
ARTICLE OPEN

Accurate and efficient molecular dynamics based on machine
learning and non von Neumann architecture
Pinghui Mo1, Chang Li1, Dan Zhao1, Yujia Zhang1, Mengchao Shi1, Junhua Li1 and Jie Liu 1,2✉

Force field-based classical molecular dynamics (CMD) is efficient but its potential energy surface (PES) prediction error can be very
large. Density functional theory (DFT)-based ab-initio molecular dynamics (AIMD) is accurate but computational cost limits its
applications to small systems. Here, we propose a molecular dynamics (MD) methodology which can simultaneously achieve both
AIMD-level high accuracy and CMD-level high efficiency. The high accuracy is achieved by exploiting deep neural network (DNN)’s
arbitrarily-high precision to fit PES. The high efficiency is achieved by deploying multiplication-less DNN on a carefully-optimized
special-purpose non von Neumann (NvN) computer to mitigate the performance-limiting data shuttling (i.e., ‘memory wall
bottleneck’). By testing on different molecules and bulk systems, we show that the proposed MD methodology is generally-
applicable to various MD tasks. The proposed MD methodology has been deployed on an in-house computing server based on
reconfigurable field programmable gate array (FPGA), which is freely available at http://nvnmd.picp.vip.

npj Computational Materials (2022) 8:107 ; https://doi.org/10.1038/s41524-022-00773-z

INTRODUCTION
As a cornerstone of atomistic-scale analysis, molecular dynamics
(MD) is widely used in many fields, such as physics1,2, chemistry3,4,
biology5, materials6,7, nanotechnology8,9, drug design10,11, earth
science12,13, semiconductor integrated circuit14,15, and so on. Despite
its importance, it is well-known that MD simulations suffer from a
long-standing dilemma between accuracy and efficiency16–21. On
one hand, ab-initio MD (AIMD), which is based on the first-principles
density functional theory (DFT) evaluation of potential energy
surface (PES), is accurate but not efficient enough to simulate large
systems16–18. On the other hand, classical MD (CMD), which is based
on artificially-crafted force fields (FF) approximation of PES, is
efficient but not accurate enough in some applications19–24.
In recent years, this dilemma is mitigated, to some extent, by

the machine-learning (ML) MD (MLMD)25–31. By evaluating PES
using ML models, the efficiency of MLMD is significantly superior
than that of AIMD, while keeping the AIMD-level high accuracy.
Unfortunately, though several orders of magnitude faster than
AIMD, the state-of-the-art MLMD is still about two orders of
magnitude slower than CMD27,31,32. Until now, it is still an
outstanding problem to develop an MD simulator that can
simultaneously achieve AIMD-level high accuracy and CMD-level
high efficiency.
It is worth noting that, MD simulations are predominantly

deployed on general-purpose von-Neumann (vN) computers,
where the data processing hardware (e.g., central processing unit
(CPU) and graphics processing unit (GPU)) and the data storage
hardware (e.g., dynamic random-access memory (DRAM)) are
separate hardware components. It is well known that the vN
computers suffer from severe vN bottleneck (vNB)—the majority
(e.g., over 90%) of computing time and energy must be spent to
repeatedly shuttle data back-and-forth between the data proces-
sing hardware and the data storage hardware33–35. Consequently,
only a very small fraction of calculation time and energy
consumption is used to perform the useful arithmetic and logic

operations, leading to the overall low efficiency of vN compu-
ters33–35.
The severity of vNB depends on the characteristics of

calculation—the more repeated data shuttling, the more
performance-limiting vNB becomes. Given the typical MD duration
(e.g., tMD ≈ 10−9–10−3 s) and timestep (e.g., Δt ≈ 10−15 s), the
atomistic data (e.g., positions, velocities, forces, and atomic
neighbor data, etc.) must be shuttled repeatedly by a large
number (e.g., nMD ≈ tMD/Δt= 106–1012) of times. Furthermore, in
each MD timestep, a huge number of additional data shuttling is
required to accomplish each PES evaluation36. Hindered by such
nested-loop heavy-duty data shuttling, both the time efficiency
and the energy efficiency of MD calculations are extremely low on
general-purpose vN computers23.
However, since the invention of the first general-purpose

electronic computer in the 1940s, general-purpose vN architecture
has been the dominating paradigm of the mainstream computers
like laptops, desktops, and supercomputers for over 7 decades37–39.
Researchers nowadays widely use vN computers to run MD, largely
because they have no other choice. Though some special-purpose
MD computers have been developed22,23,40,41, they are all based on
CMD and FF, whose accuracy is questionable in many important
applications42–46. Therefore, considering the scientific and techno-
logical significance of MD1–47, it deserves serious efforts to develop a
special-purpose MD computer beyond the vN paradigm, to enable
efficient and accurate MD calculations in various fields.
In order to approach this goal, in this paper, we propose a

paradigm shift from the established vN architecture to a non vN
(NvN) architecture. By leveraging the technologies in MLMD
algorithms26,27,30, artificial intelligence48,49, and NvN architec-
ture50,51, the proposed special-purpose MD computer can
simultaneously achieve both the AIMD-level high accuracy and
the CMD-level high efficiency. This is achieved by deploying a
deeply-revised MLMD algorithm, i.e., DeePMD26–31, (to ensure high
accuracy) on a carefully-optimized NvN hardware (to ensure high
efficiency). In the Section Results, the calculation accuracy and

1College of Electrical and Information Engineering, Hunan University, Changsha, Hunan, PR China. 2Department of Electrical and Computer Engineering, University of
Washington, Seattle, WA, USA. ✉email: jie_liu@hnu.edu.cn

www.nature.com/npjcompumats

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00773-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00773-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00773-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00773-z&domain=pdf
http://orcid.org/0000-0001-7350-9850
http://orcid.org/0000-0001-7350-9850
http://orcid.org/0000-0001-7350-9850
http://orcid.org/0000-0001-7350-9850
http://orcid.org/0000-0001-7350-9850
http://nvnmd.picp.vip
https://doi.org/10.1038/s41524-022-00773-z
mailto:jie_liu@hnu.edu.cn
www.nature.com/npjcompumats

calculation efficiency are quantitatively analyzed. In the Section
Discussion, a discussion is briefly made. In the Section Methods,
the overall system design of the proposed special-purpose MD
computer is introduced and the implementation details of the
NvN architecture are presented.

RESULTS
The performance of the proposed special-purpose non von
Neumann molecular dynamics (NVNMD) computer (see Methods
section for more design and implementation details) is quantita-
tively analyzed in this section. First, the analysis procedure is
introduced (Section Analysis procedure). Then, the calculation
accuracy (Section Calculation accuracy), the calculation time
efficiency (Section Time efficiency), and the calculation energy
efficiency (Section Energy efficiency) are analyzed quantitatively.

Analysis procedure
Any user can follow two consecutive steps to run MD on the
proposed NVNMD computer, which has been released online52: (i)
to train a machine learning (ML) model that can decently
reproduce the PES25–31; and (ii) to deploy the trained ML model
on the proposed NVNMD computer, then run MD there to obtain
the atomistic trajectories.
ML training (i.e., step (i)) is performed on traditional vN

architecture computers (e.g., CPU/GPU) by using the training
codes we open-sourced online53, which are programmed
purposefully based on TensorFlow54 to help users train ML
models that are compatible with the unique NvN computer
proposed here. To accomplish step (i), the training samples should
be prepared first. This can be done by using either the active
learning tools26,29,30, or the brute-force (i.e., less efficient) DFT-
based AIMD sampling55,56. Then, these training samples are used
as inputs of our training codes53, which output the ML models.
Our training procedure is comparatively speaking more compli-
cated than that of the established MLMD26,27—it consists of not
only the continuous neural network (CNN) training of the
established MLMD, but also an additional step of quantized
neural network (QNN) training (Section Quantized neural network)
which uses CNN results as inputs. Typically, the CNN training uses
a large number of training steps (e.g., 1 × 106) with a high learning
rate (e.g., 2 × 10−2); and the subsequent QNN training uses a small
number of training steps (e.g., 1 × 104) and a low learning rate
(e.g., 2 × 10−7), as it only needs to minimize the small error
induced by quantization from CNN to QNN.
ML inference (i.e., step (ii)) is performed on the proposed NvN

architecture computer, after uploading the QNN ML model to our
online NVNMD system52. In the online NVNMD system, all MD
settings and parameters (e.g., timestep, microcanonical/canonical/
isothermal–isobaric ensemble, thermostats, etc.) are controlled by
using the same input file interface of the LAMMPS package57,
except that the force field is replaced by using the uploaded QNN
ML model.
Six systems are used to run testing MD calculations, including

three molecule systems (i.e., benzene, naphthalene, and aspirin)
and three bulk systems (i.e., Sb, GeTe, and Li10GeP2S12). The
training data of molecule systems are from MD17 dataset58–60;
and those of bulk systems (i.e., Sb, GeTe, and Li10GeP2S12) come
from Ref. 61, Ref. 56, and Ref. 62, respectively. The result of test
accuracy, speed and energy efficiency are shown in Section
Calculation accuracy, Section Time efficiency, and Section Energy
efficiency, respectively.

Calculation accuracy
The high accuracy of the proposed NVNMD can be seen obviously
in Table 1. The root mean square errors (RMSE) of PES fitting of
benzene, naphthalene, aspirin, Sb, GeTe, and Li10GeP2S12 systems

are 0.19, 0.39, 0.32, 0.14, 0.09, and 0.14 kcal mol−1, respectively.
These are close to the established MLMD values in literature (Table 1),
and well below the chemical accuracy threshold
(1.0 kcal mol−1)63,64, indicating decent accuracy of the proposed
NVNMD. As a direct comparison, in Table 1, we also collected
some of the energy prediction errors of the MLMD and CMD from
the existing literature, after removing the obvious outliers (e.g., |
ΔEi |=2.7 kcal mol−1 for methylamine, and | ΔEi |=1.4 kcal mol−1

for aqueous LiF pair65–67). It is obvious that, while CMD suffers
from large PES prediction error, the proposed NVNMD has decent
PES prediction accuracy, which is inherited from the highly
accurate MLMD.
As shown in Table 1, the μe of MLMD is about 10−2–10−1 kcal

mol−1 (i.e., single-digit meV atom−1) different from μe of NVNMD.
It’s worth noting that, we copied data of different systems from
literature into Table 1, since it is distracting and time-consuming
to reproduce MD results of so many systems using various MD
tools by ourselves. So, Table 1 only roughly shows that the MLMD
and NVNMD have the similar accuracy (μe ≈ 10−1 kcal mol−1) and
both of them are much more accurate than CMD (μe ≈ 101 kcal
mol−1).
Though it is clear from Table 1 that NVNMD is much more

accurate than CMD, it is difficult to tell the subtle accuracy
difference between NVNMD and MLMD based on different
datasets. Therefore, more rigorous and refined analysis is needed.
Instead of directly fetching MLMD RMSE data from literature (as
we did in Table 1), hereafter we start the entire procedure
(including training, inference, and testing) all the way over by
using the identical set of training/testing data on an identical set
of systems (Table 2).
Since the proposed NVNMD is revised from DeePMD26–31

