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Specialising neural network potentials for accurate properties
and application to the mechanical response of titanium
Tongqi Wen 1,2, Rui Wang1, Lingyu Zhu1, Linfeng Zhang3, Han Wang 4✉, David J. Srolovitz 5,6 and Zhaoxuan Wu 1✉

Large scale atomistic simulations provide direct access to important materials phenomena not easily accessible to experiments or
quantum mechanics-based calculation approaches. Accurate and efficient interatomic potentials are the key enabler, but their
development remains a challenge for complex materials and/or complex phenomena. Machine learning potentials, such as the
Deep Potential (DP) approach, provide robust means to produce general purpose interatomic potentials. Here, we provide a
methodology for specialising machine learning potentials for high fidelity simulations of complex phenomena, where general
potentials do not suffice. As an example, we specialise a general purpose DP method to describe the mechanical response of two
allotropes of titanium (in addition to other defect, thermodynamic and structural properties). The resulting DP correctly captures
the structures, energies, elastic constants and γ-lines of Ti in both the HCP and BCC structures, as well as properties such as
dislocation core structures, vacancy formation energies, phase transition temperatures, and thermal expansion. The DP thus enables
direct atomistic modelling of plastic and fracture behaviour of Ti. The approach to specialising DP interatomic potential, DPspecX,
for accurate reproduction of properties of interest “X”, is general and extensible to other systems and properties.
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INTRODUCTION
Most mechanical responses of structural metals and alloys are
governed by defect interactions at the atomistic scale and their
evolution at the meso- to macro-scales. Depending on the
material system and deformation conditions, point, line and
planar defects play distinct roles over a diverse range of length
and time scales in determining material yield, hardening, creep
and fracture behaviour. Understanding defect interaction and
evolution over realistic length and time scales is thus important.
Quantitative modelling of defects requires accurate description of
atomic interactions, which in turn are dictated by the underlying
electronic structure. While quantum mechanics-based methods
(e.g., density-functional theory, DFT1) are general and robust, they
tend to be computationally expensive and scale poorly with
increasing system size. As a result, they are routinely limited to
simulations of systems containing a few hundred valence
electrons and for only a few pico seconds time. Explicit simulations
of extended defects, such as dislocations, grain and interphase
boundaries, require much larger scale atomic systems that are well
beyond the reach of current DFT calculations.
Interactions between atoms can be approximated by analytical

or numerical functions in the form of empirical/semi-empirical
interatomic potentials/force-fields. By omitting the explicit treat-
ment of the complex electronic structure, empirical/semi-empirical
interatomic potentials improve efficiency at the expense of loss of
transferability and accuracy. While the functional forms and
parameters are empirically chosen and fitted in such a manner to
capture essential features relevant to the intended application and
material system, they frequently are inadequate to describe
properties of interest. For example, one long standing, unresolved
challenge for classical interatomic potentials is to reproduce
fundamental properties (e.g., generalised stacking fault energy

γ-lines2 which measure energy variation as a function of slip
between two atomic planes) of the competing slip systems of
hexagonal close-packed titanium (HCP Ti); resolving such chal-
lenges is pre-requisite to accurate simulations of plasticity and
fracture in all metals and alloys. The lack of accuracy, transfer-
ability, heavy reliance on empiricism and uncertainty are primary
drawbacks of classical interatomic potentials. In this work, we
introduce a general procedure for training accurate, neural-
network interatomic potentials fit-for-purpose and demonstrate
this approach by training an interatomic potential for accurate
simulations of the mechanical response of Ti.
Pure Ti exhibits three distinct crystal structures (HCP-α, BCC-β,

and hexagonal-ω) and undergoes allotropic phase transformations
between these as a function of temperature and pressure. All
three structures are elastically and plastically anisotropic and
present a variety of dislocation and twinning behaviours. Different
classes and formulations of interatomic potentials for Ti have been
proposed and applied to provide insight into the complex
properties of Ti (EAM3,4, MEAM5–8, tight-binding9, bond-order10).
However, these potentials (except bond-order, which has other
inconsistencies, e.g., no minimum on the γ-surface of the prism
plane10,11) yield inaccurate γ-line profiles and/or generally predict
low stacking fault energy on basal planes (with respect to DFT, as
shown in Supplementary Fig. 1). To overcome the systematic
inadequacy of these empirical/semi-empirical interatomic poten-
tials, we focus on machine learning neural network-based
interatomic potentials12. In particular, we develop an interatomic
potential using the Deep Potential (DP) method13–15, which
provides a robust and flexible approach to describe atomic
environments/interactions to replace some of the empiricism of
classical interatomic potentials. We adopt the recently established
Deep Potential Generator (DP-GEN) scheme16,17 to train potentials

1Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China. 2Hong Kong Institute for Advanced Study, City University of
Hong Kong, Kowloon, Hong Kong, SAR, China. 3Beijing Institute of Big Data Research, Beijing, China. 4Laboratory of Computational Physics, Institute of Applied Physics and
Computational Mathematics, Beijing, China. 5Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, SAR, China. 6International Digital Economy
Academy (IDEA), Shenzhen, China. ✉email: wang_han@iapcm.ac.cn; zhaoxuwu@cityu.edu.hk

