −1.664, −1.695, and −1.707 eV, respectively.
To predict the adsorption ability of a material toward HMIs, the

traditional method is to optimize the composite structure to
obtain the adsorption energy of HMIs at a fixed position of the
material. It is unilateral to evaluate the adsorption ability of a
material toward HMIs at a fixed position, only corresponding to
one point in Fig. 2a. The proposed study considers the prediction
of adsorption energy of HMIs at arbitrary sites of an adsorbent
material. From Fig. 5, the predicted and calculated 7000
adsorption energies for each HMI are distributed in different
energy ranges, indicating the different adsorption abilities of g-
C3N4 adsorbent at different positions. In Table 2, the standard
deviation shows the energy distribution of three HMIs, among
which the Pb(II) with the largest standard deviation has the widest
energy distribution, followed by Hg(II) and Cd(II). Such distribu-
tions are consistent with the curve trend in Fig. 5. The widely
distributed adsorption energy makes it more difficult to evaluate
the collective adsorption capacity of a material towards certain
HMIs. To evaluate the adsorption abilities of different HMIs on the
surface of g-C3N4, we calculated the mean of 7000 adsorption
energy distributions of each HMI, with the results of −1.664 eV for
Pb(II), −1.695 eV for Hg(II), and −1.707 eV for Cd(II), as shown in
Table 2. Therefore, based on the HMI-TL model, the adsorption
abilities for three ions at any site of the g-C3N4 surface are
evaluated as Cd(II) > Hg(II) > Pb(II).
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Furthermore, to validate the prediction of the presented HMI-TL
model for evaluating the relative adsorption ability on the
arbitrary sites of the adsorbent’s surface, we have experimentally
measured the adsorption capacity of g-C3N4 adsorbent towards
the three HMIs. The g-C3N4 was synthesized by calcining urea at
550 °C. As shown in Fig. 6a, a porous interconnection structure was
observed and the high-magnification scanning electron micro-
scopy (SEM) image (Fig. 6b) indicated that the layered g-C3N4

presented wrinkled structure, which was beneficial for adsorbing
HMIs. Figure 6c shows the X-ray diffraction (XRD) pattern of g-
C3N4. Two strong peaks at 2θ= 13.2° and 27.6° are observed,
which are indexed to the (100) and (002) planes of graphitic
nature, respectively40,41.
In our measurements, two initial concentrations (100 and

200mg L−1) were used for measuring the adsorption ability
towards three HMIs, respectively. The adsorption capability of the

g-C3N4 was obtained by measuring the concentrations of the
solutions before and after adsorption. As plotted in Fig. 6d, the
order of adsorption amounts under the same conditions follow
the sequence of Cd(II) > Hg(II) > Pb(II) either in 100 or 200 mg L−1

solutions, which is consistent with our theoretical prediction, and
these results prove that our method is feasible and effective. For
the large change of values in Fig. 6d, we thought it may be
attributed to the influence of steric hindrance and the interaction
between HMIs. Owing to the relatively strong adsorption of g-C3N4

for Cd(II), the values change more obviously at different initial
concentrations. In this work, we aimed at exploring an ML method
to rapidly pick out relatively strong adsorption adsorbents. We
expect that it will be significant to further study the practical
application of the presented ML method, which would be an
important research direction.

Table 2. Adsorption ability comparison of g-C3N4 material towards three HMIs.

Datasets Minimum (eV) Maximum (eV) Standard Deviation (eV) Mean (eV)