(details available in the Methods section), we use DeePMD as
reference and the starting point (third row of Table 2). Then, the
vN-based revisions and the NvN-based revisions are made
consecutively to obtain the results of CNN (second row of Table 2)
and QNN (first row of Table 2), respectively. QNN results are the
final results of NVNMD in Table 1. Here, the CNN includes all
quantization-free (thus more appropriate for vN) revisions, e.g., the
revision of symmetry-preserving feature calculation (Eq. (11)) and
the revision of nonlinear activation function calculation (Section
Nonlinear activation function). The QNN further includes the
quantization-based (thus more appropriate for NvN) revisions, e.g.,
the continuous neural network is replaced by using quantized
neural network (Section Quantized neural network), the multi-
plication operations of floating-point numbers are replaced by
using shift operations of quantized numbers (Section
Multiplication-less neural network), the continuous evaluation is
replaced by using discretized look-up table searching (Eq. (6))
and so on.
When applied to all systems under test, the NVNMD shows a

single-digit meV atom−1 accuracy difference, compared to the
MLMD (last row of Table 2). It’s worth noting that this is about 3
orders of magnitude lower than the typical interatomic bonding
energy (at the order of 100 eV atom−1), and 1 order of magnitude
smaller than the chemical accuracy threshold, 1.0 kcal mol−1 (i.e.,
about 43.4 meV atom−1)63,64. Furthermore, this high accuracy is
kept while calculating elementary, binary, and quaternary systems.
The test systems we chose in Table 2 include complicated
crystalline-amorphous phase transitions (Sb and GeTe56,61) and
atomic diffusion through quaternary system (Li-Ge-P-S62), which
involve repeated chemical bond rapture and re-forming with very
sophisticated PES. Therefore, these test calculations can prove that
NVNMD would be accurate enough to handle many complicated
MD applications.
To further test the accuracy of NVNMD, we also computed

atomic forces as shown in Table 3, because atomic forces are vital
to reliably obtain the MD trajectories during integration of the
Newton equation. Since the molecular systems in MLMD literature

P. Mo et al.

2

npj Computational Materials (2022) 107 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;

in Table 3 are all evaluated based on the same dataset58–60, we
evaluate NVNMD based on this dataset too. When compared
against the ab-initio results, the atomic force mean absolute error
(MAE) of NVNMD and that of MLMD show a very small difference
(i.e., at the order of 101meV Å−1), as shown in the last row of Table 3.
In all test cases, this difference is even below the default atomic
force threshold (e.g., 40.0 meV Å−1 in SIESTA68; 25.7 meV Å−1 in
Quantum Espresso69; and 23.1 meV Å−1 in CP2K70) to determine
atomic force convergence during atomic lattice relaxation or
supercell geometry optimization in the mainstream ab-initio
density functional theory tools.
To visually illustrate the high accuracy, the energy and force

predicted by the proposed NVNMD are plotted against those
predicted by the established DFT-based AIMD, as shown in Fig. 1.
The high accuracy of energy and forces laid a solid foundation for
reliable calculation of physical properties. As shown in Table 4, the

bond length, bond angle, and vibration frequencies of the water
molecule calculated by using the proposed NVNMD are very close
(<1% different), compared to the those obtained by MLMD. As
shown in Fig. 2, the radial distribution function, angle distribution
function, and coordination number of amorphous GeTe calculated
by NVNMD are also very close to those by MLMD.
To further test accuracy in GeTe system, the canonical (NVT)

ensemble MD is performed as shown in Fig. 3a. The crystalline GeTe
system of 512 atoms is melted from crystalline to liquid, by increasing
temperature from 300 K to 1800 K. Then it is quenched from liquid to
amorphous from 1800 K to 300 K. Finally, the system is recrystallized
from amorphous back into crystalline by annealing it at 600 K. The
entire melt-quench-anneal phase transition processes as measured in
experiments71,72 can be successfully reproduced, as shown in Fig. 3a,
indicating decent accuracy of the proposed NVNMD.

Table 1. Calculation accuracy comparison between the proposed NVNMD and the established MLMD/CMD.

Method System Computer
architecture

Computing
hardware

|ΔEi| (kcal
mol−1)

μe (kcal
mol−1)

NVNMD
(this work)

Benzene NvN FPGA 0.19 0.21

Naphthalene FPGA 0.39

Aspirin FPGA 0.32

Antimony (bulk) FPGA 0.14

Germanium telluride (bulk) FPGA 0.09

Li-Ge-P-S (bulk) FPGA 0.14

MLMD Benzene26,27,31,58 vN GPU 0.07/0.07 0.17

Uracil26,27,31,58 GPU 0.09/0.11

Naphthalene26,27,31,58 GPU 0.12/0.12

Aspirin26,27,31,58 GPU 0.27/0.27

Salicylic acid26,27,31,58 GPU 0.12/0.12

Malonaldehyde26,27,31,58 GPU 0.16/0.16

Ethanol26,27,31,58 GPU 0.15/0.15

Toluene26,27,31,58 GPU 0.12/0.12

Water26,27,31 GPU 0.01

Glycine proton transfer65,96 CPU 0.3–0.4

Acetic acid65,66 CPU 0.2

Acetamide65,66 CPU 0.4

Acetone65,66 CPU 0.4

Ethanol65,66 CPU 0.2

Germanium telluride56 GPU 0.09

Li-Ge-P-S62 GPU 0.04

CMD 700 different molecular structures93 vN GPU/CPU 10 (est.) ≈10

Small-molecule solvation and protein-ligand
binding67

GPU/CPU 3.6–6.3

AMBER intermolecular terms w.r.t. DFT-SAPT94 GPU/CPU 10 (est.)

Nobel gas absorption in metal organic framework95 GPU/CPU 8.4-12.6

ΔEi is the RMSE with respect to ab-initio calculations. μe is the average value of |ΔEi|. The abbreviation FPGA represents field programmable gate array.

Table 2. The root mean square errors (RMSE) of system energies (meV atom−1) of the three bulk systems.

Method Computer architecture Sb (elementary) GeTe (binary) Li-Ge-P-S (quaternary)

NVNMD (this work) QNN (after quantization) NvN 6.2 3.7 6.1

CNN (before quantization) vN 4.2 3.6 3.1

MLMD DeePMD56,61,62 vN 2.2 4.1 1.3

Difference between QNN (i.e., final results of NVNMD) and MLMD 4.0 −0.4 4.8

P. Mo et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022) 107

Table 4. The test error ||ΔE||2 and ||ΔF||2, bond length, bond angle, and vibration frequencies of a single water molecule.

||ΔE||2
(meV
atom−1)

||ΔF||2
(meV Å−1)

O-H bond
length (Å)

H-O-H bond
angle (°)

Vibration frequency (cm−1)

Scissoring bend Symmetric stretch Antisymmetric stretch

NVNMD 0.5 21.4 0.97 104.77 1601.41 3643.20 3816.68

MLMD (DeePMD) 0.3 20.4 0.97 104.87 1588.06 3636.53 3796.67

Difference between
NVNMD and MLMD

0.2 1.0 0.00 0.10 13.35 6.67 20.01

||ΔE||2 and ||ΔF||2 are root mean errors (RMSE) of system energies and atomic forces, respectively.

Table 3. The mean absolute error (MAE) of atomic forces (meV Å−1) of three bulk systems and three molecular systems.

Method Computer architecture Bulk systems Molecular system

Sb GeTe Li-Ge-P-S Benzene Aspirin Naphthalene

NVNMD (this work) QNN (after quantization) NvN 85.1 161.0 68.1 11.9 28.8 18.8

CNN (before quantization) vN 79.4 161.0 65.9 6.7 24.7 10.3

MLMD DeePMD30 vN 64.2 168.0 79.6 -- 19.4 13.1

SchNet84 – – – 7.4 14.3 4.8

DimeNet85 – – – 8.1 21.6 9.3

sGDML86 – – – 2.6 29.5 4.7

PaiNN87 – – – – 16.1 3.6

SpookyNet88 – – – – 11.2 3.9

GemNet89 – – – 6.3 9.5 2.4

NewtonNet90 – – – – 15.1 3.6

UNiTE91 – – – – 6.1 1.5

NequIP92 – – – – 8.2 1.6

μF 64.2 168.0 79.6 6.1 15.1 4.9

Difference between QNN (i.e., final results of NVNMD) and μF of MLMD 20.9 −7.0 −11.5 5.8 13.7 13.9

All molecular system calculations are based on the MD17 dataset58–60.

a b

c d

Fig. 1 The comparison of predicted energy and force. The test systems are GeTe (a, b) and Li10GePS12 (c, d). EAIMD and FAIMD denote the
energy and atomic forces of the AIMD samples. ENVNMD and FNVNMD denote the energy and atomic forces evaluated by NVNMD model.

P. Mo et al.

4

npj Computational Materials (2022) 107 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

For the MD test of Li10GeP2S12, the system of 900 atoms is
initialized and equilibrated at 500 K using NVT ensemble for 10 ps,
then simulated at microcanonical (NVE) ensemble for 100 ps. The
trajectory is used to calculate diffusion coefficients of system
(shown as Fig. 3b). The mean square displacement (MSD) is
calculated from trajectory using following expression

MSD � 1
6t

� �
ri tð Þ�ri 0ð Þj j2

D E
; (1)

The diffusion coefficient is computed by extracting the slope of
MSD in Fig. 3b. We get the diffusion coefficient 2.03 × 10−10 m2

s−1 which is close to the value of Ref. 62 (i.e., 2.00 × 10−10 m2 s−1).
Furthermore, according to the NVNMD results (Fig. 3b), the MSD in
x and y directions are significantly smaller than that in z direction.
This is in line with the anisotropic diffusion properties of
Li10GeP2S12 well known in literature73–75.

Time efficiency
Using the six test systems, the calculation time efficiency of the
proposed NVNMD is shown in Table 5. It is obvious that the time
efficiency of the proposed NVNMD is around two orders of
magnitude better than that of the MLMD. This means that NVNMD
runs at a high speed like CMD, despite calculation complexity of
MLMD is much higher than that of CMD. As schematically shown
in Fig. 4, the proposed NVNMD simultaneously achieves both the
CMD-level high efficiency and the MLMD/AIMD-level high
accuracy. It’s worth noting that the same high efficiency is kept,

no matter elementary (e.g, Sb), binary (e.g., GeTe), and quaternary
(e.g., Li–Ge–P–S) systems are simulated.

Energy efficiency
The energy efficiency η is calculated via the formula η= T × P,
where T represents the calculation time efficiency (Section Time
efficiency); and P denotes the power consumption, which is
measured by using a local power tester (PUUCAI P26A-10PN). The
total power of the proposed NVNMD system is measured to be
only about 108 W. Therefore, η of the proposed NVNMD system is
around 10−5 J step−1 atom−1 (Table 6).
By using T and P of MLMD from Ref. 26,31, it can be estimated

that η of the established vN-based MLMD is around 10−3–10−2 J
step−1 atom−1. Here, P of MLMD is calculated by using the
number of CPU/GPU used in Ref. 26,31; and we use 30W per CPU
and 250W per GPU for estimation76–78. For instance, based on
Summit supercomputer, MLMD uses 27.3 thousand CPU cores and
27.3 thousand GPUs31, so P ≈ 27.3 × 103× (250+ 30) ≈ 7.6 MW
(around 50–60% of Summit supercomputer’s total power con-
sumption 13 MW) is used to achieve T ≈ 2.7 × 10−10 s step−1

atom−1.
As shown in Table 6, the calculation energy efficiency of the

proposed NVNMD is around 2–3 orders of magnitude better
than that of the established vN-based MLMD, with similar
calculation accuracy (Table 5 and Fig. 4). Such high energy
efficiency is achieved, because in NVNMD there is no repeated
data shuttling, which consumes most of the energy in its vN-
based counterpart33–35. Consequently, the calculation energy

Fig. 2 The structure properties of amorphous GeTe. Radial distribution function (left), angle distribution function (middle), and coordination
number (right) are computed by using AIMD, MLMD (e.g., DeePMD), and the proposed NVNMD.