www.nature.com/npjcompumats

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00661-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00661-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00661-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00661-y&domain=pdf
http://orcid.org/0000-0003-1692-2512
http://orcid.org/0000-0003-1692-2512
http://orcid.org/0000-0003-1692-2512
http://orcid.org/0000-0003-1692-2512
http://orcid.org/0000-0003-1692-2512
http://orcid.org/0000-0001-5623-1148
http://orcid.org/0000-0001-5623-1148
http://orcid.org/0000-0001-5623-1148
http://orcid.org/0000-0001-5623-1148
http://orcid.org/0000-0001-5623-1148
http://orcid.org/0000-0001-6038-020X
http://orcid.org/0000-0001-6038-020X
http://orcid.org/0000-0001-6038-020X
http://orcid.org/0000-0001-6038-020X
http://orcid.org/0000-0001-6038-020X
http://orcid.org/0000-0002-4739-1139
http://orcid.org/0000-0002-4739-1139
http://orcid.org/0000-0002-4739-1139
http://orcid.org/0000-0002-4739-1139
http://orcid.org/0000-0002-4739-1139
https://doi.org/10.1038/s41524-021-00661-y
mailto:wang_han@iapcm.ac.cn
mailto:zhaoxuwu@cityu.edu.hk
www.nature.com/npjcompumats


in an efficient and systematic manner to further reduce the
demand on empiricism. While many different machine learning
approaches to training interatomic potentials18–25 are emerging
(some for Ti26,27), we explicitly focus on developing machine
learning potentials for the prediction of mechanical properties of
α− β Ti.
Here, we propose a specialising step, an extension to the

current DP-GEN scheme, to systematically train machine learning
interatomic potentials to reproduce crystal structures, elastic
constant tensors, surface and stacking fault energies of Ti. The
training datasets include experimental data from the literature
and DFT data calculated in this work. The resulting potential not
only closely reproduces the defect properties that control
mechanical behaviour used in the training, but also captures a
wide-range of properties not explicitly included in the training
dataset, including vacancy formation energy, the γ-lines of all
relevant slip planes in the HCP and BCC phases. Most critically, the
ordering of the stacking fault energies between the basal {0001},
prism f1010g, pyramidal I f1011g, and pyramidal II f1122g planes
in HCP (see the schematic in Fig. 3) is correctly captured.
Furthermore, this potential reproduces the general features of
the γ-lines on {110}, {112}, and {123} planes of the BCC structure,
including the lack of meta-stable points and negative stacking
fault energies. Calculation of the free energies of different phases
further demonstrate that the potential reproduces the phase
stability between the HCP, BCC and liquid phases over a range of
pressures and temperatures. The developed interatomic potential
thus enables molecular statics and molecular dynamics (MD)
simulations of dislocation core structure, dynamics, fracture, and
phase transitions. Our approach, applied here for Ti, is general and
applicable to train interatomic potentials for accurate reproduc-
tion of the mechanical properties of a wide range of materials.

RESULTS AND DISCUSSION
Strategy and workflow
Figure 1 shows the workflow for training and specialising DP
models. The workflow consists of three steps: Initialisation, DP-
GEN Loop, and Specialisation. In the Initialisation step, primitive
cells of BCC, FCC, and HCP Ti are constructed and equilibrated at
zero stress and 0 K using the Vienna Ab initio Simulation Package
(VASP28,29, see Methods section for details). Super cells consisting
of 2 × 2 × 2 equilibrated primitive cells are constructed and scaled
(strained) by ±2, ±4, and ±6% uniformly in all directions.
Additional random perturbations are applied to ion positions
and super cell vectors. Ab initio MD (AIMD) simulations are
performed for 5 time steps at 100 K for each structure. Atom
coordinates, forces, total energies, and virial tensors of each AIMD
simulation configuration are recorded to form training sets “0".

In the DP-GEN Loop step, training sets “0" are input into the
DeePMD-kit package13–15 to train an ensemble of first trial DPs
(DP1{α}) based on different random seeds (see ref. 16,17 for details).
MD simulations of different structures (perturbed bulk or
structures with free surfaces) are performed at selected tempera-
tures (50–3687.9 K, see Supplementary Methods) using the
LAMMPS MD package30 with potential DP1{α}. The simulations
explore thousands of different configurations along the MD
trajectory. For each MD configuration (using DP1{α}), the atomic
force on atom i using the different DP1{α}, fαi , is computed, as well
as its standard deviation σffαi g over the ensemble of trial DP
models. If the maximum of σffαi g falls within a selected range [ϵlo,
ϵhi], the corresponded configuration is chosen as a “candidate
configuration”. The total energy, virial tensor, and atomic forces
for candidate configurations are then computed using DFT to
form additional training datasets. Another DP-GEN iteration is
performed using all current training datasets to generate another
ensemble of trial DPs. The DP-GEN Loop iterates and is considered
converged when no “candidate configurations” are added. All
training data generated in this DP-GEN Loop form the “Classic"
training set, which serve as input to the Specialisation step.
In the Specialisation step, “special" structures relevant to the

intended applications are created (e.g., sheared configurations
along the γ-lines). The atomic forces, total energy, and virial tensor
are calculated for each special structure using DFT; these are the
“Special" training sets. DeePMD-kit13–15 is used again to train a
final ensemble of DPs based on the “Classic" and “Special" training
sets. The final DPs are further tested and the DP model with the
best overall performance is selected. While the Initialisation and
DP-GEN Loop step settings are described in the Supplementary
Methods, the DFT calculations and the Specialisation step settings
are in the Methods section. We refer to the specialised DP
approach as “DPspecX”, where X refers to the properties for which
it is specialised; here, specialisation is for the mechanical response
of Ti, i.e., “Ti-DPspecMech”.

Fig. 1 Workflow for training the deep potential. Ri is the atomic coordinate of atom i, E is the total energy of one configuration, V is the virial
(stress) tensor of one configuration, fi is the force on atom i, n is the number of atoms in one configuration, DP1 is the first ensemble of trial
DPs, α labels the αth DP in the ensemble, σ is the standard deviation, and ϵlo and ϵhi are two thresholds in DP-GEN.

Table 1. Summary of the training sets to train DP for Ti.