Pb(II) 7000 −4.144 −0.070 0.585 −1.664

Hg(II) 7000 −2.136 −0.139 0.355 −1.695

Cd(II) 7000 −2.048 −0.051 0.318 −1.707
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Fig. 6 Experimental verification. a, b SEM images of g-C3N4 and c corresponding XRD pattern. d The adsorption ability towards three HMIs in
two initial concentrations.
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DISCUSSION
In this study, we proposed an AI approach to evaluate the
adsorption ability of adsorbent toward HMIs at arbitrary sites
accurately and quickly, based on the deep neural network and
transfer learning. As a case study, we chose a typical g-C3N4 as the
adsorbent to investigate the adsorption abilities toward three
representative HMIs (Pb(II), Hg(II), Cd(II)). The Pb(II) on g-C3N4 was
evaluated by 7000 single-point adsorption energies with DFT
calculations, while the Hg(II)/g-C3N4 and Cd(II)/g-C3N4 were
calculated by only 700 DFT energies with the TL method. The
predicted adsorption abilities for the three HMIs were Cd(II) > Hg
(II) > Pb(II), corresponding to the predicted RMSE of 0.043, 0.012,
and 0.051 eV, respectively. Such RMSEs, all less than 0.1 eV with
only a few hundred DFT calculations, ensured the prediction
accuracy and were considered as a remarkable feat. Furthermore,
the predicted results are also confirmed by experimentally
measuring the adsorption efficiency of g-C3N4 adsorbent towards
Cd(II), Hg(II), and Pb(II).
While significant research progress has been achieved by

finding and designing adsorbents to deal with the water pollution,
the prediction of adsorption ability of adsorbents to HMIs is still a
challenge. First, the experimental prediction of adsorption
capacity of adsorbents on HMIs is a complex process, involving
multiple steps such as material design, synthesis, and measure-
ment. It is really difficult to determine the adsorption capacity of
adsorbents at arbitrary sites. Second, the first-principles calcula-
tions can quantitatively determine the adsorption sites and ability
of different adsorbents to HMIs, but it is time-consuming. In our
study, to obtain the adsorption ability of any site, the presented AI
approach can reach the same prediction accuracy as the first-
principles calculation, but only requires one-tenth of datasets than
training from scratch, which means it is ten times faster than the
training from scratch in the training stage and millions of times
faster than the DFT in prediction stage. The present study shows
that the HMI-TL model can accurately and rapidly evaluate the
adsorption ability of the adsorbent towards HMIs and determine
the adsorption position at arbitrary sites without involving the
experimental process. HMT-TL model provides a convincing and
powerful pre-experimental guidance for removing of certain HMIs,
which is of great significance to design adsorption materials.
To sum up, this work has demonstrated the feasibility of transfer

learning in evaluating the adsorption capacity of adsorbent
materials for HMIs, based on a small amount of data. When the
source field used for transferring learning is similar to the target
field, we believe that the proposed HMI-TL model can effectively
transfer knowledge from the source dataset to the target dataset.
In addition, the AI approach proposed in this work can help solve
HMIs and organic contamination in aqueous solutions, which can
be used to screen more robust materials when designing and
discovering adsorbents. Considering that the prediction of
adsorption processes can be widely used in many fields such as
catalysis and batteries42,43, the proposed model provides an
opportunity to solve adsorption problems by combining AI,
materials, and environmental science.

METHODS
First-principles calculations
The DFT calculations were conducted using the Vienna ab initio Simulation
Package (VASP)44. The projected augmented wave (PAW) method45,46 was
applied to describe ion-electron interactions along with the
Perdew–Burke–Ernzerhof (PBE) exchange-correlation function within gen-
eralized gradient approximation (GGA). The Hg, Cd, Pb, and single layer g-
C3N4 were optimized in advance. During the adsorption calculation, a
cutoff energy of 500 eV was performed with a Monkhorst-Pack of 3 × 3 × 1
k-point grids, and the convergence criteria were set to 1 × 10−6 eV atom−1

for energy and 0.01 eV Å−1 for force, respectively. A vacuum distance of
15 Å was added in the g-C3N4 slab to avoid periodic interactions. To

accurately describe the interaction between HMIs and g-C3N4 substrate,
the DFT-D3 method47 was employed, which considers the van der Waals
interaction. The adsorption energy can be described as

ΔE ¼ Esubþmet � Esub � Emet (1)

where Esub+met, Esub and Emet were the energy of HMIs adsorbed on the
surface of the substrate, the energy substrate of g-C3N4 and the energy of
HMIs (Cd, Hg, Pb), respectively.

Datasets
The three datasets for Pb(II)/g-C3N4, Hg(II)/g-C3N4, and Cd(II)/g-C3N4

contained 7000, 700, and 700 single adsorption energies calculated by
DFT, respectively. The HMIs were randomly scanned on the parallelogram-
shaped g-C3N4. To explore the adsorption active sites and make the
adsorption energy negative, Pb(II) were randomly scanned at a distance of
100–300 pm from the surface, where the seed value of rand function was
changed by using the system time and the different random number
sequences were generated by C++ program. Furthermore, the datasets of
Hg(II)/g-C3N4 and Cd(II)/g-C3N4 were produced in a similar fashion, where
the Hg(II) and Cd(II) were randomly scanned at a distance of 200–400 pm
from the surface.