0 100 200 300 400 500
Time (ps)

0

500

1000

1500

2000

Te
m

pe
ra

tu
re

 (K
)

0 20 40 60 80
Time (ps)

0

2

4

6

8

10

M
S

D
 (

Å
2
)

x
y
z

all
fit

a b

Fig. 3 The molecular dynamics simulation results of GeTe and Li10GeP2S12 using the proposed NVNMD. In panel a, the phase transition
processes of GeTe is reproduced, which contains initial crystalline phase (I), liquid phase (II), amorphous phase (III), and recrystallization (IV)
shown in the insets. In panel b, the mean square displacement (MSD) of Li10GeP2S12 is computed using NVNMD and the diffusion coefficient is
extracted from its fitting line. The components of x, y, and z direction show the anisotropic diffusion.

P. Mo et al.

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022) 107

efficiency of the proposed NVNMD is comparable to that of
CMD, but accuracy of the proposed NVNMD is much superior
than that of CMD (Table 1).

DISCUSSION
As an early-stage pilot version, we implemented the NVNMD on
an FPGA (details available in the Methods section). It is well known

that FPGA has merits of low-cost and field-programmability (i.e.,
short turnaround time for design revisions and iterations), and the
disadvantages of limited hardware resources and low clock
frequency. In contrast, the application-specific integrated circuit
(ASIC) has merits of more abundant hardware resources and much
higher clock frequency, and the disadvantages of high fabrication
cost and long development cycle. So, FPGA is typically used as a
debugging and testing tool (research phase), before taping out
the ASIC (mass-production phase).
It’s worth noting that the proposed NVNMD, which simulta-

neously achieved high calculation accuracy (Table 1), high
calculation time efficiency (Table 5), and high calculation energy
efficiency (Table 6), is based on a low-end device (Xilinx xcvu9p) in
the Xilinx Virtex UltraScale+ FPGA product family (Section
Hardware implementation)79,80. This has three significant techno-
logical implications on the future ASIC development scenarios of
the proposed paradigm (NvN-based MD).
Firstly, the NVNMD we use here is based on a low clock

frequency (i.e., 250 MHz), which is about one order of magnitude
lower than ordinary ASIC like the commodity-level vN-based GPU/
CPU whose clock frequency can reach several GHz76. This implies
that the time efficiency of NVNMD could be enhanced by another
order of magnitude (i.e., C1 ≈ 101), in a straightforward fashion by
boosting the clock frequency, if we move from the research phase
(FPGA) to the production phase (ASIC).
Secondly, the NVNMD we use here is implemented using a

rather limited amount of hardware resources (i.e., about 106 logic
cells in FPGA as shown in Table 7). It is well known that a single
ASIC chip could integrate around 109–1010 transistor devices (e.g.,
1.6 × 1010 and 2.1 × 1010 transistor devices in one Apple M1 5 nm
chip and one NVIDIA Tesla V100 12 nm chip, respectively76,81).
Even though we use about 101 transistor devices to realize 1 logic
cell, the ASIC could be 2 to 3 orders of magnitude more resource

Table 5. Calculation time efficiency comparison between the proposed NVNMD and the established MLMD/CMD.

Method System Computer architecture Hardware resource Ti (s step−1 atom−1) μt (s step
−1 atom−1)

NVNMD (this work) Benzene NvN FPGA 2.0 × 10−7 2.0 × 10−7

Naphthalene FPGA 2.0 × 10−7

Aspirin FPGA 2.0 × 10−7

Antimony (bulk) FPGA 2.0 × 10−7

Germanium telluride (bulk) FPGA 2.0 × 10−7

Li-Ge-P-S (bulk) FPGA 2.0 × 10−7

MLMD H2O
26,27,31 vN GPU 5.6 × 10−5 2.4 × 10−5

SiO2
123 80 CPU cores 3.6 × 10−5

Cu (original DP)124 GPU 2.8 × 10−5

H2O (original DP)124 GPU 9.5 × 10−6

Al-Cu-Mg (original DP)124 GPU 8.7 × 10−5

Cu (compressed DP)124 GPU 2.8 × 10−6

H2O (compressed DP)124 GPU 2.6 × 10−6

Al-Cu-Mg (compressed DP)124 GPU 5.4 × 10−6

GeTe (compressed DP)56 GPU 3.7 × 10−6

Li-Ge-P-S (compressed DP)62 GPU 9.4 × 10−6

CMD Lennard-Jones32 vN 12 CPU cores 7.0 × 10−7 7.3 × 10−7

Chain32 3.2 × 10−7

EAM32 1.9 × 10−6

Chute32 1.7 × 10−7

GROMACS with SIMD125 64 CPU cores 7.6 × 10−8

GROMACS without SIMD125 1.3 × 10−6

Ti is the calculation time efficiency. μt is the average value of Ti. For fair comparison, we list MD calculations based on one GPU, or one FPGA, or one
supercomputer node with a moderate number (e.g., <100) of CPU cores.

Fig. 4 Calculation time and error of CMD, MLMD, and the
proposed NVNMD. The black circle, blue square and red star mark
the points of (μt, μe), which are fetched from Table 1 and Table 5; the
error bars and gray/blue regions are used to schematically illustrate
the variations of data generated by different researchers; the
horizontal dashed line is the quantum chemistry accuracy threshold,
i.e., 1.0 kcal mol−1,63,64. Note: (1) we use μe values in Table 1, in order
to cover more results from literature, which are based on different
datasets; (2) for more rigorous accuracy analysis based on identical
datasets, please refer to Tables 2 and 3.

P. Mo et al.

6

npj Computational Materials (2022) 107 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

abundant than the FPGA we are using. By leveraging the decent
parallelization scaling property of MLMD (inherited by the
proposed NVNMD)82, we anticipate at least two orders of
magnitude enhancement of time efficiency (i.e., C2≈ 102), by
purely increasing the intra-ASIC parallelization.
Thirdly, the logic and arithmetic circuit can be deployed much

more freely in ASIC than in FPGA, since FPGA uses more resources
to ensure flexibility and programmability. Given much less
constraints, the same set of functionalities can be implemented
with much fewer transistor devices in ASIC than in FPGA.
Therefore, by using ASIC to replace FPGA, the time efficiency
can be increased by roughly ten times when the logic and
arithmetic circuits are simplified (i.e., C3≈ 101)83.
To summarize, the FPGA-based results we presented in this

paper is a very early development stage of the proposed NVNMD
paradigm. Based on the architecture design we verified using
FPGA in this paper, we are working on developing ASIC-based
NVNMD computer, which could be around 4 orders of magnitude
(i.e., C= C1 × C2 × C3≈ 104) more efficient than the results we
showed in this paper. In another word, by moving from FPGA to
ASIC, the time efficiency of NVNMD could be enhanced from
10−7 s step−1 atom−1 (Table 5) to around 10−11 s step−1 atom−1.
This means that NVNMD based on a single ASIC chip (with cm2-
level size and 101-102 Watt-level power) could be faster than the
MLMD based on the whole Summit supercomputer (around 10−10

s step−1 atom−1, with one entire building size and 106–107 Watt-
level power)31,82. Of course, during the implementation of the
ASIC-based NVNMD, we need to consider factors other than
speed, e.g., the generality to run all kinds of MD and the flexibility
to control/dump MD simulation results, etc. All these considera-
tions may compromise the speed somehow, which deserves
future research attention. Finally, there are lots of machine
learning methods other than DeePMD (e.g., SchNet84, DimeNet85,
sGDML86, PaiNN87, SpookyNet88, GemNet89, NewtonNet90,
UNiTE91, NequIP92, and so on). The NvN acceleration of these
methods deserves future research attention, too.
Compared to the other special-purpose MD computers already

existing in literature (e.g., Anton)22,23,40,41, the NVNMD proposed

here is different in several aspects. Anton focuses on accelerating
biology-related MD simulations and, thus, mainly implements
biology-oriented classical force fields. While these classical force
fields offer valuable insights to simulate biological MD problems
(e.g., protein folding), they suffer serious accuracy problems in
many applications in other fields, because it only has the CMD-
level accuracy67,93–95. The accuracy of the proposed NVNMD,
however, is at the AIMD/MLMD-level. Furthermore, Anton is
implemented on the ASIC using advanced semiconductor
technology nodes (e.g., 7 nm node), which offers much higher
speed than the FPGA used in this pilot version of NVNMD.

METHODS
In this Section, the overall system design of the proposed special-purpose
MD computer is introduced. Section Heterogeneous parallelization
describes the heterogeneous parallelization between the proposed NVNMD
computer’s two major units—the master processing unit (MPU) and the
slave processing unit (SPU). Section Pipeline and high-speed transmission
interface discusses the high-speed transmission interface (HTI) between
MPU and SPU. Section Master processing unit and Section Slave processing
unit introduce the functionalities of MPU and SPU, respectively.
As the most important part of the proposed NVNMD computer, the SPU

bears the predominant majority (e.g., over 99%) of the total computational
load. To maximize calculation efficiency of SPU, we propose a paradigm
shift from the established general-purpose vN architecture (e.g., CPU and
GPU)26,27,31,56,58,62,65,66,96,97 to a special-purpose NvN architecture. The
proposed NvN architecture efficiently computes the energy (Section
Energy calculation) and atomic force and virial (Section Force and virial
calculation) by leveraging the processing-in-memory (PIM) technology
(Section Processing in memory), based on the algorithms of DeepPot-SE
MLMD26,30,98 after three crucial modifications. These three modifications
are indispensable to realize high calculation efficiency using very limited
amount of hardware resources. Firstly, the traditional continuous neural
network (CNN) widely used in MLMD is replaced by using the quantized
neural network (QNN) (Section Quantized neural network). Secondly, the
resource-consuming multiplication-based neural network is replaced by
using a resource-economical multiplication-less neural network
deliberately-designed here for the NVNMD (Section Multiplication-less
neural network). Thirdly, the widely-used trigonometric function-based
nonlinear activation functions are replaced by using the lightweight
nonlinear activation functions specially-crafted for the NVNMD (Section
Nonlinear activation function). With the help of these three significant
modifications, the NvN-based SPU is implemented in a field programmable
gate array (FPGA), to quantitatively test the overall performance of the
proposed MD computer (Section Hardware implementation).

Heterogeneous parallelization
The MD simulation consists of a certain number of timesteps in a loop. In
each timestep, there are two parts of calculations – (i) the evaluation of
PES, E= E({Ri}), and atomic forces, Fi=−∇iE({Ri}); and (ii) all other
calculations, including numerical integration of the Newton equation to
update {Ri} and {vi}. Here, E is the system energy; Ri, vi, and Fi are the
Cartesian coordinate, velocity, and force of the atom i (i= 1, 2, …, N),
respectively; and N is the total number of atoms in the simulation system99.
In large-scale AIMD/MLMD simulations (i.e., N > 102), the overwhelming

majority (e.g., over 99%) of computing time is spent to evaluate PES82. So,
we focus on accelerating the calculation of part (i) by using the SPU based

Table 6. Calculation energy efficiency comparison between the proposed NVNMD and the established MLMD/CMD.

T (s step−1 atom−1) P (W) η= T × P (J step−1 atom−1)

NVNMD (this work) 2.0 × 10−7 108 2.1 × 10−5

MLMD 1 CPU + 1 GPU26,31 5.6 × 10−5 280 1.6 × 10−2

Summit supercomputer31 2.7 × 10−10 7.6×106 2.1 × 10−3

CMD ≈10−7 ≈102 ≈10−5

T is the calculation time efficiency. P is the power consumption. The NVNMD (this work) uses three CPU cores (Intel i7-10700K) and one FPGA (Xilinx xcvu9p).
The MLMD uses CPU (IBM POWER9) and GPU (NVIDIA Tesla V100), as introduced in Ref. 26,31. The CMD results are taken from Table 5.