Dataset type Number of datasets

Initialisation datasets 1469

DP-GENa bulk 4354

DP-GENa surface 1525

γ-line datasets from specialisation 4600

Total 11,948

aDP-GEN applies trial DPs to perturbed bulk/surface structures in finite
temperature MD simulations to generate configurations which are then
input into DFT to calculate atomic forces, energy, and virial tensors on
candidate structures (that go into training sets).
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Table 1 summarises the four types of training sets used to train
Ti-DPspecMech. The first type is the training sets used in the
Initialisation step, including the perturbed crystal structures at
different volumes, which give configurations along the classical
energy versus volume equation of state (EOS) curve. The second
and third types are the DP-GEN bulk datasets and DP-GEN surface
datasets from the DP-GEN Loop step. The DP-GEN bulk datasets
are crystals structures (HCP, BCC, FCC) at finite temperatures that
capture properties associated with atomic vibrations, elastic
constants, and thermal expansion. DP-GEN surface datasets are

crystals with free surfaces that provide information relevant to
surface energy and atomic relaxation on surfaces. The last are the
γ-line datasets from the Specialisation step; these include selected
atomic configurations along portions of the classical γ-line on the
basal, prism, pyramidal I narrow (there are narrowly and widely
spaced slip planes for pyramidal I, please refer to ref. 31 for a more
complete description), and pyramidal II planes of the HCP
structure. These datasets help train the model to represent
dislocation (stacking fault) properties.

Bulk properties and surface energies
Table 2 shows the basic properties of the final DP for Ti as well as
an EAM4 and an MEAM6 potential in comparison with the
corresponding DFT and experimental values. The DP reproduces
the lattice parameters and energies of the HCP, BCC, and FCC
structures in excellent agreement with the target DFT values; the
differences are smaller than 0.002 Å and 1 meV/atom for the
lattice parameter and energy. The EAM and MEAM potentials also
have accurate lattice parameters of the three phases; the
deviations are around 1% from the DFT and experimental results.
The target value for the HCP cohesive energy is chosen to be 4.85
eV/atom from experiments32 (absolute value of DFT cohesive
energies are not precise33). The target values for the BCC and FCC
cohesive energies are calculated based on their relative energies
from DFT and the experimental HCP reference value; this yields
calibrated target cohesive energies of 4.74 and 4.79 eV/atom for
BCC and FCC structures. The DP is fit to exactly reproduce the
target (experimental) cohesive energy of HCP Ti (this corrects the
DFT “errors” for the isolated atom). This corrected isolated atom
energy was used to determine the cohesive energies of BCC and
FCC phases. The MEAM potential has nearly the same cohesive
energies, while the EAM potential has cohesive energies close to
the DFT values.
In addition, we examine the efficacy of the DP model in

reproducing the properties of larger (3 × 3 × 3) DFT supercells
(Supplementary Fig. 2). For the perturbed BCC and HCP structures,
the root mean square errors (RMSEs) of the energies are 0.5 and
1.4 meV/atom, respectively. The RMSEs of the atomic forces are
15.3 and 29.2 meV/Å, respectively. These errors are within typical
DFT accuracy. We also examined the effect of adding the larger
DFT supercell to the DP training set and refit the DP; adding the
larger DFT supercell and enlarging the training set did not
improve the DFT/DP agreement. Therefore, we conclude that the
original DFT supercells/training sets are sufficiently large to
produce reliable DP models. Furthermore, the DP model is fitted
to both the energies and their derivatives (energies, forces, virials).
This strategy improves the smoothness of the energy function and
reduces overfitting to some extent. Nevertheless, the DP model is
based on a neural net framework, rather than a physical model. As
in all neural network approaches, there is a real risk of overfitting
and its transferability is not guaranteed. For applications well
beyond those in the training set, it would be prudent to exercise
caution. For example, we find that the BCC generalised stacking
fault energies (not in the training set) are overestimated by the DP
model (Fig. 5).
The 0-K DP elastic constants are in good agreement with

corresponding DFT values for all three structures and available
experimental results. The elastic constants of the DP and DFT are
obtained by (i) applying a set of small strains (−1, −0.5, 0.5, and
1%) for each strain components (εxx, εyy, εzz, εxy, εxz, εyz), (ii)
calculating the resultant (global) stress for each strain, and (iii)
performing a linear least-squares-fit of the obtained stress-strain
data. For HCP Ti, the DP elastic constants match well with DFT and
experimental values at 4 K34; the deviations are less than 10% from
DFT and around 20% from experiment (similar deviations exist
between DFT and experiment). The DP elastic constants of the
BCC structure are within ±5% of DFT values. As appropriate, both

Table 2. Lattice parameters, energies (E), cohesive energies (Ecoh),
energy differences (ΔE), and elastic constants of HCP, BCC and FCC Ti,
relaxed surface energies (σ), vacancy formation energy (Ev) of HCP Ti
and the unstable stacking fault energy (γusf) of BCC Ti from DFT,
experiment (Expt), DP, EAM4, and MEAM6.