Structural descriptors
Structural descriptors are the input vectors of NN, satisfying the
translational, rotational, and permutational invariance. In this study, we
used a LEM as the structural descriptor37, which is an extensible approach
and has powerful functions. For a n atoms system, the Cartesian
coordinates are {R1, R2,…,Rn}, where Ri= {xi, yi, zi}, Rij is the vector of
Ri−Rj. We calculated the entire radial and angular features of atom i and
neighbor atom j base on the equation:

Gij ¼ 1
Vij

;
x0ij
V2
ij
;
y0ij
V2
ij
;
z0ij
V2
ij

( )
(2)

where x0ij ,Vij could be obtained by xij, Rij through rotation matrix ℜ, which
could be expressed as

Vij ¼ fx0ij; y0ij ; z0ijg ¼ fxij ; yij ; zijg<ðRiaðiÞ;RibðiÞÞ (3)

The rotation matrix ℜ were defined by the two closest atoms (atom ia
and ib), independently of their chemical elements, and atom i:

<ðRia;RibÞ ¼
eðRiaÞ

e½Rib � ðRia � RibÞRia�
eðRia ´RibÞ

0
B@

1
CA

T

(4)

where e(x)= x/∥x∥. The rotation matrix ℜ could also be named as local
frame of atom i. Therefore, different atoms had different rotation matrices.
We set 10.0 Å as the cutoff radius for neighbor searching and 8.8 Å as
where the smoothing started.

Training model
The Deep Potential-Smooth Edition (DeepPot-SE) model implemented by
Python/C++ and TensorFlow framework48 was used in this study.
DeepPot-SE, an end-to-end DNN-based PES model, which is able to
efficiently represent the PES of a wide variety of systems with the accuracy
of ab initio quantum mechanics. It is extensive and continuously
differentiable, scales linearly with system size, and preserves all the natural
symmetries of the system. In the model, the three hidden layers each with
20 nodes were fully connected, which was determined by the DNN to
predict the adsorption energies via structural descriptors. A batch size of
64 with Adam optimizer was used to improve the training speed while
strengthening the optimization49. During the training, the error of the
model was tested and displayed every 100 iterations. We used the initial
learning rate of 0.002 for the model that was trained from scratch and
0.001 for the model based on TL, given that hyper parameters were fine-
tuned during the TL training.
In this work, we used the parameter-based TL. The source domain and

the target domain share model parameters, that is, the model trained by a
large amount of data in the source domain is applied to the target domain
for prediction. The parameter-based TL method is more straightforward
and has the advantage of making full use of the similarity between models.
In this work, Pb(II)/g-C3N4 is a well-trained model based on large datasets.
Before training, the parameters of the Pb(II)/g-C3N4 model are randomly
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initialized. In the training of Hg(II)/g-C3N4 and Cd(II)/g-C3N4, the parameters
in Pb(II)/g-C3N4 model are taken as the starting points for Hg(II)/g-C3N4 and
Cd(II)/g-C3N4, instead of randomly initializing parameters, and then the
parameters are further fine-tuned for training.

Experimental validation
The g-C3N4 adsorbent was prepared by heating 10 g of urea in a crucible
for 3 h under a heating speed of 5 °C min−1. The HMIs solutions with initial
concentrations of 100 and 200mg L−1 were prepared by using Cd(NO3)2,
Hg(NO3)2, Pb(NO3)2 as sources, respectively. To reach the adsorption
equilibrium, these mixtures were shaken for 24 h and the suspensions were
centrifuged. The residual concentrations of HMIs were measured by an
inductive coupled plasma (ICP) atomic emission spectrometer (Optima
7300 DV, USA). The adsorption amount of HMIs in g-C3N4 could be
obtained by the formula (mmol g−1):

qe ¼ C0 � Ce
Mm

´V (5)

where C0 is the initial concentration of HMIs, Ce is the residual
concentration of HMIs, M is the relative atomic mass of Cd, Hg, and Pb,
V is the volume of adsorption solution, and m is the mass of g-C3N4

adsorbent.
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