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We introduce a scheme based on machine learning and deep neural networks to model the environmental dependence of the electronic
polarizability in insulating materials. Application to liquid water shows that training the network with a relatively small number of
molecular configurations is sufficient to predict the polarizability of arbitrary liquid configurations in close agreement with ab initio
density functional theory calculations. In combination with a neural network representation of the interatomic potential energy surface,
the scheme allows us to calculate the Raman spectra along 2-nanosecond classical trajectories at different temperatures for H2O and
D2O. The vast gains in efficiency provided by the machine learning approach enable longer trajectories and larger system sizes relative
to ab initio methods, reducing the statistical error and improving the resolution of the low-frequency Raman spectra. Decomposing the
spectra into intramolecular and intermolecular contributions elucidates the mechanisms behind the temperature dependence of the
low-frequency and stretch modes.

1 Introduction
Raman scattering has been widely used to study rotational and
vibrational spectra of gases and condensed-phase systems1. The
Raman effect arises from the inelastic scattering of visible light
with matter, in which incident radiation is shifted in the frequency
domain due to vibrations and rotations of the scatterer2. Raman
spectroscopy thus probes the same frequency region as infrared
(IR) spectroscopy, but different selection rules apply for each
technique, making Raman and IR complementary tools to investi-
gate the rotational and vibrational signatures of condensed-phase
systems.

The Raman spectrum of a system can be modeled from the
polarizability time-correlation function obtained from molecular
simulations. The sensitivity of the polarizability to the environ-
mental dependence of the electronic structure demands consis-
tent quantum mechanical approaches to model the potential and
the polarizability surfaces. Traditional numerical simulations em-
ploy ab initio molecular dynamics (AIMD), in which electronic
interactions are computed on th 13 e fly using density functional
theory (DFT) and the system polarization described through the
modern theory of polarization3,4. This approach was used to ana-
lyze Raman spectra of heavy water, with polarizabilities evaluated
at every AIMD step using Density Functional Perturbation Theory
(DFPT)5,6. However, while AIMD methods with the appropriate
functional bring much-needed predictive accuracy, their compu-
tational intensity forbids their application on large systems size
and time scales7. Empirical potentials provide a less expensive
alternative, but are less robust and generalizable. One concern is
that the optimal parameters for the potential energy surface do
not reproduce the correct polarizability surface8; thus, success-
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ful polarizable models must take care to parameterize the polar-
izability surface. One such potential, POLI2VS, closely matches
the observed IR spectrum, but the low-frequency and librational
modes of the Raman spectrum are inconsistent with experiment9.
Moreover, non-reactive potentials are unable to model systems
with mutating chemical environments, such as acidic or alkaline
aqueous solutions in which proton transfer occurs on a picosec-
ond timescale10. An alternative to empirical potentials is MB-pol,
a many-body potential including up to 3-body terms plus induc-
tion, parameterized with high-level quantum mechanical calcula-
tions on small molecular clusters. This is quite accurate for liquid
water and more promising than empirical potentials, as it mod-
els the potential and polarization/polarizability surfaces within
a self-consistent framework, but, being limited to molecular sys-
tems, this method cannot treat dissociation11,12.

A second consideration in modeling the Raman spectrum is
the treatment of nuclear quantum effects (NQEs). Recent stud-
ies have approached the quantum TCF in several ways: approx-
imate path integral methods such as centroid molecular dynam-
ics (CMD) and (thermostatted) ring polymer molecular dynam-
ics (TRPMD)12,13; the local monomer approximation and other
mixed quantum-classical methods, which treat exactly a small
subset of vibrational modes14; and the linearized semiclassical
initial value representation (LSC-IVR)15. However, each of these
approximations has its drawbacks16,17, and it is difficult to distin-
guish effects due to approximate quantum dynamics from those
due to the choice for the potential energy surface (PES). Our
goal in this paper is to demonstrate the extent to which a classi-
cal-nuclei approach using a consistent neural-network-based PES
and polarizability surface successfully reproduces experimental
results.

Recently, machine learning methods have been used to express
ab initio potential energy surfaces as a function of nuclear co-
ordinates18–26. These methods preserve the accuracy of AIMD
while improving on its efficiency. One implementation is the
Deep Potential Molecular Dynamics (DPMD), a generalizable, ac-
curate, and linearly scalable deep neural network (DNN)-based
framework that can generate long trajectories in agreement with
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AIMD. Some of the authors have also recently used DNNs to learn
the electric polarization as a sum of local atomic contributions27.
This method allows the construction of ab initio-level polarization
surfaces, which were used to compute the IR spectra of liquid and
crystalline water under different pressure conditions. Alternative
machine learning models based on kernel instead of DNN repre-
sentations have been recently reported in the literature to predict
tensorial properties extracted from ab initio calculations28–30.
These models have been used to describe the polarizability and
the Raman spectra of isolated molecules and dispersion bound
molecular crystals30.