Table 7. FPGA resource consumption of the proposed system.

Resource Utilization Available Utilization ratio

LUT 500111 1182240 42.30%

LUTRAM 52035 591840 8.79%

FF 674294 2364480 28.52%

DSP 4058 6840 59.33%

BRAM 188 2160 8.7%

URAM 560 960 58.33%

The abbreviations LUT, LUTRAM, FF, DSP, BRAM, and URAM represent Look-
Up Table110, Look-Up Table RAM110, Flip-Flop110, Digital Signal Processor109,
Block RAM105, and UltraRAM105, respectively.

P. Mo et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022) 107

on the proposed special-purpose NvN architecture. In contrast, the
calculation of part (ii) is much less computationally demanding, so the
calculation of part (ii) is based on the traditional general-purpose vN
architecture in MPU. This vN/NvN heterogeneous architecture is designed
to leverage the flexibility of vN architecture. As a consequence, the
proposed MD computer can efficiently run all kinds of MD simulations, e.g.,
canonical ensemble MD, microcanonical ensemble MD, isothermal–isobaric
ensemble MD, enhanced sampling, and so on100–104.
As illustrated in Fig. 5, the calculation of each MD timestep consists of

seven consecutive steps (i.e., S1, S2, S3, S4, S5, S6, and S7). In the S1, all
atoms j in the vicinity of the atom i are chosen as the neighbor atoms,
whose indices are stored in a neighbor list Nc(i)= {j, |Rj− Ri| < Rc} where Rc
is a predefined cutoff. In the S2, the neighbor list {Nc(i)}, together with all
atoms’ chemical species {Zi} and atomic coordinates {Ri}, is encoded into a
compact data format using 16, 2, and 64 bits, respectively. Then, the
compact data {Nc(i)}, {Zi}, and {Ri} are transmitted from the MPU to the SPU.
In the S3, after receiving these compact data from MPU, the global atomic
information is transferred into the ith atom’s local atomic information
which includes Zi, {Zj, j ∈ Nc(i)} and {Rji}= {Ri−Rj, j ∈ Nc(i)}. In the S4, the ith

atom’s energy component Ei, the atomic force components {Fji}= {∂Ei/∂Rji,
j∈ Nc(i)} and virial components {Vji} = {RjiT × Fji, j∈ Nc(i)} are evaluated by
feeding the local atomic information into the PES computation module. In
the S5, the system energy E, atomic forces {Fi}, and virial V are computed
by summing the contributions of each atom. The relationship can be
represented as E ¼PN

i¼1 Ei ,

Fi ¼ �∇iE Rif gð Þ ¼ �
X
j2NcðiÞ

Fji þ
X
j2NcðiÞ

Fij (2)

and

V¼
X
i

RTi ´ Fi ¼ �
X
i≠j

Vji (3)

Here, E, {Fi}, and V are encoded with 64 bits, 32 bits, and 64 bits,
respectively, and written into a random-access memory (RAM) ready to be
read by MPU. In the S6, MPU reads and decodes compact data from the
RAM. In the S7, numerical integration of the Newton’s equation, MD
thermostat, and material properties are computed.
While S1, S2, S6 and S7 are executed in the MPU, S3, S4 and S5 are

executed in the SPU. During integration of these seven steps into a whole
functional MD computer, the high calculation efficiency is ensured by two
key design ideas. Firstly, the MPU and SPU are linked by the high-speed
transmission interface (HTI), and the time spent in MPU calculation and
MPU-SPU communication is minimized by the parallel pipeline computa-
tion (Section “Pipeline and high-speed transmission interface”). Secondly,
the PES evaluation, which is the most time-consuming part of MD, is
significantly accelerated by the processing in memory (PIM) calculations in
SPU based on the proposed NvN architecture, under the coordination of

MPU (Sections Master processing unit and Slave processing unit). The MPU
is implemented by running a revised LAMMPS package57 on a multicore
CPU (Section Master processing unit); and the SPU is implemented using
an FPGA (Section Slave processing unit).

Pipeline and high-speed transmission interface
To mitigate, as much as possible, the efficiency bottleneck caused by MPU-
SPU communication, four high-speed technologies are used together here.
Firstly, the MPU-SPU HTI is designed as a full-duplex channel to enable
simultaneous data sending and data receiving, by using two separate
memory hardware units. For instance, in the FPGA implementation
(Section Hardware implementation), one on-chip block random access
memory (BRAM)105 of SPU is used to read data, and another on-chip BRAM
of SPU is used to write data. Secondly, high-speed peripheral component
interconnect express (PCIe) technology is used to send/receive data
between MPU and SPU. For instance, here we use 16-lane PCIe 3.0, whose
maximum bandwidth is 7.88 Gbit s−1 per lane, so the total bandwidth is as
high as 15.75 GByte s−1 (Section Hardware implementation)106,107. Thirdly,
the direct memory access (DMA) technology is used to transfer data
between MPU and SPU. Using DMA, MPU-SPU data communication can be
achieved without MPU control, so that the data transfer latency is
minimized and the burden of MPU is alleviated. Fourthly, the seven

Fig. 5 Schematic figure of heterogeneous parallelization in the NVNMD system. The system consists of master processing unit (MPU), slave
processing unit (SPU), and high-speed transmission interface (HTI). Calculation of each timestep of MD in the system consists of seven
consecutive steps: building neighbor list (S1); encoding atomic information into compact data (S2); receiving and decoding atomic compact
data (S3); evaluating potential energy surface (PES) (S4); encoding and sending data of PES (S5), decoding data of PES (S6), and other
calculations, e.g., numerical integration (S7). Here, E and V represent the energy and virial of atomic system, respectively; Zi, Ri, Ei, Fi, and Nc(i)
represent the chemical specie, coordinate, energy, force, and neighbor list of atom i, respectively; Rji, Fji, and Vji represent the relative
coordinate, force component, and virial component between atom i and atom j.

……

…

S1 S2 S6SPU S7 WT

a One processing core

b Multiple processing cores
#1

time

…#1

#2

#Np

…

…

…

enable signal

#1(1) #1(2) #1(NSD)

#Np(1) #Np(2) #Np(NSD)

#A(B)

#2(NSD)#2(2)#2(1)

Fig. 6 Schematic figure of calculation time based on pipeline
design when one processing core a or multiple processing cores
b are used in MPU. The tS1, tS2, tS3, tS4, tS5, tS6, and tS7 are the
calculation time of S1, S2, S3, S4, S5, S6, and S7, respectively, in Fig. 5.
Here, tSPU= tS3+ tS4+ tS5; and tWT is the waiting time; ‘#A(B)’ stands
for the sub-domain B processed by the core #A of MPU; Np is the
number of cores in MPU; NSD is the number of sub-domains
decomposed according to the SPU capacity. Enable signals are used
to coordinate the calling of SPU.

P. Mo et al.

8

npj Computational Materials (2022) 107 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

consecutive steps (Fig. 5) are organized in a carefully-designed pipeline
(Fig. 6).
While the first three high-speed technologies (i.e., full-duplex, PCIe,

DMA) minimize the SPU’s idle time (i.e., time other than tSPU in Fig. 6a), the
fourth one (i.e., pipeline) tries to vanish the SPU’s idle time. As shown in
Fig. 6b, by using a small number (typically less than ten) of CPU cores in
the MPU, the NvN-based SPU is always busy performing heavy-duty
calculations, which is beneficial to maximize the overall efficiency.
The proposed NVNMD is based on a pipeline, in which the MPU and the

SPU work in a complementary manner (Figs. 5 and 6). Thus, to maximize the
overall efficiency, it is desirable to keep the SPU always busy. In another
word, tSPU in Fig. 6 should be large enough (i.e., N should be large enough)
to minimize Ti in Table 5. This trend can be seen in Fig. 7 – the calculation
efficiency drops if N is small. Since our focus is the MD simulations of large
systems (e.g., N > 104 atoms), this should not be a concern.

Master processing unit
MPU performs S1, S2, S6, and S7, as illustrated in Fig. 5. While using a MPU
(e.g., CPU with NP cores) to process the system of N atoms, the whole
system is spatially decomposed into NP domains with equal volume, and
each core processes one domain for parallel acceleration57. To account for
the interaction between atoms located within different domains, neighbor
atoms of the domain Ω are copied from the neighbor domains to form a
shell domain (referred to as Ωn hereafter)57. The indices of atoms inside Ωn

are stored in a list IΩn= {j | RjΩ < Rc and j∉ IΩ}, where RjΩ denotes the
minimum distance between atom j and Ω; IΩ is the list of indices of atoms
inside Ω. For notational convenience, the list of indices of all atoms inside Ω
and Ωn is denoted as IΩa= (IΩ, IΩn), which is a combined list of IΩ and IΩn.
SPU can only store and process limited amount of data at one time due

to hardware resource restriction, so domain Ω is further divided into NSD=
⌈μ × NΩ /NSPU⌉ sub-domains (denoted as ω hereafter) with equal volume,
where μ is set as 2 to account for the spatial fluctuation of atom density; NΩ

is the number of atoms within Ω; NSPU is set as 4096 to strike a balance
between communication efficiency and resource utilization; and ⌈x⌉ is the
ceiling function which rounds x to upper integer. While processing one
sub-domain ω, a shell of ω (referred to as ωn hereafter) is additionally
created to account for the interaction between atoms located within Ωn

and sub-domains other than ω. The indices of atoms inside ωn are stored
in a list Iωn= {j | Rjω < Rc and j∉ Iω}, where Rjω denotes the minimum
distance between atom j and ω; Iω is the list of indices of atoms inside ω.
Based on the abovementioned two-level decomposition (i.e., ‘A’ and ‘B’

in Fig. 6b), the enable signal is utilized to ensure that the MPU cores call
the SPU in a proper order. After running S2, the pth core (p= 1, 2, …, NP)
doesn’t call SPU until it receives an enable signal from its previous core (i.e.,
the NP

th core when p= 1 and the (p−1)th core otherwise). After obtaining
the results from SPU, the pth core sends an enable signal to its next core
(i.e., the 1st core when p= NP and the (p+1)th core otherwise). It’s worth
noting that the 1st core doesn’t require an enable signal to process its 1st

sub-domain. The steps (i.e., S1, S2, S6, and S7) are discussed in detail
below. In the S1, each core builds the neighbor list {Nc(i), i∈ IΩ} of atoms
located within its domain Ω.