Structure Property DFT Expt DP EAM MEAM

HCP a (Å) 2.936 2.947a 2.934 2.951 2.930

c/a 1.583 1.586a 1.586 1.589 1.596

E (eV/atom) −7.834 – −7.833 −5.401 −4.831

Ecoh (eV/atom) 5.34 4.85b 4.85 5.40 4.83

C11 (GPa) 171.6 176.1c 157.7 164.8 174.3

C12 (GPa) 86.0 86.9c 85.6 87.8 94.7

C13 (GPa) 74.4 68.3c 78.8 82.6 72.3

C33 (GPa) 189.0 190.5c 188.2 165.2 187.9

C44 (GPa) 42.7 50.8c 39.2 57.7 57.7

σbasal (J/m
2) 1.95 – 1.94 2.26 1.47

σprism (J/m2) 2.00 – 1.99 2.29 1.55

σpyr.I (J/m
2) 1.91 – 1.90 2.31 1.52

σpyr.II (J/m
2) 2.09 – 2.07 2.43 1.70

Ev (eV) 2.06 – 2.41 1.73 2.19

BCC a (Å) 3.252 – 3.253 3.242 3.272

E (eV/atom) −7.724 – −7.725 −5.313 −4.720

ΔEBCC (eV/
atom)d

0.110 – 0.108 0.088 0.111

Ecoh (eV/atom) 5.23 – 4.74 5.31 4.72

C11 (GPa) 90.2 – 92.9 276.8 94.9

C12 (GPa) 113.8 – 108.8 283.6 111.0

C44 (GPa) 39.9 – 40.3 34.3 52.9

γ
f110g
usf (J/m2)e 0.19 – 0.28 – 0.21

γ
f112g
usf (J/m2) 0.24 – 0.36 – 0.25

γ
f123g
usf (J/m2) 0.23 – 0.34 – 0.24

FCC a (Å) 4.108 – 4.108 4.131 4.147

E (eV/atom) −7.777 – −7.778 −5.349 −4.792

ΔEFCC (eV/
atom)

0.057 – 0.055 0.052 0.039

Ecoh (eV/atom) 5.28 – 4.79 5.35 4.79

C11 (GPa) 133.0 – 145.1 –f 125.8

C12 (GPa) 94.2 – 95.3 – 83.5

C44 (GPa) 58.6 – 59.4 – 58.7

Target values are in bold (BCC and FCC cohesive energies are described in
the text).
aLattice constants at 4 K and room temperature c/a ratio from ref. 34,42.
bRef. 32
cElastic constants measured at 4 K from ref. 34.
dΔE is the energy deviation from the reference HCP ground state.
eUnstable stacking fault energies along the 〈111〉 direction on different
planes of the BCC structure (see γ-lines in Fig. 5).
fThe FCC structure is unstable in the elastic constant calculation.
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DP and DFT predict that the BCC structure is unstable at 0 K (i.e.,
C11 < C1235,36). The DP also accurately reproduces the elastic
constants of FCC Ti from DFT (not experimentally measured). In
comparison, the MEAM potential also reproduces the elastic
constants of all three phases well, but the EAM potential shows
large deviations in the BCC structure and the FCC structure is
unstable in the calculation.
Turning to defect properties, Table 2 shows that DP predictions

of the vacancy and surface energies in HCP Ti are in good
agreement with DFT results. The DP model has its HCP surface
energies (basal, prism, pyramidal I, and pyramidal II) within 1%
from DFT values (the largest discrepancy is 0.02 J/m2 on the
pyramidal II plane). The EAM potential overestimates surface
energies by ~15% and the MEAM potential underestimates them
by ~15%. The vacancy formation energy (Ev) of the DP model is
~0.35 eV (17%) higher than the DFT value. The EAM and MEAM
potentials have Ev ~ 0.3 eV (15%) lower and 0.13 eV (6%) higher

than the DFT value, respectively (see the convergence test of
vacancy formation energy in Supplementary Table 1). Note that
vacancy configurations are not explicitly included in the training
datasets. The DP thus shows transferability and predictive
capabilities on basic material properties.
Based on the above results, the MEAM6 potential performed

exceptionally well in elastic constants and cohesive energies
compared to experiment values. In the following, we mainly focus
on the MEAM potential for comparisons with the DP model. The
phonon spectra for DP, MEAM6, and experiment are shown in
Supplementary Fig. 3. For both the BCC and HCP phases, the DP
model and the MEAM potential reproduce the experimental
acoustic mode data better than the optical modes. For the HCP
phase, both DP and MEAM are in good agreement with the overall
trend in the experimental data. Both the DP and MEAM
overestimate the optical L-[001] phonon frequencies at Γ and
underestimate the optical phonons at K and M. For the BCC phase,

Fig. 2 The equations of state for three Ti crystal structures. a HCP. b BCC. c FCC.

Fig. 3 The generalised stacking fault energy (γ-lines) on several planes in HCP Ti. Figures show the data for the (a) basal, (b) prism, (c)
pyramidal I narrow, (d) pyramidal I wide, and (e) pyramidal II planes calculated using DFT, the DP model, and an MEAM potential6. The stable
and unstable stacking fault energies are labeled as γsf and γusf. The configurations in the dashed black box and at zero slip (origin) are included
in the training sets. All configurations on the pyramidal I narrow γ-line (c) are included in the training dataset and no configurations on the
pyramidal I wide γ-line (d) are included in the training. The black arrows in the schematics show the slip directions and planes of each γ-line.
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both DP and MEAM show unstable phonon branches reflecting
the instability of the BCC phase at zero K (C12 > C11).
The energy versus volume (EOS) curve is important for accurate

prediction of mechanical response; Fig. 2 shows the 0-K EOS
curves for the HCP, BCC, and FCC phases. For each point on the
EOS curve, a supercell is pre-strained to the desired volume and
equilibrated in DFT (i.e., the supercell volume is fixed but the
supercell shape and ion positions are unconstrained). For
consistency, the DP energy per atom was calculated using atomic
coordinates from the equilibrated compressed/dilated DFT super-
cell. For all three structures, the energies per atom of the DP agree
well with DFT values; the RMSE between DP and DFT is smaller
than 1 meV/atom. The DP and DFT EOSs for the three phases are
in excellent agreement over the entire volume range examined
(14–20Å3/atom, corresponding to a ±20% volumetric strain).