The strategy we adopt here is to use models based on DNNs to
represent the quantities required by Raman spectra calculations:
the interatomic potential energy and force, as well as the polar-
izability tensor. Upon training with ab initio data, DNN-based
simulations reproduce AIMD results at orders of magnitude lower
computational cost, enabling accurate simulations of large-scale
systems at timescales prohibitively long for AIMD. We use our
DNN-predicted interatomic potential and polarizabilities to com-
pute the Raman spectrum of liquid water at different tempera-
tures.

Due to the wide relevance of liquid water for science and tech-
nology, experimental studies over the past several decades have
investigated Raman spectra of water at different thermodynamic
conditions31–35. Although most experiments agree on the posi-
tion of primary and secondary peaks, their interpretation is still
not free of controversy. For instance, it is well understood that
a decrease in water temperature redshifts and broaden the pri-
mary OH stretch peak, a fact attributed to larger stability of hy-
drogen bonds at lower temperatures. But interpretations diverge
on whether and how specific features can be assigned to unique
hydrogen bond configurations. Therefore, theoretical modeling
can point the way forward in identifying the physical processes at
play.

2 Methods
In this section, we first introduce the theory of Raman spectra,
relating the Raman line shape to the autocorrelator of the sys-
tem polarizability. We then discuss the DNN representation of the
Wannier centroid polarizabilities, before providing detail on the
DFT calculations used to train the network.

2.1 Raman Line Shape from Ab initio Molecular Dynamics

The differential cross section of Raman scattering can be written
in terms of the Fourier transform of the time autocorrelation func-
tion of the electronic polarizability of the system according to2:

d2σ

dωdΩ
(ω) =

(
2π

λs

)4 1
2π

∫
∞

−∞

dte−iωt〈ε̂s ·ααα(0) · ε̂iε̂s ·ααα(t) · ε̂i〉 (1)

Here ω is the Raman frequency shift, ααα is the polarizability tensor
of the sample, ε̂s and ε̂i are, respectively, the polarization direc-
tions of the scattered and incident light, λs is the wavelength of
the scattered light. The angular brackets denote ensemble aver-
age, and the integration is over the time t. Factoring out the de-
pendence on λs, experiments typically report reduced line shapes

R(ω) containing an arbitrary constant factor36:

R(ω)= nBE(ω)I(ω)∝ nBE(ω)
1

2π

∫
∞

−∞

dte−iωt〈ε̂s ·ααα(0) · ε̂iε̂s ·ααα(t) · ε̂i〉
(2)

Here the Bose Einstein (BE) factor nBE(ω) = 1−exp(−β h̄ω) is in-
troduced when studying the low-frequency features of the spec-
trum, which would otherwise be obscured by the Rayleigh line37.
For fluid systems, it is convenient to decompose the polarizability
tensor into a spherical part α = 1

3 Trααα and a traceless anisotropic
tensor βββ = ααα−1α, yielding the isotropic and anisotropic compo-
nents of the line shape:

Riso(ω) ∝ nBE(ω)
∫

∞

−∞

dte−iωt〈α(0)α(t)〉

Raniso(ω) ∝ nBE(ω)
∫

∞

−∞

dte−iωt 2
15

Tr〈βββ (0)βββ (t)〉 (3)

In the above formulae, the polarizability depends on the nu-
clear coordinates, which are quantum mechanical operators but
are treated here classically to compute the equilibrium time cor-
relation functions via a molecular dynamics simulation. This
amounts to neglecting nuclear quantum effects (NQEs) in the dy-
namics of the nuclei. In liquid water, NQEs are small but not
negligible. Their influence on static equilibrium properties has
been quantified in experiments and simulations based on Feyn-
man path integrals38, but it is difficult to predict the effect on
dynamic properties using statistical simulation methods. Leaving
this issue aside, we approximate the environmental dependence
of the polarizability with classical mechanics.

Nevertheless, the electronic polarizability itself can only be de-
rived from quantum mechanics. Within the Born-Oppenheimer
approximation, the electronic polarizability at time t measures
the response of the instantaneous polarization (µµµ) of the sample
at time t to an infinitesimally small uniform electric field while
the nuclear positions are held fixed:

ααα(t) =
δ µµµ(t)

δEEE
(4)

We adopt first-principles density functional theory (DFT) to de-
scribe the electronic ground state of the system and use the mod-
ern theory of polarization to compute µµµ. The derivative in Eq. 4
can be expressed analytically with density functional perturba-
tion theory (DFPT)39, requiring the solution of the self-consistent
response equations for the electrons, or it can be calculated nu-
merically within the electric enthalpy framework40,41 by applying
small but finite electric fields ±εεε to the sample:

ααα ≈ µµµ(εεε)−µµµ(−εεε)

2εεε
(5)

In practice, the two formulations are equivalent. We adopt here
the one based on Eq. 5, which does not require a specialized
DFPT code but only a DFT minimization code. The macro-
scopic polarization µµµ of a bulk periodic system is conveniently
expressed, modulo a quantum, in terms of the position vectors of
the nuclei (rrri) and the maximally localized Wannier centers (wwwk),
µµµ = e∑i Zirrri− 2e∑k wwwk, where e is the unit electronic charge, Zi
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are atomic numbers, and we have assumed a spin-saturated sys-
tem42. The Wannier centers are obtained from a unitary transfor-
mation that minimizes the spatial spread in the occupied orbital
subspace43. We use a valence-only pseudopotential approach so
that the nuclear charges eZi are the charges of the ions consisting
of the nuclei and the frozen core electrons, and the Wannier cen-
ters correspond to the valence electrons. Specializing to water,
which contains oxygen (rrrOi ) and hydrogen (rrrHm ) ions, the polar-
ization vector is:

µµµ = 6e∑
i

rrrOi + e∑
m

rrrHm −2e∑
k

wwwk (6)

In water, four Wannier centers can be uniquely associated to their
nearest oxygen ion. These four Wannier centers remain close to
the same oxygen during dynamical evolution, even when the wa-
ter molecule to which the oxygen belongs dissociates leading to
formation of hydronium and hydroxyl complexes. It is convenient
to define a Wannier centroid by the average position of the four
Wannier centers associated to oxygen i:

wwwi =
1
4

4

∑
li=1

wwwli (7)

Then, the electronic polarizability of the liquid water sample is
just the sum of the centroid polarizabilities ααα i:

ααα(t) =−8e
∂

∂EEE
[∑

i
wwwi(t)] = ∑

i
ααα i(t) (8)

In absence of molecular dissociation, the centroid polarizabilities
can be viewed as effective molecular polarizabilities. These are
useful for interpreting the spectrum, but only their sum is a phys-
ical observable. Its time correlation function yields the Raman
line shape through Eq. 3. The polarizability ααα(t) is accessible on
the fly in AIMD trajectories, which thus provide a way to com-
pute the Raman spectra using the same DFT approximation for
the spectral calculations and for modeling the potential interac-
tions that generate the atomic trajectories. Computational cost
restricts these calculations to relatively short trajectories (≈ 100
ps) and small simulation boxes (≈ 100 molecules). The ensuing
statistical errors limit the accuracy of Raman spectra calculations
for water, particularly at low frequency where the Raman signal
is very weak.

Recent progress with machine learning (ML) techniques ap-
plied to molecular simulation greatly alleviates these difficulties,
as ML interatomic potentials can reproduce accurately AIMD tra-
jectories at a cost that is several orders of magnitude lower than
AIMD and scales linearly with system size. Our group has de-
veloped a versatile deep neural network (DNN) representation of
the potential energy surface of multi-atomic systems called deep
potential (DP) that has been used in several applications18,26.
Recently, the DP representation was generalized to describe the
environmental dependence of the polarization µµµ 27. In the next
section we discuss how this approach can be extended to the elec-
tronic polarizability ααα.

2.2 Deep Neural Network for the Environmental Depen-
dence of the Polarizability Tensor

Let X (rrr1,rrr2, ...,rrri, ...,rrrN) be an extensive physical property, such
as the potential energy U , the polarization µµµ, or the polarizability
ααα, which depends on the atomic positions. We consider systems
for which X can be decomposed into a sum of local components
Xi that depend on the coordinates of all atoms inside a finite
neighborhood Ni of the atom at rrri, i.e.:

X = ∑
i

Xi = ∑
i

Xi({rrr j ∈Ni}), Ni = { j,ri j < rc}, (9)

where ri j = ||rrri− rrr j|| is the distance between i and j, and rc is a
predefined cut-off distance. There is no restriction, besides finite
range, on the functional form of the environmental dependence
in Eq. 9. In a condensed phase, only the global property X is a
meaningful observable while the local quantities Xi are effective
properties that depend on the adopted decomposition. As dis-
cussed in the previous section, in water the electronic contribu-
tion to the polarization and the electronic polarizability are con-
veniently given by sums of Wannier centroid contributions. Since
each centroid is uniquely associated to an oxygen atom, only the
oxygen neighborhoods enter the sum in Eq. 9. By contrast, all
atomic neighborhoods, oxygen and hydrogen, are included in the
sum when X is the potential energy U .

The local quantity is an effective property whose precise value
depends on the adopted decomposition. In the case of poten-
tial energy, Xi denotes the atomic energy Ui, whose summation
gives rise to the total potential energy U of the system in the
DNN model. The analytical negative gradients of U with respect
to atomic positions define the interatomic forces. In the case of
polarizability, for the liquid water system we consider here, Xi

becomes the molecular polarizability ααα i, where we only consider
i to be oxygen.

The environmental dependence of Xi can be accurately rep-
resented by a DNN-parametrized function X

γγγ

i , where γγγ denotes
the parameters of the DNN model. Due to the local dependence
of X

γγγ

i on the neighborhood of i, the DNN model is scalable by
construction. X

γγγ

i should also satisfy some additional criteria.
First, it should depend continuously on the atomic positions and,
in terms of efficiency, be orders of magnitude faster than ab ini-
tio models. Moreover, it is crucial to preserve the translational,
rotational, and permutational symmetry of the quantity that is
learned. The potential energy is a scalar quantity and should be
invariant upon translation and rotation of the system and iden-
tical particle permutation. The polarization and the polarizabil-
ity are vectorial and tensorial quantities, respectively, and should
be translationally and permutationally invariant, but rotationally
covariant. The above requirements are achieved by means of
two DNNs, an embedding DNN and a fitting DNN. The embed-
ding DNN maps the positions of the atoms belonging to the ith
neighborhoods to features that are invariant under symmetry op-
erations, while the fitting DNN maps these features in a way that
is symmetry invariant for the potential energy, or covariant for the
polarization and the polarizability. The number of hidden layers
and outputs is refined in the training procedure.

In detail, we make a local frame transformation to the primed
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coordinates, which are defined relative to rrri:

rrr′k ≡ rrrk− rrri, (10)

Translational symmetry is preserved by construction in the lo-
cal frame. It is convenient to use generalized coordinates qqqk,
which weight atoms according to their distance from site i, rk′ ≡
(rrrk′ ·rrrk′)

1/2, and provide continuous evolution as atoms enter/exit
the neighborhood. For this purpose we introduce a smooth
weight function s(r′) equal to 1/r′k at short distances and decaying
smoothly to zero as r′k approaches rc, the radius of the neighbor-
hood. The four-component vector qqqk = (q1

k ,q
2
k ,q

3
k ,q

4
k) is then given

by (s(r′k),s(r
′
k)x
′
k/r′k,s(r

′
k)y
′
k/r′k,s(r

′
k)z
′
k/r′k), in terms of the Carte-

sian components of rrr′k. We use the matrix QQQ = (Qki) = (qi
k), which

has Ni rows and 4 columns, to represent the set of generalized
coordinates {qqqk} in a neighborhood.

The embedding DNN is the matrix EEE = (Eik) = Ei(s(r′k)) with
M rows and Ni columns, whose elements are found by training,
which maps each element in the set {s(r′k),r

′
k ∈Ni} onto M out-

puts. Multiplication of EEE by QQQ gives the matrix TTT = EEEQQQ with M
rows and 4 columns, whose generic element is:

Ti j =
Ni

∑
k=1

Ei(s(r′k))Qk j. (11)

In Eq. 11, the permutationally invariant sum over the atoms is a
smooth function of Ni. The last three columns of TTT ( j = 2,3,4)
transform covariantly under rotation because (Qk2,Qk3,Qk4)

transforms like rrr′k. Let SSS be the matrix formed by the first M′

(< M) rows of TTT . Multiplication of TTT by SSST , the transpose of SSS,
gives the matrix DDD of dimension M×M′, called the feature matrix:

DDD = TTT SSST , (12)

The elements of DDD are invariant under rotation and permutation.
DDD captures the local features of the neighboring pattern of i in

a faithful and adaptive way. While a fitting network from DDD to a
scalar would properly define Ui, one needs different procedures
for vectorial and tensorial quantities. The case of the polarization
vector was discussed in Ref. 27. Here we specialize to the polar-
izability tensor. In this case, the output of the fitting network is
an M×M diagonal matrix FFF = (Fjk), which is mapped onto ααα i,
in a permutationally invariant and rotationally covariant way by
right- and left-multiplications with the last three columns of TTT
and its transpose:

(ααα i)kl =
M

∑
j=1

Tj,k+1Fj j(DDD)Tj,l+1.

Finally, the parameters γγγ are determined by training, i.e., an op-
timization process that minimizes a loss function, which is here
the mean square difference between the DNN prediction and the
training data. The Adam stochastic gradient descent method44 is
adopted for the optimization.

The DNN for the polarizability should be combined with a DNN
for the PES to study the evolution of the polarizability along MD
trajectories. For consistency, the two networks should be trained
with electronic structure data at the same level of theory. In this

paper, we use a DNN for the polarizability and a DP represen-
tation of the PES based on the same DFT data generated with
the SCAN functional approximation. Since the ab initio electronic
structure data are expensive, efficient learning strategies are cru-
cial. To collect a minimal set of ab initio data for training, we use
the iterative learning scheme Deep Potential Generator (DP-GEN)
of Ref. 45. In this approach, an ensemble of DNN models, ini-
tially trained with a limited set of ab initio data but with different
initializations of the network parameters, are used to efficiently
explore the configuration space. A small subset of the visited con-
figurations is selected with an error indicator, defined as the vari-
ance of the predictions within the ensemble DNNs. The proto-
col is repeated until all the explored configurations are described
with satisfactory accuracy. The error indicator, here chosen to be
the maximum standard deviation of atomic forces, exploits the
highly non-linear dependence of the DNN models on the network
parameters. As a consequence, different initializations of the pa-
rameters lead to different local minima in the landscape of the
loss function, originating an ensemble of minimizing DNNs. In
our experience, good DNN models constructed with the above
procedure require significantly less ab initio data in the target
thermodynamic range than learning approaches based on inde-
pendent AIMD sampling data.

2.3 DFT Data and Deep Neural Networks for the Potential
and Polarizability of Water

The ground state electronic structures of the equilibrium config-
urations of liquid water within DFT were calculated using the
SCAN functional approximation46. SCAN predicts with suffi-
cient accuracy the molecular structure of liquid water at equi-
librium47 as well as the dipole moment (SCAN:1.84 D, experi-
ment48: 1.86 D) and isotropic polarizability (SCAN: 1.41 Å3 ,ex-
periment49: 1.47Å3) of the water molecule in gas phase. We used
the CP code of the Quantum ESPRESSO package50,51 to compute
the electronic ground state, the potential energy, and the forces
on the atoms at selected molecular configurations. The same code
was also used to compute the Wannier center coordinates and the
electronic polarizability at fixed nuclear positions via the elec-
tric enthalpy method40,52. Norm-conserving pseudo-potentials
of Troullier-Martins type53 were used for both oxygen and hy-
drogen atoms, and the wavefunctions and charge density were
plane-wave expanded with an energy cutoff of 110 and 440 Ry, re-
spectively. Total energy was converged to 10−8 Hartree or lower.
The polarizability was estimated numerically with Eq. 5 using
ε = 0.001 a.u., which falls well within the linear response regime.
An average error of 0.0005 Å3 for the DFT polarizabilities was es-
timated from a higher-order finite difference method based on a
5-point stencil. All Raman response calculations were performed
at the experimental equilibrium density of water.

With the DP-GEN scheme we explored a pressure range of 1–
105 bar with liquid water (192 atoms/cell), ice Ic (192 atoms/cell)
and ice Ih (288 atoms/cell). The temperature range of the explo-
ration ranged from 270–370 K for liquid water and 50–270 K for
ices Ih and Ic. At the end of the iterative training procedure,
our training data contained a set of 2056, 2015 and 1708 con-
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Fig. 1 Water molecule effective polarizabilities in normalized units. Nor-
malization consisted of subtraction of average DFT polarizability and
division by the standard deviation of the DFT data. Isotropic polariz-
ability and the off-diagonal components of the polarizability tensor are
shown. Data compared here was not included in the training data of the
deep neural network.

figurations of liquid water, ice Ih and ice Ic, respectively. The
referred training data set included only atomic forces and en-
ergy for each atomic configuration, the data needed to train the
DNN potential energy surface (DP). The polarizability DNN, on
the other hand, was trained only with effective molecular polar-
izabilities evaluated for the entire DP training set of liquid water.
The resulting DP predicts water density (ρ) and diffusion coeffi-
cient (D) of 1.07±0.02 g/cm3 and 0.17±0.01 Å2/ps, respectively,
in close agreement with SCAN-AIMD (ρ = 1.05±0.03 g/cm3 and
D = 0.19±0.02 Å2/ps)47.

DP-based Molecular dynamics (DPMD) simulations of liquid
water were carried out with 512 water molecules in a periodically
repeated cubic cell of 24.9 Å size (H2O density of 1.0 g/cm3). The
system was initially equilibrated at constant volume coupled to a
single Nosé-Hoover thermostat54,55 for 200 ps. The simulations
proceeded at constant volume and energy for 2 ns, the only sec-
tion of the simulation used to compute the spectra. The classical
equations of motion were integrated with the velocity-Verlet al-
gorithm with a time step of 0.25 and 0.5 fs for H2O and D2O,
respectively. All simulations were performed with the Lammps56

package interfaced with the DeepMD-Kit57. The DP-GEN pack-
age58 was used to realize the iterative learning scheme.

2.4 Numerical Modeling of Raman Spectra
Given the polarizability tensor as a function of time, we numeri-
cally evaluate the classical TCF of the cell polarizability and take
its discrete Fourier transform (Eq. 3). Furthermore, we also ob-
tain the contribution of intermolecular coupling to the Raman
spectra by decomposing the TCF of the cell polarizability into in-

tramolecular and intermolecular terms.
The decomposition of the system polarizability into effective

molecular polarizabilities enables us to distinguish spectral fea-
tures due to autocorrelations (within the same effective molecule)
from those due to intermolecular coupling, which weaken with in-
creasing temperature. Analogously to Wan et al.6, in evaluating
Eq. 3, we first calculated the intramolecular and intermolecular
TCF. For the isotropic TCF, these are defined as:

Cintra(t) =
N

∑
i=1
〈α i(0)α i(t)〉c (13)

where N = 512, and

Cinter(t) = ∑
i6= j
〈α i(0)α j(t)〉c (14)

with analogous definitions for the anisotropic TCF.
The decomposition of the cell polarizability into effective

molecular polarizabilities also enables us to isolate sources of
noise in the intermolecular spectrum. The sum in Eq. 14 was
taken only over pairs {i, j} within the first two shells of neighbor-
ing molecules (6 Å), as determined by plotting the radial distribu-
tion function gOO(r). Including interactions from the third shell
and beyond only adds to the zero-frequency component of the
Fourier spectrum. The cutoffs were enforced on the coordinates
of the oxygen atoms at each initial time used in the computation
of the TCF.

Next, the spectrum was obtained by taking a discrete Fourier
transform of the TCF and multiplying by the appropriate prefac-
tors:

R(ωk) ∝ nBE(ωk)
T

∑
tm=0

e−iωktmC(tm)∆t (15)

where T = 2.5 ps is the length of the TCF and the times tm were
discretized into intervals of ∆t = 0.25 fs for H2O and 0.5 fs for D2O.
The frequencies ωk = 2πk/T , where k is an integer, run from 0 to
the Nyquist frequency, discretized into units of 13.33 cm−1. This
provides a bound on the resolution of the spectrum, so we report
the locations of peaks to the nearest 10 cm−1.

3 Results and discussion
In this section, we present the isotropic and anisotropic Ra-
man spectra computed from DPMD, compare to experiment, and
discuss the temperature dependence of the low-frequency and
stretch modes.

We first show in Fig. 1 the ability of our neural network model
to predict effective molecular polarizabilities from ab initio data.
The molecular polarizabilities were obtained from a set of 416 liq-
uid water atomic configurations not included in the training data.
Our neural network model predicts similar polarizabilities distri-
butions to DFT, with a better agreement for the isotropic polariz-
ability than for the off-diagonal components of the polarizability
tensor.

3.1 Comparison with Experiment
Our key results are shown in Fig. 2, which compares the DPMD
spectra to experimental data obtained from Brooker et al59 and
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Fig. 2 a) Isotropic (top) and anisotropic (bottom) Raman frequency-reduced spectra of H2O at the OH stretching frequency region. b) Isotropic
(top) and anisotropic (bottom) Raman spectra of D2O at the OD stretching frequency region. c) Low-frequency anisotropic Raman spectra of H2O
(top) and D2O (bottom). Intensities in (c) were divided by 1000 for clarity. Experimental data obtained from Brooker et al.59 (Exp.1, green lines)
and Scherer et al.60 (Exp.2, orange lines). All intensities reported in arbitrary units (a.u.).

Scherer et al60. In order to properly compare the intensities
from simulation and experiment, we set the integral of the DPMD
isotropic spectrum of water between 2700 and 4000 cm−1 equal to
the integral of the same region in the experimental spectrum. The
intensities reported for all the other spectra in Fig. 2 (except the
experimental low-frequency spectra) are relative to the units de-
fined in Fig. 2a. The experimental intensities of low-frequency
region were estimated by comparing the amplified and unam-
plified intensities of the HOH (or DOD) bending peaks reported
by Brooker et al.59. Magnification factors of 50× and 40× for
the amplified low frequency spectra relative to their unamplified
counterparts were crudely estimated for H2O and D2O, respec-
tively, but this crude estimate has an error of at least 30%, and
therefore the experimental intensities shown in Fig. 2c should be
taken with reservation. To make a direct comparison, we plot
the temperature-reduced spectra at the OH stretch region, R(ω),
and the frequency-reduced spectra, R(ω)ω, in the low-frequency
region as done in Brooker et al.59

For H2O, we successfully captured the peaks in the isotropic
and anisotropic spectra, at 3250 cm−1 and 3470 cm−1 respec-
tively. We are also able to reproduce the accurate location of the
peaks in the D2O spectrum, at ≈ 2350 cm−1 for the isotropic spec-
trum and ≈ 2530 cm−1 for the anisotropic spectrum. The quoted
wavenumbers of the peaks are defined as the positions, to the
nearest 10 cm−1, of the maxima in R(ω) in the interval 2800 to
4000 cm−1 for H2O, and 2000 to 3000 cm−1 for D2O. We also ob-
serve a shoulder at ≈ 3750 cm−1 of the H2O spectrum, blueshifted
relative to experiment, which originates form the OH stretch of
transiently broken H-bonds. The main shortcoming of our results
is the absence of a shoulder at 3400 cm−1 in the H2O spectrum,
previously assigned to the asymmetric stretch of water. With the

exception of LSC-IVR15, this shoulder was likewise absent from
the theoretical Raman spectra obtained with other methods6,13.

Another metric for comparison to experiment is the full width
at half maximum (FWHM) of the peaks in the OH and OD stretch,
which is sensitive to the choice of functional and the method of
approximate quantum dynamics. Several theoretical studies have
predicted an stretch band that is either too broad (such as spec-
tra computed using the PBE functional6,13) or too narrow (such
as the H2O spectra computed using a semiclassical approach14

and MB-pol12). We find a FWHM of 430 cm−1 (270 cm−1) for
the isotropic OH (OD) stretch, greater than the experimental
width of 418 cm−1 (236 cm−1) determined from the temperature-
reduced spectrum in Brooker et al. In the anisotropic spectrum,
we find widths of 370 cm−1 (286 cm−1) for OH (OD), compared
to 328 cm−1 (306 cm−1) from Brooker’s experiment and 296 cm−1

(225 cm−1) from Scherer et al.. Possible causes for this artifi-
cial broadness are the spurious electronic self-interaction present
in the SCAN functional, the missing quantum fluctuations in our
treatment of molecular dynamics, or a combination of both ef-
fects.

With DPMD, we are able to produce accurate results not only
in the stretch band, but across the entire spectrum. We qualita-
tively reproduce an array of features present in the anisotropic
spectra, with approximately correct intensities, over an order of
magnitude less than the stretching band. These features include
the network modes below 300 cm−1, examined in greater detail
below; the libration mode from ≈ 400 cm−1 to ≈ 800 cm−1; the
bending peaks at 1670 cm−1 and 1210 cm−1 in H2O and D2O re-
spectively; and the combination bands at 1640 cm−1 in D2O and
2250 cm−1 in H2O. The most significant discrepancy between the
DPMD-predicted and experimental data is the librational peak,
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Fig. 3 a) Isotropic Raman spectrum of H2O at the OH stretching region as a function of temperature. b) Isotropic Raman spectrum of D2O at
the OD stretching region as a function of temperature. c) Intramolecular (top) and intermolecular (bottom) contributions to the isotropic Raman
spectrum of H2O at the OH stretching region as a function of temperature. Experimental data obtained from Scherer et al.60. Temperature reported
in Kelvin units. All intensities reported in arbitrary units (a.u.).

which extends approximately 100 cm−1 higher in wavenumber
compared to experiment. This indicates that the libration poten-
tial is stiffer than in experiment, which could result from over-
bonding. Moreover, our results do not capture the significant
suppression of the libration peak in D2O compared to H2O seen
in the experimental data. Previous simulations, both those using
the harmonic approximation6 and those employing approximate
quantum dynamics12,13, have also produced an incorrect inten-
sity in this region.

3.2 Temperature Dependence of the OH/OD Stretch

A novel contribution of this paper is that, by running the
DPMD simulations at six temperatures from approximately 280
to 370 K, we can observe the temperature dependence of OH/OD
stretch. Further, we decompose the spectra into intermolecular
and intramolecular contributions, which provides insights into
the mechanisms driving the temperature dependence.

The theoretical spectra in Figs. 3a and 3b exhibit a blueshift in
the isotropic stretch bands due to weakening hydrogen bonds as
the temperature increases. Experimentally, this blueshift man-
ifests as a change in the relative intensities of the symmetric
(≈ 3200 cm−1) and asymmetric (≈ 3400 cm−1) OH stretch peaks.
The shoulder is not visible in the DPMD-computed spectra, but
we do accurately reproduce the magnitude of the blueshift. Qual-
itatively, the experimentally observed decrease in maximum in-
tensity is captured for both H2O and D2O.

While several experimental studies have proposed Gaussian
spectral decomposition of the stretch band as a mean for un-
derstanding the role of different hydrogen bond configurations,
there is no consensus on the number of components32, or even

whether the multistructure model is the correct starting point31.
Ab initio modeling offers an alternative route to decomposing the
spectrum: by splitting into the intramolecular and intermolecu-
lar contributions, we can understand how the relative intensity of
couplings between and within molecules varies as the tempera-
ture increases. This is shown for the isotropic spectrum of H2O
in Fig. 3c.

There are several features worth noting in Fig. 3c, which to-
gether are responsible for the temperature dependence of the to-
tal spectrum. First, the intermolecular spectrum exhibits a max-
imum in the range of 3190 to 3280 cm−1, followed by a mini-
mum in the range of 3450 to 3570 cm−1, both of approximately
equal magnitude. At a given temperature, both extrema tend to
redshift the frequency at which the total spectrum has a maxi-
mum. Second, as the temperature increases, both extrema are
blueshifted and reduced in intensity. The same behavior occurs
in the intramolecular spectrum, but to a lesser extent: the peak
is blueshifted from 3430 to 3520 cm−1 with a slight decrease in
intensity. Thus, we can attribute the overall blueshift in the spec-
trum not only to the separate blueshifting of the two components,
but perhaps more importantly, to the reduced role of intermolec-
ular coupling as the temperature rises. We also note that at all
temperatures, the intramolecular contribution dominates.

The extent of intermolecular coupling in the Raman spectra of
liquid water can be controlled experimentally through isotopic
substitution. Raman spectra of dilute HOD in D2O, for instance,
is able to probe the OH stretch almost uncoupled from the sur-
rounding oscillators. The temperature dependence of both exper-
iment and our DPMD simulations of HOD in D2O (Fig. 4) shows a
weaker temperature dependence of the OH stretch peak relative
to pure H2O, confirming the significance of the intermolecular
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coupling to the temperature dependence of H2O Raman spectra.
From Fig. 4 we also observe a good agreement between DPMD-
predicted and the experimental spectra, although DPMD predicts
broader peaks. The experimental spectra also contains a shoulder
at ≈ 3600 cm−1, usually attributed to the oscillation of non-H-
bonded OH groups. This shoulder is blueshifted in the DPMD-
predicted spectrum at 370 K.

3.3 Temperature Dependence of the Low Frequency Spec-
trum

Turning now to the low-frequency regime, the anisotropic spec-
trum of H2O below 300 cm−1 is shown in Fig. 5. At 300 K, we find
the nominal 60 cm−1 and 180 cm−1 peaks whose presence has
been firmly established in experiment34,61. Walrafen et al. fur-
ther observe that as the temperature increases, the 180 cm−1 peak
decreases in intensity, disappearing entirely in the gas phase. This
temperature dependence is evident, but slightly less pronounced
in the DNN-predicted spectra relative to experiment.
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Fig. 5 Low frequency region of H2O anisotropic Raman spectrum as a
function of temperature (K). Experimental spectra were multiplied by a
constant factor in order to match maximum intensities of lowest temper-
ature DPMD and experimental spectra. Experimental data taken from
Walrafen et al.34.

While the two low-frequency peaks are experimentally at-
tested, their origin is not entirely clear. Previous ab initio sim-
ulations of the IR spectrum of water and ice have assigned these
peaks to H bond network modes: bending of H bonded oxygen
atoms (≈ 70 cm−1) and stretching of H bonded oxygen atoms
(≈ 200 cm−1)62. Another school of thought assigns both peaks to
restricted translational modes, modeling the 180 cm−1 mode as
a harmonic oscillator which changes from underdamped to over-
damped as the temperature increases63.

In an AIMD study of the low-frequency D2O spectrum, Wan et
al. attribute the 60 cm−1 peak to intramolecular dipole induced-
dipole modes and the 200 cm−1 peak to intermolecular charge
fluctuations6. The DNN-predicted spectra in Fig. 6, obtained from
a more accurate functional, larger system size, and longer tra-
jectories than Wan et al, are consistent with these conclusions.
At 300 K, the nominal 60 cm−1 peak is dominated by the max-
imum in the intramolecular spectrum at 70 cm−1, with a much
weaker, redshifted contribution from the intermolecular spectrum
at 30 cm−1. In addition, while the intramolecular spectrum ex-
hibits a shoulder at 190 cm−1, a more distinct peak appears in the
intermolecular spectrum, at 200 cm−1.

The division into intramolecular and intermolecular compo-
nents also sheds some light on the temperature dependence of
the peaks. As the temperature rises, the 60 cm−1 peak in the
intramolecular spectrum is slightly redshifted, and the shoulder
at 210 cm−1redshifts and disappears. As in the OH stretch, the
intermolecular contribution is far more sensitive to temperature;
the nominal 180 cm−1 peak redshifts from 210 cm−1 at 281 K to
160 cm−1 at 363 K, dropping in intensity by a factor of 0.6. By ac-
cessing long time scales and controlling noise, DPMD enables us
to accurately model this intermolecular contribution to the spec-
trum, which is crucial in explaining the temperature dependence
at both low and high frequencies.
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Fig. 6 Intramolecular (top) and intermolecular (bottom) contributions
to the low frequency region of H2O anisotropic Raman spectrum as a
function of temperature (K).

4 Conclusion
In this paper, we have constructed a DNN representation of the
physical properties of a molecular system, focusing specifically
on the effective molecular polarizability. By doing so, we were
able to model the temperature dependence of the Raman spec-
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trum, a useful tool for examining the local structure of condensed
phase systems. Liquid water offers a particularly interesting test-
ing ground for the DNN framework, as its complex hydrogen
bond networks lead to unique vibrational signatures which have
thus far defied full theoretical explanation. The DPMD-predicted
trends in the spectra for H2O and D2O at temperatures ranging
from 280 to 360 K are in good agreement with experiment, al-
though nuclear quantum effects must be included to complete
the picture.

We emphasize, however, that while the Raman spectra pre-
sented here are for water, the DNN framework is fully generaliz-
able to other systems of interest in chemical physics. Since DPMD
greatly reduces the uncertainty due to limited statistics in AIMD,
it offers a useful starting point for assessing the systematic errors
of DFT functionals and approximate quantum corrections relative
to experiment. Although the SCAN functional describes H-bonds
and intermediate van der Waals forces significantly better than
GGA functionals, it is still affected by self-interaction errors. Go-
ing forward, a study of the effect of using different functional
approximations in the Raman spectra will be useful. Of particular
interest is the effect of functional approximations, which reduce
the self-interaction errors. It will also be worthwhile to study
how quantum corrections affect the Raman spectra. The orders-
of-magnitude efficiency gains of DPMD over AIMD should enable
various semi-classical methods and even permit the analytic con-
tinuation of imaginary time data.
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