In the S2, MPU processes the sub-domain ω’s data, including neighbor
list {Nc(i), i ∈ Iω}, chemical species {Zi, i ∈ Iωa}, and coordinates {Ri, i ∈ Iωa},
where Iωa = (Iω, Iωn) is a list obtained by combining Iω and Iωn. First, the
{Nc(i)} is recoded as local neighbor list. For example, if one element of {Nc(i)}
is 5, and the value 5 is located at the 1st position of Iωa, this element of
{Nc(i)} will be encoded as 1. In this step, the encoded {Nc(i)} is compressed
from 32 bits to 16 bits. Second, {Zi} is compressed from 32 bits to 2 bits
through encoding it as the order of chemical species. Third, {Ri} is encoded
by multiplying 248 and rounding into 64-bit integer from 64-bit floating
number. The encoded data {Nc(i)}, {Zi}, and {Ri} are stored in the buffer until
they are transmitted to SPU by HTI.
In the S6, the cores of MPU decode the data fetched from SPU. Take the

sub-domain ω inside domain Ω as an example, the data consists of energy
Eω, atomic forces {Fi, i∈ Iωa}, and virial Vω. Eω is decoded from 64-bit
integer to 64-bit floating point number by multiplying a factor of 2−13, and
then summed up to obtain the energy EΩ of domain Ω. {Fi} is decoded
from 32-bit integer to 64-bit floating point number by multiplying a factor
2-25, and then summed up into the corresponding atomic forces of domain
Ω (i.e., {Fi, i∈ IΩa}) according to the index in Iωa. Vω is decoded from 64-bit
integer to 64-bit floating number by multiplying a factor 2−25, and then
added up to the virial VΩ of Ω.
In the S7, the cores of MPU perform numerical integration, thermostat,

and so on. After the core requests SPU to evaluate PES of its domain Ω, the
energy EΩ, atomic forces {Fi, i∈ IΩa}, and virial VΩ are obtained, but they are
incomplete. Therefore, the cores exchange the forces {Fi, i ∈ IΩn} of atoms
located within the shell IΩn to obtain the complete atomic forces {Fi, i= 1,
2, …, N}. In addition, EΩ and VΩ are also exchanged to obtain the complete
energy E and virial V of the whole system. Afterward, the atomic forces are
used for numerical integration and other procedures in parallel. After S7 is
finished, one timestep of MD is accomplished. The abovementioned steps
repeat until all timesteps in the MD trajectory are accomplished.

Slave processing unit
As shown in Fig. 5, the SPU runs S3, S4, and S5 in each MD timestep.
Among the three categories of MD (i.e., CMD, AIMD, and MLMD), we
choose MLMD to implement the proposed special-purpose MD computer,
because the FF-based PES evaluation in CMD is too inaccurate and the
DFT-based PES evaluation in AIMD is too sophisticated. We modify the
Deep Potential-Smooth Edition (DeepPot-SE)30 and deploy it in the S4 of
the SPU. The local atomic information Zi, {Zj}, {Rji} are used to compute the
many-body descriptor Di which preserves the translation invariance,
rotation invariance, and permutation invariance. Then, Di is used to
calculate the ith atom’s energy Ei. Finally, atomic force components {Fji} are
obtained by computing the negative derivative of Ei. These steps are
discussed in more details below.
In order to preserve the translation invariance, the global coordinates Rj=

(xj, yj, zj) are transformed into the relative coordinates Rji= Rj− Ri= (xji, yji, zji).
To describe the smooth cutoff, a new coordinate uji is constructed through
multiplying Rji by a cutoff function sji, which describes the contribution decay
by the increase of Rji until Rc. The new coordinate is expressed as

uji ¼ sji; sji
xji
Rji

; sji
yji
Rji

;sji
zji
Rji

� �
(4)

Here, the cutoff function is defined as

sji ¼ fcðRjiÞ ¼

1
Rji
;

1
Rji

1
2 cos π

Rji�Rcsð Þ
Rc�Rcsð Þ

� �
þ 1

2

� �
;

0;

0 � Rji < Rcs
Rcs � Rji < Rc
otherwise

8>>><
>>>:

(5)

where Rcs is a predefined cutoff parameter26,30. Next, multilayer perceptron
(MLP) neural network GZj

108, which is called Feature NN (FeaNN) hereafter,
is constructed. FeaNN has one input node and M output nodes, which is
written as

gji ¼ GZj ðsjiÞ (6)

The output of lth layer of MLP is

xlþ1 ¼ ξ lðxl ´wl þ blÞ (7)

where xl, wl, bl, and ξl are input, weight, bias, and nonlinear activation
function of the lth layer, respectively. The weights of FeaNN depend on

Fig. 7 The calculation time efficiency depending on the number
of atoms. N denotes the number of atoms in the GeTe system.

P. Mo et al.

9

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022) 107

chemical species Zj. Therefore, the output gji can distinguish the
contribution of neighbors with different chemical species.
In order to preserve the permutation invariance, matrix Ui of size M × 4 is

written as

Ui ¼
X
j2NcðiÞ

Uji (8)

where

Uji ¼ gTji ´ uji (9)

is a M × 4 matrix26,30.
In order to preserve the rotational invariance,

D0
i ¼ Ui ´UT

i (10)

is defined26,30. The subset of D0
i is extracted as a new M ×M2 (1 ≤M2 ≤M)

matrix Di for reducing unnecessary computational cost.

Di l; k½ � ¼ D0
i l; k þ lð Þ%M½ �; l ¼ 0; 1; ¼ ;M� 1; k ¼ 0; 1; ¼ ;M2 � 1 (11)

where l and k are the matrix indexes of row and column, respectively; % is
modulo operation.
The total energy is written as E ¼PN

i¼1 Ei . The energy Ei of ith atom is
only determined by its chemical species Zi and the symmetry-preserving
feature Di

26,27. MLP neural network is used to fit the relation between input
Di and output Ei (referred to as FitNN hereafter)

Ei ¼ EZi Dið Þ (12)

Then, the force and virial can be calculated by using Eq. (2) and Eq. (3),
respectively.

Energy calculation
The evaluation of PES (S4 in Fig. 5) is realized by using six calculation
modules (i.e., M1, M2, M3, M4, M5, and M6) in SPU, and the atomic energy
Ei is predicted during forward propagation, as shown in Fig. 8a. In the M1,
{Rji2} is computed from the relative coordinate {Rji}. In the M2, {Rji2} is used
to calculate the cutoff function {sji} and the outputs {gji} of FeaNN
according to Eq. (5) and Eq. (6). The weights and biases of FeaNN are
switched according to {Zj}. In the M3, the new coordinate {uji} is obtained
by using {sji} and {Rji} (Eq. (4)). In the M4, {uji} is multiplied by {gji} to get {Uji},
and then {Uji} is summed together to get Ui (Eq. (9) and Eq. (8)). In the M5,
the many-body descriptor Di is extracted from the subset of the symmetric
matrix D0

i which is the matrix product of Ui and Ui
T (Eq. (10) and Eq. (11)). In

the M6, the FitNN is implemented to evaluate Ei from Di, whose weights
and biases are switched according to Zi (Eq. (12)).
In order to simplify the computation complexity of M2, an interpolation

method is used to map from {Rji2} to {hji}, where hji is a vector of Rji2 and Zj
(e.g., sji and gji). At the beginning, NT mapping tables with NM rows are built
to store the data ak and bk of Rji2 and Zj in their kth row (k= 1, 2, …, NM),
where NT represents the number of different chemical species; ak and bk

stand for the value and derivative value of hji, respectively, when Rji2= rk
(here rk= (k−1)·Rc2 /NM). Then, when Rji2 (rk ≤ Rji2 < rk+1) and Zj is entered,
one of the mapping tables is enabled according to Zj and its kth row data
(i.e., ak and bk) is fetched. Finally, hji is computed via the formula hji = (Rji2

− rk) · bk+ ak. The interpolation method employs a few mapping tables
and multiplication to replace the complex computation of trigonometric
function (Eq. (5)) and FeaNN (Eq. (6)), and it is utilized to compute {sji} and
{gji} from {Rji2} in the M2. The NM is set at 1024 to strike a compromise
between accuracy loss and resource usage.
The digital signal processor (DSP)109 resources are used to implement

multiplication in M1, M2, M3, M4, and M5. The on-chip memory UltraRAM
(URAM)105 is used to implement the mapping table in M2. Look-Up Table
(LUT)110 implements FitNN’s matrix multiplication in the M6, and FitNN’s
weights and biases are stored in on-chip Look-Up Table RAM (LUTRAM)110

to avoid frequent fetching from off-chip memory. There is no need to
temporarily store the intermediate results in the off-chip memory since the
output of the former module is the input of the latter.

Force and virial calculation
The atomic force is defined as the negative gradient of energy, so the force
component {Fji} is calculated in the backward propagation of the models
(i.e., M1, M2, M3, M4, M5, and M6) in SPU (Fig. 8b). In order to perform both
FP and BP calculation in these modules, each module consists of three sub-
modules: FP, BP, and first-in-first-out (FIFO) (Fig. 8c). FP and BP are used to
execute the calculation of forward propagation and backward propaga-
tion, respectively. FIFO is employed to transmit the required intermediate
results calculated by FP to BP. As illustrated in Fig. 8c, in the FP, the input of
kth module is χk, and the output χk+1 is calculated according to the
expression corresponding to the module in the forward propagation; in
the BP, the input is ∂Ei/∂χk+1, and the output ∂Ei/∂χk is calculated by using
chain rule as ∂Ei/∂χk= ∂Ei/∂χk+1 × ∂χk+1/∂χk; in the FIFO, the intermediate
results χmk is transmitted in order to calculated ∂χk+1/∂χk.
Using the module structure shown in Fig. 8c, the gradient of each

module’s input is computed in the backward propagation (Fig. 8b). More
specially, in the M6, FIFO transmits Zi and the input of each layer’s
activation function, and BP computes ∂Ei/∂Di. In the M5, FIFO transmits Ui,
and BP computes ∂Ei/∂Ui. In the M4, FIFO transmits {uji} and {gji}, and BP
computes {∂Ei/∂uji} and {∂Ei/∂gji}. In the M3, FIFO transmits {sji} and {Rji}, and
BP computes {∂Ei/∂sji} and {∂Ei/∂uji × ∂uji/∂Rji}. In the M2, FIFO transmits
{Rji2} and {Zj}, and BP computes {∂Ei/∂Rji2}. It’s worth noting that {∂sji/∂Rji2}
and {∂gji/∂Rji2} are obtained by using the interpolation method proposed in
Section Energy calculation. In the M1, FIFO transmits {Rji}, and BP computes
{Fji}= {(∂Ei/∂Rji2 × ∂Rji2/∂Rji)+ (∂Ei/∂uji × ∂uji/∂Rji)} and {Vji}.
In the BP, the matrix multiplication in the FitNN is implemented by LUT,

and other multiplication is realized by DSP resources; on-chip LUTRAM is
used to hold the FitNN’s parameters; on-chip URAM is used to implement
the mapping tables in the M2. The parameters and the mapping tables
only need to be initialized once at the start of NVNMD, and they don’t
need to be fetched from off-chip memory on a regular basis. In the FIFO,

BP

{Rji2}

{Zj}

Zi
{gji}

M6M4

M5

M6M4

M5

M2

∂Ei
∂Ei

∂Ei
∂Di

∂Ei
∂Ui{

u
}

{ }

{Rji}

{sji}

{uji}

Ui

Di

Ei

M3

M2

M1
{Rji}

{
∂Ei
∂sji

}

{
∂Ei
∂gji

}

{
Rji

2 }

{
u
×
∂uji
∂Rji

}

FP

FIFO

χ +1

χ +1

χ

χmk

a energy calculation

b force calculation

c module structure

M3

χmk

M1
{ }

Fig. 8 The implementation of PES calculation. Six modules (i.e., M1, M2, M3, M4, M5, and M6) are used to implement the forward
propagation calculation (a) from the chemical species Zi and {Zj} and relative coordinates {Rji} to the energy Ei as Section Energy calculation.
The backward propagation (b) of modules is employed to calculate the component of force {Fji} and virial {Vji} as Sectioin Force and virial
calculation. Each module can be divided into three submodules (c): FP, BP, and FIFO, where FP and BP are used to implement the calculation of
forward propagation and backward propagation, respectively; FIFO is employed to transmit data from FP to BP.

P. Mo et al.

10

npj Computational Materials (2022) 107 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

on-chip URAM is also used to implement the function which transmits the
data from FP to BP to avoid communication with off-chip memory. The
entire procedure is designed to run in pipeline mode for optimal
performance.