γ-Line and γ-Surface
In HCP Ti, plastic deformation is carried by dislocations with 〈a〉
and 〈c+ a〉 Burgers vectors primarily on the prism and pyramidal I
planes, respectively. Slip on basal and pyramidal II planes and
deformation twinning are also observed in Ti at high temperatures
and in Ti alloys. The primary slip planes are typically those with the
lowest screw dislocation dissociation energy. Dislocation nuclea-
tion, dissociation and glide behaviour are strongly influenced by
the generalised stacking fault energy, or γ-line on each slip plane.
Therefore, accurate γ-lines on all relevant slip planes are essential
for modelling dislocation and plasticity behaviour. Figure 3 shows
the γ-lines for these slip planes, as determined by DP, MEAM6, and
DFT2. In this figure, the sheared (slipped) configurations indicated
in the dashed boxes are included in the special training datasets.
For the basal plane (Fig. 3a), the γ-line is computed along the
½0110� direction (corresponding to the Burgers vectors of the
partial dislocation dissociated from the 〈a〉 dislocation). The DP
accurately reproduces the DFT γ-line for slip from 0 to 40% of the
½0110� translation vector. While the stacking fault energies from 40
to 100% along this path are not well-reproduced, this is not
relevant since the energy is very high and is not along the
minimum energy path for slip. Most critically, the DP gives
accurate unstable and stable stacking fault energies at 20 and 33%
of the translation vector, respectively; the former controls
dislocation nucleation and the latter governs dislocation dissocia-
tion (as discussed below). For the MEAM potential, the stable and
unstable stacking fault energies (γsf and γusf) are 44 and 47% lower

than the corresponding DFT values, which will make dislocation
nucleation and dissociation much easier on the basal plane.
The DP model also reproduces the general shape of the γ-line in

the ½2110�=3 slip direction (i.e., the 〈a〉 dislocation Burgers vector)
on the prism and pyramidal I narrow planes (Fig. 3b, c). On the
prism plane, γsf and γusf are ~23 and ~9% lower than the DFT
values, while on the pyramidal I narrow plane, γsf and γusf are 6
and 4% higher from DFT values. The MEAM potential has shallow
metastable points on the prism and pyramidal I narrow γ-lines; its
γsf is ~15% higher and 6% lower than the corresponding DFT
values on the two planes. Figure 3d, e show the γ-lines along
½2113�=3 (i.e., the 〈c+ a〉 direction on the pyramidal I wide and II
planes). The DP again reproduces the overall shape (positions and
energies of the stable and unstable SFs) of the DFT γ-lines. Note
that only a section of the pyramidal II γ-line information is
included in the training dataset and no pyramidal I wide γ-line
information is included; this further indicates the transferability
and predictive capability of the current DP model. The MEAM
potential also shows similar γ-lines on the two pyramidal planes in
good agreement with the DFT results.
The γ-lines in Fig. 3 were determined using the standard

method (atom displacements constrained along slip plane
normals). However, stacking fault energies may be further reduced
by full atomic relaxation especially for the HCP pyramidal
planes31,37,38. Table 3 shows the stable stacking fault positions
and energies calculated by allowing only out-of-plane and full
atomic relaxation using DFT, DP, and MEAM6.
For the basal and prism planes, the stable stacking fault

positions and energies remain almost unchanged upon full
relaxation in DFT, DP (except for the decrease of prism γsf by
16%), and MEAM. For the pyramidal I narrow plane, the stable
stacking fault shifts from the initial position along the 〈a〉
direction to another position towards the e2 direction (Fig. 4)
and with substantial reductions in γsf (57, 79, and 53% in DFT,
DP, and MEAM).
The DP model underestimates γsf by similar amounts (−60, −85,

and −95mJ/m2) on the three competing planes (basal, prism,
pyramidal I narrow) for the 〈a〉 dislocation. In comparison, the
MEAM potential has deviations of −133, +35, and +8mJ/m2 with
respect to DFT. The metastable point governs dislocation core
dissociation and DFT calculations show that the 〈a〉 dislocation
can dissociate into a pair of partials on both the pyramidal I and
prism planes, but not on the basal plane39. The DP model captures
the correct ordering of γsf among the three planes. The energy

Table 3. Metastable stacking fault positions and energies before and after in-plane relaxation.

DFT DP MEAM

Plane Relaxation Position γsf Position γsf Position γsf

(e1, e2) (J/m2) (e1, e2) (J/m2) (e1, e2) (J/m2)

Basal Out-of-plane 0.000, 0.333 0.303 0.000, 0.333 0.243 0.000, 0.333 0.170

Full 0.000, 0.333 0.303 0.000, 0.333 0.243 0.000, 0.333 0.170

Prism Out-of-plane 0.500, 0.000 0.237 0.500, 0.000 0.182 0.500, 0.000 0.272

Full 0.500, 0.000 0.237 0.500, 0.020 0.152 0.500, 0.000 0.272

Pyramidal Out-of-plane 0.500, 0.000 0.470 0.500, 0.000 0.497 0.500, 0.000 0.441

I narrow Full 0.500, −0.089a 0.200a 0.500, −0.097 0.105 0.500, −0.096 0.208

Pyramidal Out-of-plane 0.225, 0.450 0.458 0.225, 0.450 0.514 0.225, 0.450 0.466

I wide Full 0.000, 0.435a 0.134a 0.000, 0.429 0.137 0.000, 0.420 0.170

Pyramidal Out-of-plane 0.400, 0.000 0.434 0.400, 0.000 0.466 0.400, 0.000 0.519

II Full 0.446, 0.000a 0.321a 0.417, 0.000 0.344 0.475, 0.000 0.393

The coordinate system (e1, e2) on different planes is shown in Fig. 4. Results in italic font indicate the stacking fault is not stable.
aref. 31.
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ordering, γbasalsf > γprismsf > γpyramidal I narrow
sf , is different from previous

models5–8 with γbasalsf < γpyramidal I narrow
sf < γprismsf . The correct ordering

helps to reproduce the ground state dislocation core structure on
the pyramidal I narrow plane, as discussed below.
For the pyramidal I wide plane, the stable stacking fault position

along the 〈c+ a〉 direction shifts to another position along the e2
direction (Fig. 4d). The fully relaxed stable stacking fault position is
consistent with symmetry requirements and suggests that the
pure screw 〈c+ a〉 dislocation will dissociate into partials of mixed
character on the pyramidal I wide plane. In addition, the
similarities in the stacking fault location and energy in DFT and
DP indicate that the in-plane relaxations should be similar, even
though the stacking fault on the pyramidal I wide plane is not
directly included in the training dataset. The MEAM potential
overestimates γsf by 27%; its stacking fault position is similar to
that of the DP. For the pyramidal II plane, the stable stacking fault
shifts to another positions along the 〈c+ a〉 direction with a
decrease in γsf of 0.113 J/m2 upon in-plane relaxation in DFT,
0.122 J/m2 in DP calculations, and 0.126 J/m2 in MEAM calcula-
tions. The DP model overestimates the fully relaxed γsf by 7%,
while the MEAM potential overestimates γsf by 22%. The fully
relaxed γsf difference between the two competing plane, i.e.,
γpyr:IIsf � γpyr:Isf , are 0.187, 0.207, and 0.223 J/m2 in DFT, DP, and
MEAM, respectively. DFT, DP, and MEAM all suggest that it is much
more (energetically) favorable for 〈c+ a〉 screw dislocations to
dissociate on the pyramidal I planes than on pyramidal II planes,
consistent with experimental observations which show that
pyramidal I 〈c+ a〉 slip is dominant in Ti40.
The γ-lines in Fig. 3 represent possible minimum energy paths

(based upon crystal symmetry) for slip along a crystallographic
plane. To ensure that these do represent the true minimum

energy paths, we calculate the entire γ-surface for four crystal-
lographic planes in HCP. Figure 4 shows the DP γ-surface. The
red cross-symbols (’X’) indicate the stacking fault positions
determined from DFT (see Table 3). The overall γ-surfaces are
consistent with crystal symmetry and all stable stacking faults
are properly reproduced in accordance with the DFT results.
While the smoothness of the γ-surfaces are not guaranteed with
neural network-based potentials, the high degree of smoothness
here indicates that the DP potential is suitable for atomistic
simulations. The quantitative and qualitative features of all of
the γ-surfaces, together with properties presented earlier,
suggest that the current DP is appropriate for modelling HCP
Ti mechanical response.
BCC Ti has important structural material applications along with

intriguing features. Yet, its properties and behaviour are less well
understood than the HCP allotrope of Ti. The BCC phase is
entropically stabilised above 1155 K. To further test the
capabilities of the DP for BCC Ti, we first compare γ-lines on the
{110}, {112}, and {123} planes with DFT predictions (obtained using
only out-of-plane atomic relaxation).
Figure 5 shows the γ-lines along the close packed 〈111〉

direction on the three slip planes. The DP reproduces the overall
profiles and main features of all of the γ-lines calculated by DFT. In
DFT, DP, and MEAM, all three lines show negative stacking fault
energies at small slip distances ±0.15. This is not surprising since
the BCC structure is not the ground state at 0 K. In addition, no
metastable stacking fault is seen near half 〈a〉 (i.e., [111]/4),
consistent with the broad observation that no metastable stacking
fault has been found in any BCC metals41. Furthermore, the γ-lines
are symmetric about half the translation vector x= 0.5 on the
{110} plane, but slightly asymmetric on {112} and {123}. While the
DP overestimates γusf (energy maximum) along the γ-lines as

Fig. 4 The generalised stacking fault energy surface (γ-surface) on different planes of HCP Ti calculated by the DP model. a Basal. b Prism.
c Pyramidal I narrow. d Pyramidal I wide. e Pyramidal II. The red crosses show all the metastable stacking fault positions from DFT in Table 3.
The expected dissociations of the 〈a〉 and 〈c+ a〉 dislocations are indicated by the dashed arrows in (c), (d), respectively.

T. Wen et al.

6

npj Computational Materials (2021)   206 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



compared with DFT and the exceptionally good MEAM, it
importantly captures the same peak-energy/barrier ordering

between the three planes, i.e., γf110gusf < γ
f123g
usf < γ

f112g
usf . The DP thus

reproduces the overall shape and key features of the γ-lines,
demonstrating its predictive capabilities, despite the fact that no
BCC γ-line information is used in the training dataset.

HCP lattice and elastic constants at finite temperatures
All of the properties presented above were calculated at 0 K to
provide base-line material properties. Since titanium alloys are
also employed for medium temperature (<600 K) applications, we
now investigate several properties at finite temperatures, as
shown in Fig. 6. We first compare the temperature dependence of
HCP Ti lattice parameters (a, c, c/a) with experimental data34,42,43.
The DP shows that the lattice parameter a increases nearly
linearly from 0 to 1000 K with similar thermal expansion
coefficients as experimental measurements. The DP underesti-
mates a by ~0.01Å as compared to experiments, since it is
trained with DFT results which also underestimate a (similarly for
c). The coefficient of linear thermal expansion for a is nearly
identical to experiment up to 1000 K. On the other hand, the
coefficient of linear thermal expansion for c from the DP is larger
than that from experiment. The atomic volume can be calculated
from the lattice parameters a and c. While the DP underestimates
the volume per atom of the HCP structure (inherited from the DFT
training dataset), the volumetric thermal expansion coefficient (β)
of the DP is 3.05 × 10−5 K−1 at 300 K, as compared with the
experiment value of ~2.70 × 10−5 K−1 at the same temperature44.
While the experimental data show a weak, nearly linear reduction
of c/a (important for twinning) with increasing temperature, the
DP results show a weak increase in c/a with temperature (c/a
varies <1% from 0 to 1000 K). Overall, the temperature-
dependent lattice parameters and atomic volume from the DP
are in good agreement with experiment; the discrepancies are
associated with differences between DFT predictions and
experiment. For MEAM, it underestimates a by about 1% and
overestimates c by about 1% compared to experiment. The
MEAM results also show a weak increase in c/a with temperature
(c/a varies about 1% from 0 to 1000 K).
Figure 6d–f show the elastic constants of DP and MEAM as a

function of temperature in comparison with experimental results.
The finite temperature elastic constants calculations were
performed by applying a ±1% strain individually for each strain
component (εxx, εyy, εzz, εxy, εxz, εyz) at each temperature. The elastic
constants represent (6000 time step) time averages of the global
stress and averages over ± strains.
There exist small discrepancies between the DP elastic

constants and the experimental data at 0 K. With increasing
temperature, C11 from experiment decreases continuously; the DP

predictions initially decrease very rapidly between 0 and 50 K, and
then slowly and approach experimental values at higher
temperatures (Fig. 6d). MEAM shows a continuous decrease and
is very close to DP on C11 at high temperatures. The DP C33 is
relatively accurate in the entire temperature range. It increases
slightly from 0 to 150 K and then decreases continuously from 150
to 1000 K—asymptotically approaching the monotonically
decreasing experimental data. The MEAM C33 decreases very
rapidly between 0 and 50 K and then slowly at higher
temperatures. It is about 15% lower than the experimental data.
Similar levels of agreements were obtained between DP, MEAM
predictions and experimental data for other Cij. These results are
perhaps sufficiently accurate for HCP Ti MD simulations. For both
the DP and MEAM potentials, the discrepancies of elastic
constants at finite temperatures are not expected and highlight
the challenges in modeling HCP systems.

Phase transition temperatures
Phase stability over a temperature and pressure range is
important for MD simulations of HCP-BCC Ti. To determine the
phase stability of the DP, we compute the free energies of the
HCP, BCC and liquid structures using thermodynamic integra-
tion45 and determine the phase transition temperatures as a
function of pressure. Figure 7 shows the transition temperatures
of the DP model as a function of pressure in comparison with
experimental data46,47 and MEAM6. At zero pressure, the DP
exhibits an HCP to BCC transition at 1140 K and BCC melting at
1886 K, in remarkable agreement with 1155 and 1941 K from
experiments. The DP melting point increases with increasing
pressure, consistent with experimental results and thermody-
namic expectation (molar volume of BCC < that of the liquid).
However, the MEAM melting point first increases and then
decreases with increasing pressure. The HCP to BCC structural
phase transition temperature shows little dependence on
pressure for both DP and MEAM, while the experimental data
suggest that the transition temperature decreases slowly with
increasing pressure. The mismatch in the slope of the HCP-BCC
phase boundary is likely due to a minor inadequacy of the DP
and MEAM in reproducing the atomic volume of the two phases,
which can be improved if necessary. Overall, the DP shows good
agreement with experiment results on the HCP-BCC transition
temperatures and the BCC melting temperatures. Accurate DP
phase transition temperatures is likely a consequence of
including high temperature configurations in the training dataset
(DP-GEN bulk datasets). This suggests that high temperature
thermodynamic properties can be reproduced by training the DP
with the current framework and that the DP is effective for
describing phase transitions and mechanical behaviour over the
full solid-state temperature range.

Fig. 5 The generalised stacking fault energy (γ-line) of BCC Ti are shown on three planes. a {110}. b {112}. c {123}. The data were obtained
based upon DFT, the DP model, and an MEAM potential6.
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Dislocation core structures
In this section, we examine dislocation core structures using the
DP. We focus on the core structure of the screw 〈a〉 dislocation in
HCP, which governs many intriguing features of slip in Ti48. We
first created a Volterra 〈a〉 dislocation in a 303 × 163 × 9Å
supercell with periodic boundary conditions in the glide (303Å)
and dislocation line directions (9Å). At 300 K, the dislocation
adopts several structures on the pyramidal I and prism planes, and
occasionally adopts a compact core (Supplementary Fig. 4). This
suggests the energies of the competing core configurations are
very close and can be influenced by applied strains, solutes and
temperatures. No dissociation on the basal plane was observed (in
105 MD steps).
To quantitatively analyse the core structure, MD configurations

were quenched every 2000 time steps, followed by energy
minimisation (Fig. 8). Two distinct core configurations were
observed, corresponding to dissociations on the pyramidal I and
prism planes; similar core structures were seen in DFT calcula-
tions48. In the DP model, the ground state dissociation plane for
the screw 〈a〉 dislocation is the pyramidal I plane. The dissociated
core on the prism plane exhibits a slightly higher energy
(~1.4 meV/Å, Supplementary Fig. 5), while DFT calculations
based on quadrupolar configurations48 show a higher energy of

Fig. 7 Ti phase transition temperatures at different pressures. The
phase boundaries between the HCP-BCC and BCC-liquid structures
calculated by the DP model and an MEAM potential6 in comparison
with experiments46,47.

Fig. 6 Finite-temperature properties of HCP Ti. The temperature-dependence of the lattice parameters a, c, c/a, and the elastic
constants Cij of HCP Ti from the DP, MEAM6, and experiment34,42,43. a Lattice parameter a. b Lattice parameter c. c c/a ratio. d C11 and C33. e C12
and C13. f C44.
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5.7 meV/Å. This energy difference between these configurations is
small (the MEAM potential slightly favours dissociation on the
prism plane49). While some discrepancies still exist between the
ground state core structure of the present DP and DFT (cf. Fig. 8b
and Fig. 4c in ref. 48), further tuning the DP model for core
structures increases the risk of overfitting; core structures with
better agreement with DFT may be obtained at the expense of
less-accurate C11. Nevertheless, the DP should provide an accurate
description of dislocation glide behavior at intermediate and
elevated temperatures. We refer the reader to a more extensive
discussion of the screw 〈a〉 dislocation core structures and
energies in the Supplementary Information. Core structures and
dynamics of other dislocations (e.g., the edge 〈a〉 dislocation, edge
and screw 〈c+ a〉 dislocations, twinning dislocations, and
dislocations in the BCC phase) are equally important and are
currently under study.

Computational cost of DP
Finally, we compare the speed of DP, EAM, and MEAM
implementations on both CPUs and GPUs (Supplementary Fig.
6). On CPUs, the DP model is 200–300 times slower than EAM
potentials and 30–40 times slower than the MEAM potential. For
system with several dozen atoms, DP is faster than DFT (use the
VASP settings in Methods section) by a factor of over 106. On
GPUs, DP is 20–30 times slower than the EAM potential (MEAM is
currently not ported to GPU in LAMMPS). Additional optimisation
of the networks at the heart of the DP is possible by further
optimisations on different operators, on the computational graph,
and on multiple hardware devices50. All potentials show a linear
scaling with the number of atoms. Because of this linearity and
speed, the DP model can be used to perform large scale MD
simulations of many defects including dislocations, grain and
phase boundaries with relatively good accuracy and speed that
are far outside the reach of DFT (except for very simple cases).
In summary, we reported a procedure for specialising a general

purpose neural network (DP) interatomic potential to reproduce

important physical properties for specific applications (X); i.e.,
DPspecX . In particular, we developed a DP for modelling the
mechanical response of Ti; Ti-DPspecMech. The resulting DP
accurately reproduces a comprehensive range of properties both
within and outside the training datasets for HCP-BCC Ti. The DP
thus enables a wide range of molecular statics and dynamics
simulations in HCP-BCC Ti, including dislocation, interphase
interfaces, fracture, solid–solid and solid–liquid phase transition
behaviour/properties. Comprehensive benchmarks also show that
the MEAM potential6 performed extraordinarily well in many
aspects, suggesting that classical interatomic potential models will
also remain relevant in the foreseeable future.
While no empirical interatomic potential provides accurate

reproduction of all material properties over all temperatures and
stress states, the approach provided here begins with a general
purpose potential and specialises it for classes of properties of
interest. The current procedure is general and can be applied to
development of interatomic potentials for materials beyond Ti
and applications beyond mechanical response within the DP
framework or other machine learning based approaches. The
selection of special dataset can be standardised and neural
network parameters can be optimised by standard algorithms/
codes (e.g., TensorFlow). This approach thus represents a shift
from empiricism-driven to machine-driven interatomic potentials
fit-to-purpose.

METHODS
DFT calculations
All DFT calculations are performed using the VASP28,29 with the
Perdew–Burke–Ernzerhof51 generalised gradient approximation exchange-
correlation functional. The cutoff energy of the plane-wave basis set is
650 eV and core electrons are replaced with the projector-augmented-wave
method52. K-points with grid spacing of 0.1Å−1 are sampled in the Brillouin
zone by the Monkhorst–Pack Mesh method53. The Methfessel–Paxton
smearing method54 with order 1 and smearing width σ= 0.22 eV is used for

Fig. 8 Differential displacement plot of the screw 〈a〉 dislocation. The dissociations are shown on the (a) prism and (b) pyramidal I plane.
The atom shading and crystallographic orientations are shown in (c).
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partial electron occupancy. Self-consistent convergence is assumed when
the energy variation is below 10−3 meV.

Specialisation step details
“Special” training sets were generated along HCP γ-lines and equilibrated
in DFT using the standard γ-line calculation approach and parameters
above. The DFT-calculated γ-lines are shown in Fig. 3 and are in good
agreement with previous calculations31. Among all configurations, we
choose those near the unstable and stable stacking fault displacements to
form the special training sets. For example, seven structures at slip
distances 0, 0.15, 0.20, 0.25, 0.30, 0.35, and 0.40 were chosen from the
γ-line on the basal plane, as shown in Fig. 3a. The atomic coordinates,
forces, total energy, and virial tensor of these structures are input to the
training iteration. These structures represent configurations of importance
for plastic deformation. We therefore increase their weight to 100 in the
loss function of the neural network calibration (configurations in the
general training sets have a default weight of 1). This is equivalent to
generating 7 × 100 special training sets from the basal plane γ-line. Special
training sets are chosen and weighted similarly for the prism, pyramidal I
narrow and pyramidal II plane γ-lines. In total, the “special” training sets
include 4600 configurations from four γ-lines on different planes, as seen in
Table 1. No pyramidal I wide plane γ-line configurations were included in
the training set for cross-validation purposes. The selection and weight of
the special training sets are flexible and can be further optimised for
desired targets.
The DeePMD-kit package14 is used for training a smooth Ti DP15. These

training data consist of “classic” and “special” training sets. The embedding
and fitting net sizes are (25, 50, 100), and (240, 240, 240), respectively. The
cutoff radius of the DP is 9.0Å and includes at least the third-nearest
neighbours in the HCP structure. Four models are trained, starting with
different random seeds, but using the same neural network architecture
and training sets. The pyramidal I narrow plane γ-line is not included
initially for training general models. The learning rate starts at 1 × 10−3 and
ends at 5 × 10−8 after 8 × 106 training steps. The atomic forces and total
energy of all the training sets are included in the training, but only the
virial tensor of the training sets from the Initialisation step (1469 datasets in
Table 1) is used to obtain more accurate description of elastic constants
near equilibrium. In addition, the prefactors for the energy, atomic force
and virial tensor in the loss functions are pstarte =10, plimit

e =100, pstartf =1,
plimit
f =1, pstartv =10, and plimit

v =10. These parameters give more weights to
the energy and virial tensor, as compared to the atomic forces. Afterwards,
the pyramidal I narrow plane γ-line is included to tweak the dislocation
core energy difference. One DP model is further trained starting from the
current neural network and the learning rate starts at 1 × 10−4 and ends at
5 × 10−8 after 1.6 × 107 training steps.

DATA AVAILABILITY
The Ti DP model and the training sets in this work have been uploaded to the online
open data repository http://dplibrary.deepmd.net/.
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