Processing in memory
If the energy, force, and virial (Sections Energy calculation and Force and
virial calculation) are calculated on traditional vN computers, the efficiency
is very low. For instance, to calculate the lth layer of MLP (i.e., Eq. (7)), it
needs 11 steps, as shown in Fig. 9. These calculations are not as efficient as
they could be, because the data storage unit needs to be accessed 8 times
(i.e., steps 1, 2, 4, 5, 6, 8, 9, and 11 in Fig. 9a). Due to the limited size of on-
chip memory (e.g., cache) of the vN processing unit (e.g., CPU/GPU), the
system has to frequently access the off-chip data storage unit (e.g., main
memory), which is typically two orders of magnitude slower than the
processing unit (i.e., well known as the vNB).
To overcome the vNB, the proposed NvN-based SPU leverages the

processing-in-memory (PIM) technology to avoid heavy-duty data shut-
tling111–115. Specifically, the logic devices and memory cells are integrated
together, vanishing the data fetching latency of its vN counterparts. In the
proposed NvN-based SPU, wl and bl are stored in the local on-chip memory
and xl+1 is directly used as the input of the (l+1)th layer of MLP without
accessing off-chip memory (Fig. 9), such that the repeated data shuttling
from/to the off-chip memory (i.e., vNB) can be avoided. It’s worth noting
that the parameters such as wl and bl represent the high-dimensional PES,
which are material-dependent. Thus, to compute a long MD trajectory of a
particular material, wl and bl are only loaded once from off-chip memory
and then kept unchanged in on-chip memory during all timesteps of the
MD trajectory. The logic and arithmetic operations (e.g., multipliers, adders,
and activation functions) are implemented using reconfigurable circuit, to
link on-chip memory cells (e.g., wl and bl). Using PIM, the calculation is
pipelined without interruption of data shuttling latency, such that the
calculation time is consumed purely for useful logic and arithmetic
operations and, thus, the efficiency is maximized.

Quantized neural network
To implement NvN PIM (Fig. 9b), it is very hardware resource-consuming if
variables (e.g., xl, wl, bl, pl, etc.) were represented using floating-point
numbers116. So, despite continuous neural network (CNN) based on
floating-point numbers is adopted in nearly all existing MLMD, we use the
quantized neural network (QNN), which has been proposed to replace CNN
in hardware devices with limited power supply and computational
resources117–119. In the QNN, the weights and activations are quantized
to save power consumption and computation resources. For example, we
use quantization

χq ¼ σγðχÞ ¼ χ ´ 2γb c (13)

for floating-point number χ, where χq is quantized value with the precision
2-γ; ⌊x⌋ is floor function which gives the greatest integer less than or equal
to x. The quantization parameter γ is determined by the trade-off between
accuracy and resources. We found that, by setting γ= 13, there is
negligibly small accuracy loss after replacing CNN using QNN in the
proposed NVNMD.

Multiplication-less neural network
To implement NvN PIM (Fig. 9b), it is also very hardware resource-
consuming if the multiplication operations were realized in the arithmetic
circuit directly48,49. So, despite multiplication-based neural network is
adopted in nearly all existing MLMD, we propose a multiplication-less
neural network, which is specially designed for the proposed NVNMD, in
order to reduce the hardware circuit complexity and power consumption.
Specifically, to evaluate the (3l-1)th step in Fig. 9b, the multiplication
operation ‘×’ is replaced by using the bitwise shift operation ‘>>’, to
evaluate

pq ¼ ðwq ´ xqÞ=2γb c ¼
XK
k¼1

sk � xq � 2nk
 !

>>γ ¼
XK
k¼1

sk � xqð Þ<<nk
 !

>>γ

(14)

Fig. 9 Schematic comparison of calculation step between vN and NvN architecture. Equation (7) is used as an example to indicate the
difference between traditional vN architecture (a) and proposed NvN architecture (b) based on the processing-in-memory (PIM) technology.
Here xl, wl, bl, and ξl are input, weight, bias, and nonlinear activation function of the lth layer, respectively; pl= xl ×wl; sl= bl+ pl.

P. Mo et al.

11

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022) 107

where xq is quantized input of the layer; γ is the quantization parameter
(Eq. (13));

wq¼ζK ðσγðwÞÞ ¼
XK
k¼1

sk � 2nk (15)

is the quantized weights of QNN; sk =−1, 0, or 1 is the sign; nk is a natural
number;

ζK ðxÞ ¼
ζK�1ðx � ζðxÞÞ þ ζðxÞ; K > 1

ζðxÞ; K¼ 1

�
(16)

is the quantization function;

ζðxÞ ¼ s � 2n ¼
1 � 2 log2ðx=1:5Þb c; x > 0

0 � 20; x ¼ 0

�1 � 2 log2ð�x=1:5Þb c; x < 0

8><
>: (17)

is used to quantize value to exponent of 2; and ⌈x⌉ is ceiling function
which rounds x to upper integer.
Obviously, in the above multiplication-less design, the multiplication

operation is replaced by bitwise shift and summation operations, which are
much more resource-economical and energy-saving in digital circuit. Our
test shows that if K is too small (say, K= 1 or 2), there is serious accuracy
loss; if K ≥ 3, the accuracy is decent to fit high-dimensional PES. So, we use
K= 3 hereafter.

Nonlinear activation function
To implement NvN PIM (Fig. 9b), it is also very hardware resource-
consuming if the trigonometric function-based nonlinear activation
functions (e.g., tanh(x)) are implemented directly120. So, despite that these
trigonometric function-based nonlinear activation functions are widely-
used in existing MLMD, we design a nonlinear activation function (Fig. 10)

ϕα;β;γ xð Þ ¼ xγ
α �

xγ � xγj j
β ; xγ¼

γ; x � γ

x; �γ < x < γ

�γ; x � �γ

8><
>:

ϕ xð Þ¼ϕ1;4;2 xð Þþϕ32;256;4 xð Þ

(18)

without trigonometric functions. In order to implement in NvN-based SPU,
we redesign an activation function with continuous value and first
derivative, and make it easier to use in training and prediction with fewer
calculations. Because its parameters are exponents of 2, the shift operation
can be used instead of the relevant multiplication and division. The most
complex operation is just multiplication, not exponentiation and division in
this activation function. It is easy to implement ϕ(x) in training and testing
processes on vN-based and NvN-based computer. The curve of tanh(x) and
ϕ(x) are compared in Fig. 10, where ϕ(x) is normalized to the range [−1, 1]
by dividing 1.0625 (max value of ϕ(x)). Obviously, at the numerical value
and first derivative, the tanh and ϕ(x) are similar.

Hardware implementation
To implement the heterogeneous vN/NvN (Fig. 6), we use vN-based CPU
(Intel i7-10700K, 3.80 GHz, 8 cores) and NvN-based FPGA (Xilinx xcvu9p)
together. The MPU in Fig. 6 is implemented by using CPU; and the SPU is
implemented by using FPGA. For the neural network model deployed in

SPU (Section Slave processing unit), the maximum number of neighbor
atoms is set to 128; The number of FeaNN output nodes is M= 20; The Di

dimension is set as 20 × 10; FitNN contains three hidden layers, each
having 20 nodes. The time division multiplexing (TDM) technology is
adopted to reduce the number of resources121,122. By optimizing the
design, the number of resources is reduced, the timing is improved, and
the clock frequency of 250 MHz is achieved. The number of resources
consumed by the whole design is shown in Table 7.

DATA AVAILABILITY
To reproduce the results in this paper, training and inference calculations are needed.
The training codes and data are open-sourced at https://github.com/LiuGroupHNU/
nvnmd, for generating the NVNMD-oriented inter-atomic potential models. The
inference functionalities (i.e., NVNMD calculations) can be freely accessed at http://
nvnmd.picp.vip.

Received: 9 December 2021; Accepted: 29 March 2022;

REFERENCES
1. Bapst, V. et al. Unveiling the predictive power of static structure in glassy sys-

tems. Nat. Phys. 16, 448–454 (2020).
2. Schott, S. et al. Polaron spin dynamics in high-mobility polymeric semi-

conductors. Nat. Phys. 15, 814–822 (2019).
3. Galib, M. & Limmer, D. T. Reactive uptake of N2O5 by atmospheric aerosol is

dominated by interfacial processes. Science 371, 921–925 (2021).
4. Widmer, D. R. & Schwartz, B. J. Solvents can control solute molecular identity.

Nat. Chem. 10, 910–916 (2018).
5. Karplus, M. & Petsko, G. A. Molecular dynamics simulations in biology. Nature

347, 631–639 (1990).
6. Chen, S. et al. Simultaneously enhancing the ultimate strength and ductility of

high-entropy alloys via short-range ordering. Nat. Commun. 12, 4953 (2021).
7. Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and

other III2-VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017).
8. Wang, Y. et al. Dynamic deformability of individual PbSe nanocrystals during

superlattice phase transitions. Sci. Adv. 5, eaaw5623 (2019).
9. Lehtinen, O., Kurasch, S., Krasheninnikov, A. V. & Kaiser, U. Atomic scale study of

the life cycle of a dislocation in graphene from birth to annihilation. Nat.
Commun. 4, 2098 (2013).

10. Lu, S. et al. Activation pathway of a G protein-coupled receptor uncovers con-
formational intermediates as targets for allosteric drug design. Nat. Commun.
12, 4721 (2021).

11. Zhao, Y. et al. Augmenting drug–carrier compatibility improves tumour nano-
therapy efficacy. Nat. Commun. 7, 11221 (2016).

12. Laio, A., Bernard, S., Chiarotti, G. L., Scandolo, S. & Tosatti, E. Physics of iron at
Earth’s core conditions. Science 287, 1027–1030 (2000).

13. Steinle-Neumann, G., Stixrude, L., Cohen, R. E. & Gülseren, O. Elasticity of iron at
the temperature of the Earth’s inner core. Nature 413, 57–60 (2001).

14. Hughes, M. A. et al. n-type chalcogenides by ion implantation. Nat. Commun. 5,
5346 (2014).

15. Wang, X.-P. et al. Time-dependent density-functional theory molecular-
dynamics study on amorphization of Sc-Sb-Te alloy under optical excitation.
npj Comput. Mater. 6, 31 (2020).

16. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and cor-
relation effects. Phys. Rev. 140, A1133–A1138 (1965).

17. Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-
functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

18. Alavi, S. Ab initio molecular dynamics basic theory and advanced methods. By
Dominik Marx and Jürg Hutter. Angew. Chem. Int. Ed. 48, 9404–9405 (2009).

19. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of
the OPLS all-atom force field on conformational energetics and properties of
organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

20. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and
testing of a general Amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

21. Vanommeslaeghe, K. et al. CHARMM general force field: a force field for drug-
like molecules compatible with the CHARMM all-atom additive biological force
fields. J. Comput. Chem. 31, 671–690 (2010).

22. Shaw, D. E. et al. Anton, a special-purpose machine for molecular dynamics
simulation. Commun. ACM 51, 91–97 (2008).

23. Shaw, D. E. et al. Anton 2: Raising the Bar for Performance and Programmability
in a Special-Purpose Molecular Dynamics Supercomputer. in SC14: International

Fig. 10 The comparison between two activation functions. The
normalized ϕ(x) is close to tanh(x) at the numerical value and first
derivative.

P. Mo et al.

12

npj Computational Materials (2022) 107 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://github.com/LiuGroupHNU/nvnmd
https://github.com/LiuGroupHNU/nvnmd
http://nvnmd.picp.vip
http://nvnmd.picp.vip

Conference for High Performance Computing, Networking, Storage and Analysis
2015-January, 41–53 (IEEE, 2014).

24. Shaw, D. E. et al. Anton 3: twenty microseconds of molecular dynamics simu-
lation before lunch. in Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis 1–11 (ACM, 2021).
https://doi.org/10.1145/3458817.3487397.

25. Behler, J. & Parrinello, M. Generalized neural-network representation of high-
dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

26. Wang, H., Zhang, L., Han, J. & E, W. DeePMD-kit: a deep learning package for
many-body potential energy representation and molecular dynamics. Comput.
Phys. Commun. 228, 178–184 (2018).

27. Zhang, L., Han, J., Wang, H., Car, R. & E, W. Deep potential molecular dynamics: a
scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120,
143001 (2018).

28. Zhang, L., Lin, D.-Y., Wang, H., Car, R. & E, W. Active learning of uniformly
accurate interatomic potentials for materials simulation. Phys. Rev. Mater. 3,
023804 (2019).

29. Zhang, Y. et al. DP-GEN: a concurrent learning platform for the generation of
reliable deep learning based potential energy models. Comput. Phys. Commun.
253, 107206 (2020).

30. Zhang, L. et al. End-to-end Symmetry Preserving Inter-atomic Potential Energy
Model for Finite and Extended Systems. Adv. Neural Inf. Process. Syst. 2018-
December, 4436–4446 (2018).

31. Jia, W. et al. Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to
100 Million Atoms with Machine Learning. in SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis 1–14 (IEEE, 2020).
https://doi.org/10.1109/SC41405.2020.00009.

32. LAMMPS Benchmarks. Available at: https://www.lammps.org/bench.html.
33. Wulf, W. A. & McKee, S. A. Hitting the memory wall. ACM SIGARCH Comput.

Archit. N. 23, 20–24 (1995).
34. Horowitz, M. 1.1 Computing’s energy problem (and what we can do about it). in

2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC) 57, 10–14 (IEEE, 2014).

35. Ielmini, D. & Wong, H. S. P. In-memory computing with resistive switching
devices. Nat. Electron. 1, 333–343 (2018).

36. Stegailov, V., Smirnov, G. & Vecher, V. VASP hits the memory wall: processors
efficiency comparison. Concurr. Comput. Pract. Exp. 31, e5136 (2019).

37. John von Neumann. First Draft of a Report on the EDVAC. (1945).
38. Electronic Numerical Integrator and Computer (ENIAC). Available at: https://en.

wikipedia.org/wiki/ENIAC.
39. Beyond von Neumann. Nat. Nanotechnol. 15, 507–507 (2020).
40. Taiji, M. et al. Protein Explorer: A Petaflops Special-Purpose Computer System for

Molecular Dynamics Simulations. in Proceedings of the 2003 ACM/IEEE conference
on Supercomputing - SC ’03 15 (ACM Press, 2003). https://doi.org/10.1145/
1048935.1050166.

41. Harvey, M. J., Giupponi, G. & De Fabritiis, G. ACEMD: Accelerating biomolecular
dynamics in the microsecond time scale. J. Chem. Theory Comput. 5, 1632–1639
(2009).

42. Deringer, V. L. & Csányi, G. Machine learning based interatomic potential for
amorphous carbon. Phys. Rev. B 95, 094203 (2017).

43. Rowe, P., Csányi, G., Alfè, D. & Michaelides, A. Development of a machine
learning potential for graphene. Phys. Rev. B 97, 054303 (2018).

44. Zeng, J., Cao, L., Xu, M., Zhu, T. & Zhang, J. Z. H. Complex reaction processes in
combustion unraveled by neural network-based molecular dynamics simula-
tion. Nat. Commun. 11, 5713 (2020).

45. Li, R., Lee, E. & Luo, T. A unified deep neural network potential capable of
predicting thermal conductivity of silicon in different phases. Mater. Today Phys.
12, 100181 (2020).

46. Rowe, P., Deringer, V. L., Gasparotto, P., Csányi, G. & Michaelides, A. An accurate and
transferable machine learning potential for carbon. J. Chem. Phys. 153, 034702
(2020).

47. Bettini, J. et al. Experimental realization of suspended atomic chains composed
of different atomic species. Nat. Nanotechnol. 1, 182–185 (2006).

48. Wu, B. et al. Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Con-
volutions. in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition 9127–9135 (IEEE, 2018). https://doi.org/10.1109/CVPR.2018.00951

49. Chen, H. et al. AdderNet: Do We Really Need Multiplications in Deep Learning?
in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
1465–1474 (IEEE, 2020). https://doi.org/10.1109/CVPR42600.2020.00154

50. Ahn, J., Yoo, S., Mutlu, O. & Choi, K. PIM-enabled instructions. in Proceedings of
the 42nd Annual International Symposium on Computer Architecture 43, 336–348
(ACM, 2015).

51. Mutlu, O., Ghose, S., Gómez-Luna, J. & Ausavarungnirun, R. Processing data
where it makes sense: Enabling in-memory computation. Microprocess. Micro-
syst. 67, 28–41 (2019).

52. Liu, J. & Mo, P. The server website of NVNMD. (2021). Available at: http://nvnmd.
picp.vip/.

53. Liu, J. & Mo, P. The training and testing code for NVNMD. (2021). Available at:
https://github.com/LiuGroupHNU/nvnmd.

54. Abadi, M. et al. TensorFlow: A system for large-scale machine learning. Proc. 12th
USENIX Symp. Oper. Syst. Des. Implementation, OSDI 2016 265–283 (2016). https://
doi.org/10.5555/3026877.3026899

55. Sosso, G. C., Miceli, G., Caravati, S., Behler, J. & Bernasconi, M. Neural network
interatomic potential for the phase change material GeTe. Phys. Rev. B 85,
174103 (2012).

56. Shi, M., Mo, P. & Liu, J. Deep Neural Network for Accurate and Efficient Atomistic
Modeling of Phase Change Memory. IEEE Electron Device Lett. 41, 365–368 (2020).

57. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. Journal
of Computational Physics 117, (1993).

58. Chmiela, S. et al. Machine learning of accurate energy-conserving molecular
force fields. Sci. Adv. 3, e1603015 (2017).

59. Chmiela, S., Sauceda, H. E., Müller, K.-R. & Tkatchenko, A. Towards exact mole-
cular dynamics simulations with machine-learned force fields. Nat. Commun. 9,
3887 (2018).

60. Christensen, A. S. & von Lilienfeld, O. A. On the role of gradients for machine
learning of molecular energies and forces. Mach. Learn. Sci. Technol. 1, 045018
(2020).

61. Shi, M., Li, J., Tao, M., Zhang, X. & Liu, J. Artificial intelligence model for efficient
simulation of monatomic phase change material antimony. Mater. Sci. Semicond.
Process. 136, 106146 (2021).

62. Huang, J. et al. Deep potential generation scheme and simulation protocol for
the Li10GeP2S12-type superionic conductors. J. Chem. Phys. 154, 094703 (2021).

63. Bogojeski, M., Vogt-Maranto, L., Tuckerman, M. E., Müller, K.-R. & Burke, K.
Quantum chemical accuracy from density functional approximations via
machine learning. Nat. Commun. 11, 5223 (2020).

64. Narayanan, B., Redfern, P. C., Assary, R. S. & Curtiss, L. A. Accurate quantum
chemical energies for 133000 organic molecules. Chem. Sci. 10, 7449–7455
(2019).

65. Morawietz, T. & Artrith, N. Machine learning-accelerated quantum mechanics-
based atomistic simulations for industrial applications. J. Comput. -Aided Mol.
Des. 35, 557–586 (2021).

66. Zhang, P., Shen, L. & Yang, W. Solvation Free Energy Calculations with Quantum
Mechanics/Molecular Mechanics and Machine Learning Models. J. Phys. Chem. B
123, 901–908 (2019).

67. Lu, C. et al. OPLS4: Improving force field accuracy on challenging regimes of
chemical space. J. Chem. Theory Comput. 17, 4291–4300 (2021).

68. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J.
Phys. Condens. Matter 14, 2745–2779 (2002).

69. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software
project for quantum simulations of materials. J. Phys. Condens. Matter 21,
395502 (2009).

70. VandeVondele, J. et al. Quickstep: Fast and accurate density functional calcu-
lations using a mixed Gaussian and plane waves approach. Comput. Phys.
Commun. 167, 103–128 (2005).

71. Ahn, S. Phase Change Memory. (Springer International Publishing, 2018). https://
doi.org/10.1007/978-3-319-69053-7.

72. Kolobov, A. V., Krbal, M., Fons, P., Tominaga, J. & Uruga, T. Distortion-triggered
loss of long-range order in solids with bonding energy hierarchy. Nat. Chem. 3,
311–316 (2011).

73. Mo, Y., Ong, S. P. & Ceder, G. First principles study of the Li 10GeP 2S 12 lithium
super ionic conductor material. Chem. Mater. 24, 15–17 (2012).

74. Marcolongo, A., Binninger, T., Zipoli, F. & Laino, T. Simulating Diffusion Properties
of Solid‐State Electrolytes via a Neural Network Potential: Performance and
Training Scheme. ChemSystemsChem 2, e1900031 (2020).

75. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).
76. NVIDIA Corporation. Nvidia Tesla V100 GPU Volta Architecture. White Paper 53

(2017). Available at: https://images.nvidia.cn/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf.

77. Summit. Available at: https://www.olcf.ornl.gov/olcf-resources/compute-
systems/summit/.

78. NVIDIA. NVIDIA V100. Available at: https://www.nvidia.com/en-us/data-center/v100/.
79. Xilinx. UltraScale Architecture and Product Data Sheet: Overview. Xilinx.com

1–46 (2020). Available at: https://www.xilinx.com/support/documentation/
data_sheets/ds890-ultrascale-overview.pdf.

80. Xilinx. UltraScale+ FPGAs Product Tables and Product Selection Guide. Xilinx.
com 1–11 (2021). Available at: https://www.xilinx.com/support/documentation/
selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf.

81. Ic, S. P., Dube, B., Elisabeth, S. & Scansen, D. Apple M1 System-on-Chip. sys-
templus.fr 1–36 (2020). Available at: https://www.systemplus.fr/wp-content/
uploads/2020/12/SP20608-Apple-M1-System-on-Chip-Sample.pdf.

P. Mo et al.

13

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022) 107

https://doi.org/10.1145/3458817.3487397
https://doi.org/10.1109/SC41405.2020.00009
https://www.lammps.org/bench.html
https://en.wikipedia.org/wiki/ENIAC
https://en.wikipedia.org/wiki/ENIAC
https://doi.org/10.1145/1048935.1050166
https://doi.org/10.1145/1048935.1050166
https://doi.org/10.1109/CVPR.2018.00951
https://doi.org/10.1109/CVPR42600.2020.00154
http://nvnmd.picp.vip/
http://nvnmd.picp.vip/
https://github.com/LiuGroupHNU/nvnmd
https://doi.org/10.5555/3026877.3026899
https://doi.org/10.5555/3026877.3026899
https://doi.org/10.1007/978-3-319-69053-7
https://doi.org/10.1007/978-3-319-69053-7
https://images.nvidia.cn/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.cn/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.nvidia.com/en-us/data-center/v100/
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.systemplus.fr/wp-content/uploads/2020/12/SP20608-Apple-M1-System-on-Chip-Sample.pdf
https://www.systemplus.fr/wp-content/uploads/2020/12/SP20608-Apple-M1-System-on-Chip-Sample.pdf

82. Lu, D. et al. 86 PFLOPS Deep Potential Molecular Dynamics simulation of 100
million atoms with ab initio accuracy. Comput. Phys. Commun. 259, 107624
(2021).

83. Samir, N. et al. ASIC and FPGA Comparative Study for IoT lightweight hardware
security algorithms. J. Circuits, Syst. Comput. 28, (2019).

84. Schütt, K. T. et al. SchNet: A continuous-filter convolutional neural network for
modeling quantum interactions. Adv. Neural Inf. Process. Syst. 2017-Decem,
992–1002 (2017).

85. Klicpera, J., Groß, J. & Günnemann, S. Directional Message Passing for Molecular
Graphs. Preprint at http://arxiv.org/abs/2003.03123 (2020).

86. Chmiela, S., Sauceda, H. E., Poltavsky, I., Müller, K. R. & Tkatchenko, A. sGDML:
Constructing accurate and data efficient molecular force fields using machine
learning. Comput. Phys. Commun. 240, 38–45 (2019).

87. Schütt, K., Unke, O. & Gastegger, M. Equivariant message passing for the pre-
diction of tensorial properties and molecular spectra. in Proceedings of the 38th
International Conference on Machine Learning (Vol. 139 eds. Meila, M. & Zhang,
T.) 9377–9388 (PMLR, 2021).

88. Unke, O. T. et al. SpookyNet: Learning force fields with electronic degrees of
freedom and nonlocal effects. Nat. Commun. 12, 7273 (2021).

89. Klicpera, J., Becker, F. & Günnemann, S. GemNet: Universal Directional Graph
Neural Networks for Molecules. Preprint at http://arxiv.org/abs/2106.08903
(2021).

90. Haghighatlari, M. et al. NewtonNet: A Newtonian message passing network for
deep learning of interatomic potentials and forces. Preprint at http://arxiv.org/
abs/2108.02913 (2021).

91. Qiao, Z. et al. UNiTE: Unitary N-body Tensor Equivariant Network with Appli-
cations to Quantum Chemistry. Preprint at http://arxiv.org/abs/2105.14655
(2021).

92. Batzner, S. et al. E(3)-Equivariant Graph Neural Networks for Data-Efficient and
Accurate Interatomic Potentials. Preprint at http://arxiv.org/abs/2101.03164
(2021).

93. Kanal, I. Y., Keith, J. A. & Hutchison, G. R. A sobering assessment of small‐
molecule force field methods for low energy conformer predictions. Int. J.
Quantum Chem. 118, e25512 (2018).

94. Zgarbová, M., Otyepka, M., Šponer, J., Hobza, P. & Jurečka, P. Large-scale com-
pensation of errors in pairwise-additive empirical force fields: Comparison of
AMBER intermolecular terms with rigorous DFT-SAPT calculations. Phys. Chem.
Chem. Phys. 12, 10476–10493 (2010).

95. Demir, H. et al. DFT-based force field development for noble gas adsorption in
metal organic frameworks. J. Mater. Chem. A 3, 23539–23548 (2015).

96. Shen, L. & Yang, W. Molecular Dynamics Simulations with Quantum Mechanics/
Molecular Mechanics and Adaptive Neural Networks. J. Chem. Theory Comput.
14, 1442–1455 (2018).

97. Jinnouchi, R., Karsai, F. & Kresse, G. Making free-energy calculations routine:
combining first principles with machine learning. Phys. Rev. B 101, 060201
(2020).

98. Han, J., Zhang, L., Car, R. & E, W. Deep potential: a general representation of a
many-body potential energy surface. Commun. Comput. Phys. 23, 629–639
(2018).

99. Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids. 1, (Oxford University
Press, 2017).

100. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new
molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

101. Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics
algorithms. J. Chem. Phys. 101, 4177–4189 (1994).

102. Dullweber, A., Leimkuhler, B. & McLachlan, R. Symplectic splitting methods for
rigid body molecular dynamics. J. Chem. Phys. 107, 5840–5851 (1997).

103. Shinoda, W., Shiga, M. & Mikami, M. Rapid estimation of elastic constants by
molecular dynamics simulation under constant stress. Phys. Rev. B 69, 134103
(2004).

104. Tuckerman, M. E., Alejandre, J., López-Rendón, R., Jochim, A. L. & Martyna, G. J. A
Liouville-operator derived measure-preserving integrator for molecular
dynamics simulations in the isothermal-isobaric ensemble. J. Phys. A. Math. Gen.
39, 5629–5651 (2006).

105. Xilinx. UltraScale Architecture: Memory Resources User Guide (UG573). 573,
1–136 (2018).

106. Goldhammer, A. & Ayer, J. Jr. Understanding performance of PCI express sys-
tems. Xilinx WP350 350, 1–18 (2008).

107. Xilinx, P. C. I. Express for ultrascale architecture-based devices integrated block
for PCIe in the ultrascale. Architecture 464, 1–15 (2015).

108. Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are
universal approximators. Neural Netw. 2, 359–366 (1989).

109. Xilinx. UltraScale Architecture: DSP Slice User Guide (UG579). Xilinx.com (2020).
Available at: https://www.xilinx.com/support/documentation/user_guides/
ug579-ultrascale-dsp.pdf.

110. Xilinx. UltraScale Architecture Configurable Logic Block User Guide (UG574).
Xilinx.com (2017). Available at: https://www.xilinx.com/support/documentation/
user_guides/ug574-ultrascale-clb.pdf.

111. Chi, P. et al. PRIME: a novel processing-in-memory architecture for neural net-
work computation in ReRAM-based main memory. Proceedings of the 2016 43rd
Int. Symp. Comput. Archit. ISCA 2016 27–39 (2016). https://doi.org/10.1109/
ISCA.2016.13

112. Ghose, S., Boroumand, A., Kim, J. S., Gomez-Luna, J. & Mutlu, O. Processing-in-
memory: a workload-driven perspective. IBM J. Res. Dev. 63, 3 (2019).

113. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory
devices and applications for in-memory computing. Nat. Nanotechnol. 15,
529–544 (2020).

114. Lu, Z., Arafin, M. T. & Qu, G. RIME: A Scalable and Energy-Efficient Processing-
In-Memory Architecture for Floating-Point Operations. Proc. Asia South
Pacific Des. Autom. Conf. ASP-DAC 120–125 (2021). https://doi.org/10.1145/
3394885.3431524

115. Bavikadi, S., Sutradhar, P. R., Khasawneh, K. N., Ganguly, A. & Dinakarrao, S. M. P.
A review of in-memory computing architectures for machine learning applica-
tions. Proc. ACM Gt. Lakes Symp. VLSI, GLSVLSI 89–94 (2020). https://doi.org/
10.1145/3386263.3407649

116. Are, W., Point, F. & Layout, S. IEEE Standard 754 Floating Point Numbers. 1–7
(2011).

117. Gupta, S., Agrawal, A., Gopalakrishnan, K. & Narayanan, P. Deep learning with
limited numerical precision. 32nd Int. Conf. Mach. Learn. ICML 2015 3, 1737–1746
(2015).

118. Han, S., Mao, H. & Dally, W. J. Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding. Int. Conf.
Learn. Represent. 1–14 (2016).

119. Alemdar, H., Leroy, V., Prost-Boucle, A. & Petrot, F. Ternary neural networks for
resource-efficient AI applications. Proc. Int. Jt. Conf. Neural Networks 2017-May,
2547–2554 (2017).

120. Marra, S., Iachino, M. A. & Morabito, F. C. High speed, programmable imple-
mentation of a tanh-like activation function and its derivative for digital neural
networks. IEEE Int. Conf. Neural Networks - Conf. Proc. 506–511 (2007). https://doi.
org/10.1109/IJCNN.2007.4371008

121. Zheng, D., Zhang, X., Pui, C. W. & Young, E. F. Y. Multi-FPGA Co-optimization:
Hybrid Routing and Competitive-based Time Division Multiplexing Assignment.
Proc. Asia South Pacific Des. Autom. Conf. ASP-DAC 176–182 (2021). https://doi.
org/10.1145/3394885.3431565

122. Zou, P. et al. Time-Division Multiplexing Based System-Level FPGA Routing for
Logic Verification. in 2020 57th ACM/IEEE Design Automation Conference (DAC)
2020-July, 1–6 (IEEE, 2020).

123. Lee, K., Yoo, D., Jeong, W. & Han, S. SIMPLE-NN: An efficient package for training
and executing neural-network interatomic potentials. Comput. Phys. Commun.
242, 95–103 (2019).

124. Lu, D. et al. DP Train, then DP Compress: Model Compression in Deep Potential
Molecular Dynamics. Preprint at http://arxiv.org/abs/2107.02103 (2021).

125. Sedova, A., Eblen, J. D., Budiardja, R., Tharrington, A. & Smith, J. C. High-
performance molecular dynamics simulation for biological and materials sci-
ences: Challenges of performance portability. Proc. P3HPC 2018 Int. Work. Per-
formance, Portability Product. HPC, Held conjunction with SC 2018 Int. Conf. High
Perform. Comput. Networking, Storage Anal. 1–13 (2019). https://doi.org/10.1109/
P3HPC.2018.00004

ACKNOWLEDGEMENTS
We thank Han Wang, Linfeng Zhang, Denghui Lu, Wanrun Jiang, Jun Cheng, Yongbin
Zhuang, and Jianxing Huang for their precious time to try and test NVNMD, and for
their helpful suggestions to improve NVNMD. We thank experts from the DeePMD
community for their helpful discussions and technical support. This work is supported
by the National Natural Science Foundation of China (#61804049); the Fundamental
Research Funds for the Central Universities of P.R. China; Huxiang High Level Talent
Gathering Project (#2019RS1023); the Key Research and Development Project of
Hunan Province, P.R. China (#2019GK2071); the Technology Innovation and
Entrepreneurship Funds of Hunan Province, P.R. China (#2019GK5029); the Fund
for Distinguished Young Scholars of Changsha (#kq1905012).

AUTHOR CONTRIBUTIONS
Pinghui Mo, Chang Li, Dan Zhao, Yujia Zhang, and Jie Liu implemented and tested
the NVNMD system; Mengchao Shi and Junhua Li generated the DFT data for training
and testing the NVNMD system; Jie Liu proposed the idea and led the research;
Pinghui Mo and Jie Liu composed the manuscript.

P. Mo et al.

14

npj Computational Materials (2022) 107 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

http://arxiv.org/abs/2003.03123
http://arxiv.org/abs/2106.08903
http://arxiv.org/abs/2108.02913
http://arxiv.org/abs/2108.02913
http://arxiv.org/abs/2105.14655
http://arxiv.org/abs/2101.03164
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1145/3394885.3431524
https://doi.org/10.1145/3394885.3431524
https://doi.org/10.1145/3386263.3407649
https://doi.org/10.1145/3386263.3407649
https://doi.org/10.1109/IJCNN.2007.4371008
https://doi.org/10.1109/IJCNN.2007.4371008
https://doi.org/10.1145/3394885.3431565
https://doi.org/10.1145/3394885.3431565
http://arxiv.org/abs/2107.02103
https://doi.org/10.1109/P3HPC.2018.00004
https://doi.org/10.1109/P3HPC.2018.00004

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to Jie Liu.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

P. Mo et al.

15

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022) 107

http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture
	Introduction
	Results
	Analysis procedure
	Calculation accuracy
	Time efficiency
	Energy efficiency

	Discussion
	Methods
	Heterogeneous parallelization
	Pipeline and high-speed transmission interface
	Master processing unit
	Slave processing unit
	Energy calculation
	Force and virial calculation
	Processing in memory
	Quantized neural network
	Multiplication-less neural network
	Nonlinear activation function
	Hardware implementation

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION

