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Abstract

JASON was asked to recommend ways in which the DOD/IC can
handle present and future sensor data in fundamentally different ways,
taking into account both the state-of-the-art, the potential for ad-
vances in areas such as data structures, the shaping of sensor data for
exploitation, as well as methodologies for data discovery. This report
examines the challenges associated with the analysis of large data and
in particular compares DOD/IC requirements to those of several data
intensive fields. JASON finds that DOD/IC data requirements are
certainly significant, but not unmanageable given the capabilities of
current and projected storage technology. The key challenge will be to
adequately empower the analyst by matching analysis needs to data
delivery modalities. The report also proposes various grand challenges
that could be used to assess and prioritize future research efforts in
data assimilation and fusion.



1 EXECUTIVE SUMMARY

This section summarizes the conclusions and recommendations of a 2008
JASON summer study commissioned by the Department of Defense (DOD)
and the Intelligence Community (IC) on the emerging challenges of data
analysis in the face of increasing capability of DOD/IC sensors. As the
amount of data captured by these sensors grows, the difficulty in storing,
analyzing, and fusing the sensor data becomes increasingly significant with
the challenge being further complicated by the growing ubiquity of these

Sensors.

JASON was asked to recommend ways in which the DOD/IC can han-
dle present and future sensor data in fundamentally different ways, taking
into account both the state-of-the-art, the potential for advances in areas
such as data structures, the shaping of sensor data for exploitation, as well
as methodologies for data discovery. In particular, a salient question is the
extent to which advances in the above areas can impact the central appli-
cation of wide area surveillance. JASON was also asked to recommend as-
sessment methodologies to both track progress and support future research;
such methodologies could include the use of performance metrics, the im-
plementation of test beds and the posing of competitions focused on grand

challenge problems.

There is a perceived notion of a “capability gap” as regards future re-
quirements for data management, with some forecasts predicting total data
requirements in excess of a Yottabyte (10?* Bytes) by 2015 if current trends
in sensor capability continue. These analyses are not credible in our view,
in that they simply posit an increasing rate of data production without un-
derstanding the associated end-user requirements. It is of value to consider
the evolution of data storage requirements arising from data-intensive work
in scientific fields such as high energy physics or astronomy. Both these com-

munities are faced with significant storage and analysis requirements, but



by matching the specific end requirements of their respective scientific goals,
data filtering strategies have been developed, which in turn lead to more
modest estimates for both storage and bandwidth. Typical data set size es-
timates for these communities will grow exponentially to a level of 100’s of
Petabytes by 2015.

Data volumes of this size are still very significant and do require special-
ized architectures and data analysis procedures. An examination of hardware
trends in storage systems reveals that, despite exponential growth in the ca-
pacity of media over the past decades, it is becoming increasingly unlikely,
absent the arrival of some disruptive technology, that this rate of growth
can be sustained for single storage units such as disk drives. Instead, the
high performance storage industry is applying distributed storage clustering
approaches with great success. It is envisaged that technologies that can
reliably store data sets of 100 Petabytes over time periods on the order of

decades will be available in the near future.

JASON finds that similar conclusions hold for DOD/IC data analysis
needs. The data requirements are certainly significant but not unmanageable
given trends in storage technology. The key challenge is to empower the
analyst by ensuring that results requiring rapid response are made available
as quickly as possible while also insuring that more long term activities such

as forensic analysis are adequately supported.

Requirements for the handling of data (particularly wide area surveil-
lance data) will differ depending on timeliness requirements. Where time
permits detailed retrospective analysis, JASON recommends the use of ho-
mogeneous data architectures, “cloud computing” (the provisioning of ser-
vices from a generic cloud of servers) and the use of streaming data analysis
algorithms that do not tie the data to particular data base schema or to a
specific set of queries. Such approaches are currently in wide use by informa-
tion providers such as Google and others. On more intermediate time scales,

a service oriented architecture is appropriate and such applications are being



deployed by the DOD/IC. When rapid response is required, a push-based
or event-driven architecture is most appropriate. For DOD/IC applications,
the most critical metadata is accurate space and time registration. Com-
bined with more accurate georegistration capabilities, this will more easily

facilitate the analysis of correlated activity in locations of interest.

As the greatest challenge will come from the need to automate analy-
sis, the most immediate need is for algorithmic advances that can help cue
the analyst and trigger closer observation as well as possible fusing of other
relevant data. The notion of fully automated analysis is today at best a dis-
tant reality, and for this reason, it is critical to invest in research to promote
algorithmic advances; one way to effectively engage the relevant research
communities is through the use of grand challenges in the area of data anal-
ysis. The key requirements for such grand challenges are that they focus on
a difficult but ultimately achievable goal, be science-driven, and that success
in such endeavors will leave a clear legacy in the target area. Several such

challenges are suggested in the full report.

Our findings as regards data analysis challenges for the DOD/IC are as

follows:

e DOD/IC data volumes as generated via various sensing modalities are,
and will continue to be, significant, but they are in many ways compa-

rable to those faced by other large enterprises.

e Important parallels can be drawn with data intensive science efforts

such as high energy physics and astronomy.

e End user analysis requirements must drive the design of all aspects
of the data enterprise including storage, database design and analysis

tools.

e At present there is insufficient investment in software to more effectively

process data as opposed to hardware to both collect and store data.



e Data organization and processing approaches such as cloud computing
would appear to be best suited at present to facilitate future data fusion

and discovery.

e Continued investment in technologies such as service-oriented archi-
tecture coupled with additional investment in event-driven architec-
ture and software will be of benefit in enabling data fusion across the
DOD/IC enterprise.

e Significant gains in data fusion can be realized in the short term through

accurate spatial georegistration and time registration of sensor data.

e Processing closer to the sensor can yield important benefits provided

there is a clear formulation of critical time sensitive data requirements.

e The greatest challenge will come from the need to perform automated

analysis in support of the DOD/IC analyst.

e Grand challenges to stimulate further research in automated analysis

can be used to assess and prioritize future research activities.

Given these findings, JASON recommends as follows:

e The DOD/IC communities should formulate a data analysis doctrine
that

— Continually assesses data requirements by matching analysis ob-
jectives to the data stream,
— Focuses on homogeneous storage solutions with open interfaces,

— Focuses on flexible analytic techniques that do not tie data to the
query,

— Focuses as strongly on software development as it does on sensor,

storage, and network development, and



— Differentiates between time sensitive analyses and retrospective

analyses and applies the appropriate paradigm in each case.

e The DOD/IC communities should put into place efforts to validate the

doctrine via several use cases.

e Continued investment should take place in interdisciplinary research in

data analytics, machine learning and optimization.

e Invest in several grand challenges to assess and improve the state of

the art in automated data analysis.






2 INTRODUCTION

This report describes the conclusions of a 2008 JASON study on data anal-
ysis challenges commissioned by the Department of Defense (DOD) and the
Intelligence Community (IC). The focus of the study was on the emerging
challenges of data analysis in the face of increasing capability of DOD/IC
battle-space sensors. As the amount of data captured by these sensors grows,
the difficulty in storing, analyzing, and fusing the sensor data becomes in-
creasingly significant with the challenge being further complicated by the
growing ubiquity of these sensors. For example, the DOD has developed and
deployed a high resolution surveillance system called Constant Hawk. This
system has the capability to capture synoptic data over a defined area. Cur-
rent systems are capable of producing 10’s to 100’s of Terabytes [7] over a

period of hours.

The difficulty faced in dealing with data at the volume generated by the
Constant Hawk sensor is now typical of an emerging challenge. DOD mis-
sions now routinely exploit many high resolution sensors simultaneously (for
example a swarm of UAV’s) and must integrate multi-modal data. For some
scenarios, short reaction times are critical, and so the relevant information
must be delivered to analysts for decisions on short time scales. There is also
a requirement that the information from the sensors be made available to a

diverse community of users via a network.

JASON was asked to investigate and recommend ways in which the
DOD and IC can handle this increasing volume of data in fundamentally

different ways. We quote below the charge to JASON:

e Research the following areas of interest as far as evaluating which of
these areas have the most promise of changing the way in which large

data sets are handled:



Data architectures Both the size of the data to be transferred and
the growing size of databases require novel architectural approaches
to providing the adaptability and usability (automation and per-
formance impact of human in the loop). Current databases, file
systems, and network protocols will not keep pace. Which re-
search areas and approaches have the most promise to impact
DOD specific data challenges? Candidate research areas include
reconfigurable scalable and dynamic systems; re-indexing, associ-
ation and ontological representation for distributed and stream-
ing data; many core file and operating systems, management and
scheduling, and optimized algorithms; operationally relevant met-
rics and figures of merit for architectural performance, security

and vulnerability.

Shaping sensor data for exploitation When tracing the process-
ing chain from multi-source sensor inputs to the user/analysts, the
techniques that are known and used become fewer and less mature.
This simple process chain view goes from (1) metadata tagging to
(2) preprocessing to (3) multi-source common data representa-
tion to (4) triage/identify high priority subsets for analysis and
action. Candidate research areas include pattern analysis, data
classification for importance and prioritization, criticality assess-
ment, change detection, uncertainty management and reduction,
high level structures, data search and retrieval, feature extraction,
automatic translation, and automated or assisted pattern recog-
nition.

Data discovery for exploitation In order to better discover and ex-
ploit the growing amount of sensor data, the following areas of re-
search are considered: Object recognition in scenes and streams,
discovery and exploitation at the edge, structuring knowledge for
discovery, improving analytic throughput, aiding ISR functions,
layered analysis and interpretation, effects prediction for decision

support and cross domain access for effective ISR.



e Examine relevant DOD problem domains such as Wide Area Surveil-

lance and Biometrics where recommended research areas can have an

impact:

1.
2.

What is the basis of making a decision or taking an action?
How and why does this data make a difference?

Is this a data feature that can be detected and processed (e.g.
extracted) from the large data set? Do I know how, when and

where to look for it within the large data?

Is it possible to process the data to support the decision, action

or analysis?

Can it be done fast enough?

e Recommend assessment methodologies that will support the advance-

ment of research to support solution development. Recommended areas

to review include:

1.

What are the value metrics and/or performance metrics that can
be standardized and used to compare research options and solution

potential?

What is the utility of standardized test data sets? Any specific

recommendations?

Any recommendations on the use of testbeds and experimenta-

tion?

Recommend topics for a prize program to support data analysis

or data exploitation

The study began with briefings from researchers from the DOD and

DOE labs during the period June 23-27 who have been active in this area.

We thank the briefers for their excellent presentations and in particular wish

to acknowledge the work of David Jakubek who coordinated the briefings.

JASON also extended invitations to several academics so as to get their



perspective as several research activities in areas such as high energy physics,
astrophysics and climate modeling are now also facing this large data problem
as their sensors become more capable. We also solicited the opinions of the
computer science community as large data problems arise in many more

quotidian settings such as search, data mining and other areas.

This report describes the summer study and the approach taken to
respond to the DOD/IC charge. In Section 3 we discuss the nature of the
large data challenge for DOD with an eye towards understanding the proper
context for the problem. An important point of reference in this regard is
related work in large data analysis being undertaken by several large science
projects in the areas of high energy physics and astronomy. We argue in this
Section that there is a fair amount of commonality between the large data
analysis challenges faced by these communities and the DOD/IC and that

future research efforts should take advantage of this commonality.

In Section 4 we examine the status of storage technologies for large data
sets. The exponential rate of growth in storage capacity on single storage
units has slowed in recent years indicating that, absent the advent of dis-
ruptive storage technologies, a distributed approach to storage is required

similar in nature to what has happened for high performance computation.

In Section 5 we discuss how large data can be handled in different ways.
We focus here on “schema neutral” approaches such as those utilized by infor-
mation providers such as Google and Yahoo! which process data sets on the
order of Petabytes routinely. These approaches make use of generic storage
strategies, and significant use of redundancy. We argue that efficiencies can
also be realized through the adoption of network based service oriented archi-
tecture for moderate to long time scale data interrogation problems requiring
data source fusion while problems requiring rapid response will benefit from

an event driven approach.

10



In Section 6 we examine several ideas for processing data closer to the
sensor. It is not possible to stream down all sensor data from modern plat-
forms and so some sort of on-board processing will be called for to send down
limited subsets of data of interest. Such approaches include direct analysis
of video streams and take advantage of new high performance commodity

Processors.

In Section 7 we examine the use of grand challenges as a mechanism
for motivating research in areas associated with large data analysis that are
relevant to the DOD/IC missions. We propose several ideas for problems
that, if solved, can contribute technology that address the analysis needs most
critical to DOD. Such problems could be posed as challenges to the research
community with a prize offered for successful solution. This is similar in
spirit to what has been done in the past with autonomous vehicles under
the DARPA program. Finally, in Section 8 we summarize our findings and

conclude with several recommendations.
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3 DATA ANALYSIS CHALLENGES

In this section, we review the overall challenges facing the DOD as regards
large data, but with the objective of putting these in the context of similar
challenges facing other large enterprises. The difficulties facing the DOD
are summarized in Figure 3-1 [12]. As can be seen in the Figure there is a
notion of an emerging “capability gap”. As the sensors associated with the
various surveillance missions improve, the data volumes are increasing with a
projection that sensor data volume could potentially increase to the level of
Yottabytes (10?* Bytes) by 2015. At present, surveillance platforms such as
the more recent Global Hawk system are capable of producing 10’s to 100’s
of Terabytes [7] over a period of hours. In contrast, the Figure also shows
that the capability of the DOD Global Information Grid (GIG) to transport
or store this data is not keeping pace with projected growth. The concern is
that much of the sensor data will not be processed. Indeed, the complaint
has often been voiced in both the DOD and IC communities that even today
“70 % of the data we collect is falling on the floor.” ! For reference, we
provide a chart below that provides the prefix for the various powers of ten

used to describe large data:

‘ Power ‘ Prefix ‘

10° | Giga
10'? | Tera
10'® | Peta
10'® | Exa
10%' | Zetta
10%* | Yotta

There are several difficulties with the projection in Figure 3-1. First,
the projection simply posits the existence of future sensors (shown as Sensor
X, Sensor Y, etc.) with ever increasing data outputs but with no clear con-

nection as to the emerging technologies that will generate such outputs. To

LQuote attributed to Pete Rustan (DDR&E) at a MIT Lincoln Laboratory Senior Joint
Advisory Council Review
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Figure 3-1: Projection of future data volumes for DOD sensor systems [12]

be sure, future sensor capabilities are improving and some discussion of near
term capabilities is provided in Section 6, but absent the details, it is hard
to know if such projections are valid. A more serious concern is the fact that
the capabilities of various sensors are added one on top of another to create
the ultimate projection of a Yottabyte of data by 2015. However, the graph
is already in semilog form, meaning that adding capabilities on a log plot is
equivalent to multiplying these capabilities together on a standard Cartesian
plot. This means the projected growth is “super exponential”. As we will
see below, such growth is highly atypical if one compares the projections of
Figure 3-1 to other data intensive enterprises. Finally, a plot of increasing
data output has only limited utility as it assumes that all of the data is rele-
vant to a given mission. In reality, data volume requirements will depend on

the nature of the objectives.

To give some appreciation of the relative size of the data sets being
considered in the extrapolation made in the capability gap diagram, it is

instructive to understand the scale of a Yottabyte data set.? The earth has

2We are grateful to the JASON peer reviewer for this analogy and we quote from his

14



a surface area of 5.1 x 10'* m?. If one images the entire surface of the earth
(land, oceans, etc.) allocating one byte per square meter, that amounts to
0.5 Petabytes. If one were to image the entire surface of the earth with 1 m?
resolution every second, after an hour one would accumulate 1.8 Exabytes. If
one were to accumulate that data continuously for a month, one would have
1.3 Zettabytes. If one were to accumulate that data continuously for a year,
one would have 16 Zettabytes. Finally, if one were to save an image of the
earth at 1 m? resolution every second for 100 years, you would accumulate
1.6 Yottabytes.

The discussion above is not meant to imply that there is no challenge in
handling and fusing the data that is currently routinely produced via surveil-
lance. Indeed, DOD and IC data volumes are in many cases comparable to
those encountered in other data intensive activities, particularly in data in-
tensive science. It is instructive to examine two of these: high energy physics
and the emerging field of synoptic astronomy as they represent use cases
in which the response to large data volumes is connected to the ultimate

scientific goals of the respective investigations.

3.1 The Case of High Energy Physics

The field of high energy physics is a key example of data intensive sci-
ence. At a pedestrian level, a central goal here is to analyze the results of
the collisions of high energy particles as a way of probing the fundamental
forces of nature. As the accelerators used to explore high energy phenomena
have increased in energy, these collisions result in an ever increasing pro-
fusion of collision products. At high energies, the problem is often akin to
“finding a needle in a haystack” as the important events are hidden in a large

background of other less physically interesting occurrences.

review of our report.
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Figure 3-2: Data set sizes for high energy physics experiments plotted as a
function of time. The small diamonds indicate the size of the experimental
data sets. From about 1980 to the present the data growth is reasonably fit
by an exponential which is also plotted as a guide to the eye. It is estimated
that by 2015, the data set size will grow to be hundreds of Petabytes (~ 107
bytes) [5].

As a result of the need to explore a large range of events, the data capa-
bilites and requirements for various high energy experiments have increased
rapidly over time [5]. The number of bytes generated in typical experiments
is plotted as a function of time in Figure 3-2. As can be seen in the Fig-
ure, the growth is roughly exponential (not super exponential as indicated in
Figure 3-1). If the projection is valid, the data requirements will be roughly
100’s of Petabytes by 2015. It is anticipated that the storage capacity for

such data sets will be readily available as will be further discussed below.

A key driver for this data increase is the Large Hadron Collider (LHC)
which is now beginning to come on line at CERN in Geneva. The LHC
utilizes an underground 27 km ring that was originally designed for electron-

positron collisions to contain two opposing beams of protons that will be
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Figure 3-3: A diagram of the LHC [23]

made to collide with a beam energy of 7 TeV. A diagram showing the con-

figuration of the LHC is provided in Figure 3-3.

The proton beams are actually bunches of protons with 2835 bunches of
10* protons per beam. The bunch crossing rate when the protons collide is
roughly 40 MHz and the collision rate is 10° Hz. The beams can be switched
to various detectors as shown in Figure 3-3. The ATLAS and CMS detectors
will be used to examine the results of the proton-proton collisions as part of

the search for important new particles such as the Higgs boson [23].

A drawing of the ATLAS detector is shown in Figure 3-4. It is an
enormous detector 46 meters long and 12 meters wide with a weight of 7000
tons. The 108 data channels available for recording data require on the order
of 3000km of cables. It can be thought of as a very large sensor with the

capacity to generate enormous quantities of data [21].

However, it is important to note that most of the events generated by the

proton collisions will not be of interest. In fact, of the totality of the collisions,

17



Figure 3-4: The Atlas detector [23]

the rate of events which are thought to possibly exhibit “new physics” is
roughly 107 Hz and corresponds to an event selection rate of about 1 in
10" [23]. In order to manage the potential data glut, much of it consisting
of uninteresting events, the CMS and ATLAS detectors are set up to ignore
the vast majority of events and to trigger only on those that are deemed
interesting. The criteria for event tracking and recording are essentially built
in to the experiment from the start. This represents therefore one extreme
of the data analysis problem. Although an enormous amount of data can
be generated, much of it is filtered allowing one to concentrate on events
of interest. Of course one can argue that by doing this, some interesting
events may be missed, but this is a compromise that is necessary in order to
focus on a specific effect. In any case, this is an example where almost all of
the data “falls on the floor”, but because the data output are well matched
to the expectation and interest of the relevant analysts, the approach has

traditionally been successful.

Despite the filtering, the data requirements are still significant. Overall,

even the filtered data will initially grow at the rate of tens of Petabytes per

18



year in the 2008 time frame and is expected to ultimately comprise thousands

of Petabytes in less than 10 years according to initial estimates [3, 5].

Another important component of the LHC approach to their large data
problem is the distributed nature of the collaboration. While the LHC is lo-
cated at CERN, the LHC collaboration is international consisting of roughly
2500 physicists from 40 countries. Those events that are archived are then
made available via an online store at CERN called “Tier 0”. Tier 0 holds
the raw data and also does processing to provide calibration data for further
studies. Only a small subset of the collaboration has access to the full set of
calibrations and reconstructions and access to the raw data is highly limited.
A 10-40 Gbit per second network connects this central Tier 0 store to 10
Tier 1 sites around the world with the responsibility of reprocessing the full
data with improved calibrations within two months of data taking. These
analyses are then fed to a set of 30 Tier 2 sites also distributed around the
world with the responsibility of production of simulated events. These Tier
2 sites are effectively the “physics caches”. Finally, these analyses are made
available to a larger set of Tier 3 sites which can perform interactive analyses
on the simulated event data. This approach has the benefit of distributing
responsibility in such a way that CERN’s role is to generate the raw data
along with the additional calibration needed to interpret it while the broad
international community accesses and analyzes this data through its own hi-
erarchical network. The main point is that the data storage and deployment
is driven by the requirements of the experimenters and theoretical analysts.

The overall approach is described graphically in Figures 3-5 and 3-6,

3.2 The Case of Synoptic Astronomy

The need for managing and fusing large sets of data also holds for the
field of astronomy. Over time telescopes have become larger and, with the

advent of multi-gigapixel cameras (in line with similar improvements in DOD
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Figure 3-5: The LHC computing model uses a hierarchical networked
approach to distribute data to collaborators based on their role in the
project [5].

sensors), the field of astronomy must cope with the need to handle trillions of
observations comprising collections of 50 or more Petabytes of data. The new
paradigm is “synoptic” or “time-domain” astronomy, which involves constant
refinement of the observations along with the ability to detect important
time-dependent events such as supernovae or asteroids on a possible collision
course with earth. This challenge has developed over time. The previous
state of the art has been static surveys of the sky such as the Sloan Digital
Sky Survey. However, in the near future projects such as the Large Synoptic
Space telescope and the Pan-STARRS telescopes will image more of the sky
more frequently. Here, one also looks for rare events as well as regular changes
over time but, in contrast with the approach used by the LHC, all the data
are archived. Given the size of the data sets and the rate with which they

are generated, automated analysis is a key requirement.

As an example of the data sizes and rates we consider the Pan-STARRS

telescopes which are now under construction on Haleakala in Hawaii. The
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Figure 3-6: Functional decomposition of the tiered LHC computing
model [23].

Pan-STARRS array (shown in Figure 3-7) will comprise four copies of the
Pan-STARRS 1 prototype which utilizes one 1.4GPixel camera. It will pro-
vide 5 color imagery of 3/4 of the sky and is capable of making 12 visits to
this part of the sky in 3 years. Pan-STARRS 1 by itself generates 2 Terabytes
of data per night and a total of 800 TB per year. The complete system of
telescopes is effectively a 4 by 1.4 Gpixel camera. The full array will pro-
vide 5 color imagery of 3/4 of the sky but will be able to generate 30 visits
per year and generates 10 TB per night and about 4 PB in aggregate per
year [25, 19].

The collection capability represents a significant shift in astronomy. It
will be possible for example to constantly refine sections of the sky and update
the collections as a result of the frequency of observation. In addition, the
data can be used for change detection so as to identify fast “movers” such as

asteroids. or other transients such as supernovae.
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Figure 3-7: An illustration of the Pan-STARRS array [25].

In order to process the data, the Pan-STARRS project is developing
an image processing pipeline utilizing essentially commodity storage solu-
tions but which is well-matched to the needs of the astronomy “analyst”
community. The data are served by a set of 80 “fat data bricks” (shown in
Figure 3-8). Each brick will have 2 multicore processors with 16 GB of mem-
ory and 20 TB of disk using RAID 6 disk management. The entire system
will serve 3 Petabytes for roughly $1M [25].

The Pan-STARRS data volume is certainly large but is very manageable
given the capabilities of even commodity storage systems. For comparison,
the Sloan Digital Sky Survey (SDSS) comprises 10 TB of images, and has
2-4 Terabyte catalogs of roughly 3 x 10® objects. Pan-STARRS will collect
five colors and about 100 epochs for each pixel for a total of 10 Petabytes.
This is comparable to Google Earth or Google Sky and about 100 times the
size of the SDSS. By comparison, human capacity is more modest. All movie
DVDs released to date comprise about a PetaByte and the text for all books
ever published is “only” 30TB.
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Figure 3-8: A storage element of the Pan-STARRS data pipeline. The storage
uses only commodity components [25].

As we will discuss further in Section 4, the main issues in managing
this volume of data are not rooted in hardware but in software. As we will
show, there exist sound software approaches for collecting and curating the
data making it possible to use commodity hardware to achieve the project

requirements.

3.3 Data Requirements for Science and Industry

In light of the examples provided above for high energy physics and
astronomy, it is also of interest to survey present day data requirements and
data growth for a wider set of science experiments as well as the needs of those
industries for which large data is a key aspect of their operations. Shown in
Figure 3-9 are the rough data set sizes as a function of time for the BaBar high
energy physics collaboration, the LHC discussed above, the data collections

for NASA projects and the Large Synoptic Space Telescope (LSST). It can be
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Figure 3-9: A plot of data growth (in Petabytes) for several data intensive
science activates as a function of time. Shown also for comparison are data
storage requirements for several corporations. Note that the rate of growth
for the science projects is roughly exponential [3]

seen that data requirements for these efforts also rise roughly exponentially
with time and would also seem to predict data volumes of roughly hundreds
of Petabytes by 2020 [3].

The data requirements for industry are harder to gauge but there are
several illustrative examples. Corporations such as AT&T, Walmart, EBay,
Facebook and a few others serve on the order of tens of Petabytes. The data
capabilities for truly data intensive businesses such as Yahoo!, Google, etc.

are not publicly available but are estimated to be hundreds of Petabytes [3]

At least for these data intensive enterprises, there would not appear to
be a case for serving Yottabytes of data at least on a 10 year horizon. The

increase of data in other areas that utilize modern senor technologies such as
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high energy physics and astronomy would seem to imply an exponential rise
in requirements. This is not to minimize the need for state of the art storage
technologies and it is of interest to understand if there are any hardware
challenges to storing and manipulating this amount of data. We discuss this
in the next section where we look at the development of modern storage
systems and some of the issues that have arisen in light of the pervasiveness

of data intensive applications.
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4 STORAGE TECHNOLOGY

In this section we examine some of the trends in storage technologies that are
relevant to the data challenges described in the previous chapter. We begin
with a discussion of high performance 1/O systems to uncover some of the
technological challenges. We then indicate some of the possible solutions to
these challenges. Interestingly, the trends show that there will be increased
dependence on replication of data as well as increasing use of software to im-
prove fault tolerance. Despite an anticipated increase in complexity, there is
every indication that storage systems can keep up with the expected increase

in data.

4.1 High Performance I/O Systems

The largest computers are used for scientific computation: large-scale
simulation, climate modeling, weather prediction, petroleum, seismic, phar-
macology, astrophysics. An example of a typical large installation is the Pur-
ple system at Lawrence Livermore National Lab (LLNL). The Purple system
is a 1536 node parallel supercomputer capable of delivering 100 TFlops of
computational capability. To support this level of computation, it provides a
2 Petabyte file system with a single mount point based on IBM’s Global Par-
allel File System (GPFS). The particular file system configuration consists of
500 RAID controllers addressing 11,000 disk drives. The system can provide
up to 126 GByte/sec to a single file and slightly more (134 GByte/sec) to
multiple files. While this system will be exceeded in capability by future

platforms, it is roughly representative of the state of the art.
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The data analysis issues faced by the DOD differ from high performance
computation in that most of the data comes from sensors, not data generated
by a large scale computation. In that sense, it is a mismatch for some of the
issues that are normally addressed in high performance file systems. There
are be exceptions to this, such as large scale graphs created for applications

such as network analysis.

High performance file system architectures are keeping pace with ad-
vances in storage technology and the requirements that are presented with
each new generation of high performance computer system. The current
generation file systems manage data on the order of 10'® bytes and the next
generation systems will manage data on the order of 10'® bytes. These same
file systems have I/O bandwidth on the order of 10" bytes/second, and this
is governed largely by the degree of parallelism available and the capacity of

the interconnection network.

There are challenges that remain to be addressed. These include dealing
with the complexity in the name-space that is introduced by the enormous ca-
pacity of these high performance file systems, and managing the vast archives
of data that are produced by both simulation and data collection systems.
Old paradigms for locating data based on a simple file path name break down
when the number of files exceeds 10° as they now frequently do. Users have
expressed the desire to locate data based on other properties of the data
beyond its file name, including but not limited to its contents, its type and
other semantic properties. Such a location service will require new indexing
techniques that are currently subjects of academic research. We will discuss

some of the approaches to these issues in Section 5.

The archival problem is significant, since there is an increasing desire
to maintain copies of important data, but the creation rate of data will
always exceed our ability to store it indefinitely. The Enterprise Storage
Group estimates that by 2010 that the total digital archive capacity will be
25 x 10%! bytes. These trends are shown in Figure 4-1. The majority of this
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Figure 4-1: Estimate of the evolution of total digital archive capacity by
media type

will be magnetic tape with the remainder being magnetic disk and only a
negligible amount in optical storage. Magnetic disk is still too expensive to
replace tape. There is research into making magnetic disk better suited for
archives, including using less expensive consumer grade disks that are mostly

turned off in order to manage the power budget.

The current generation of magnetic disks are 1.5Terabyte (Seagate 2008)
and magnetic tapes are 1Terabyte/cartridge (IBM 2008) with a transfer rate
of 160 GByte/second. There are significant differences in these technologies
both in terms of cost and in performance. The cost of a reader for magnetic
tape (currently ~ $39, 000 for the 1TB IBM system), is amortized over many
tapes while each disk has its own reader and provides better performance
(disks and tapes have comparable transfer rates, but since since disk has its
own reader many disks can be used in parallel). Disks also have the advantage

of providing random access, which is essential for many applications.

The result is that storage hierarchies remain important for performance

and economic reasons. Since disk is faster, the upper level of the hierarchy
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will be disk (there many be several levels of disk: fast enterprise class disks,
and slower personal storage grade disks) and the lower level will be tape.
Optical storage’s low density and low bandwidth mean that it is not a serious
contender (at least currently). Magnetic storage remains the highest density

and highest performance for mass storage.

There are two performance metrics that are important to keep in mind:
latency and bandwidth. Transferring large amounts of data is a bandwidth
issue, and this is addressed through increased parallelism in both the 1/0
system and the interconnection network. The second issue is latency, and this
is mainly an issue when performing many small operations, usually metadata
look-ups. In many systems, the work of the file system is dominated by
metadata operations. As with bandwidth, parallelism is the usual solution
to latency issues, as well as heavy use of caching and clever data structures.
Accessing the disk is approximately six orders of magnitude slower than main

memory, so every effort is made to avoid disk accessed when possible.

Most parallel file systems strive to provide a familiar programming in-
terface, and usually this interface is based on the POSIX specification. Ad-
ditional layers such as MPI/IO are then added as middle-ware. Compliance
with POSIX semantics puts constraints on the implementation of the file
system, and if they are relaxed then significant performance gains can be

realized.

4.2 Parallel File Systems

There are several efforts at building file systems for high performance
computing. These include GPFS [22], Ceph [27], Lustre [4], and products
such as Panasas [28]. In addition, there are numerous research efforts that
are concerned with various issues related to high performance file system

problems. The research can be found in a number of Computer Science re-
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search conferences including: Symposium on File and Storage Technologies
(FAST), SC (previously known as Supercomputing), Symposium on Operat-

ing Systems Design and Implementation (OSDI) to name just a few.

It is instructive to look at two extremes of the high performance file sys-
tem design space. The first is GPFS, which operates as a clustered file system
using a shared disk paradigm. The second is Ceph which, like Panasas, is
a parallel file system that operates in the context of intelligent object stor-
age devices (OSD) but is unique in completely avoiding traditional metadata

approaches in favor of using pseudo-random data placement.

GPFS [22] was designed by IBM as a commercial parallel shared-disk file
system that operates on the largest cluster computers in the world. GPFS
attempts to the greatest extent possible to provide the same POSIX file
system semantics as if it were running on a single computer instead of a clus-
ter computer. It is the evolution of an effort known as Tiger Shark that was
originally designed for streaming video servers. GPFS brings together a large
number of ideas that were developed by the academic research community,
in particular techniques for high performance locking and recovery. GPFS
takes as its basic abstraction a distributed shared-disk architecture where all

nodes in the cluster have uniform access to all the disks in the system.

An instance of the GPFS file system runs on a cluster of nodes. These
nodes can also be used to run applications and may or may not have disks.
Since GPFS provides a virtual disk abstraction, even nodes that lack disks
access a disk interface presented by other nodes in the GPFS cluster. GPFS
provides load balancing among the disks and over the interconnection net-
work in an effort to provide the full throughput of the disk subsystem. The
preferred configuration for GPFS is to use a switching fabric that directly
connects file system nodes to disks: a storage area network (SAN), such as
Infiniband, fibre channel or iSCSI. GPFS assumes a conventional block 1/0

interface with no intelligence at the disks.
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Figure 4-2: Ceph petascale file system architecture [27].

Ceph [27] is based on the assumption that systems at the petabyte
scale are inherently dynamic: large systems are inevitably built incremen-
tally, node failures are the norm rather than the exception, and the quality
and character of workloads are constantly shifting over time. Ceph decou-
ples data and metadata operations by eliminating file allocation tables and
replacing them with generating functions. This allows Ceph to leverage the
intelligence present in OSDs to distribute the complexity surrounding data
access, update serialization, replication and reliability, failure detection, and
recovery. Ceph utilizes a highly adaptive distributed metadata cluster archi-
tecture that dramatically improves the scalability of metadata access, and

with it, the scalability of the entire system.

The Ceph file system has three main components: the client, each in-
stance of which exposes a near-POSIX file system interface to a host or
process; a cluster of OSDs, which collectively stores all data and metadata;
and a metadata server cluster, which manages the name-space (file names
and directories) while coordinating security, consistency and coherence (see
Figure 4-2).

32



4.3 Technology Trends

It is of interest to examine recent trends in disk storage technology
as they imply certain constraints for the engineering of storage systems of
the future. As is well known, the exponential rise in computing speed for
single processors has slowed over the original “Moore’s law” estimate which
posits that the number of transistors on a single chip roughly doubles every
18 months. This has in the past translated into a doubling of computing
speed over the same time frame. However, due to difficulties in managing
memory hierarchies as well as other issues, the rate of growth in computation
speed has slowed. This is shown in Figure 4-3 which shows the evolution of
the “specint” benchmark for commodity processors. The specint benchmark
illustrates performance for integer intensive operations which are typical of
image and other types of discrete analyses. As can be seen from the Figure,
processing speeds have followed an exponential trend from 1985 to roughly
2003. After 2003, a “knee” develops in this curve indicating a slower rate
of growth. Interestingly, a similar “knee” has been observed for disk storage

systems.

Magnetic storage continues to hold the advantage in terms of density
and cost, and this will continue to hold true for at least several years into the
future. Eventually magnetic storage will reach fundamental physical limits,
but in the past the technology has managed to side-step some of these limits
by adopting new techniques. In Figure 4-4, the evolution of disk areal density
is shown from 2000 through 2010. Areal density is the measure of the density
of bits that can be recorded. Interestingly, until 2002 a rough doubling was
seen. But after 2002 and through 2010 it is seen and anticipated that areal
density for a single device will only grow at a rate of 35% to 45% per year.
It was long believed that the limit on density would soon be achieved due
to the super-paramagnetic limit on longitudinal recording. Magnetic disks

have, for now, avoided this issue by moving to orthogonal recording. Similar
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Figure 4-3: The specint benchmark over time for commodity processors

limits exist for orthogonal recording techniques, and so other approaches are
being considered including heat assisted recording (a laser is used to heat a
local area to increase the magnetic susceptibility), and the use of patterned
media to create well-defined magnetic domains. The areal density in 2007 was
172 Gbyte/in? and is projected to grow to 472 Gbyte/in? 2010. The growth
rate in areal density has varied over the years: it was 62% in 1990-1998, an
astounding 123% from 1998-2002, and fallen to 43% since 2002.

The other performance parameters of magnetic disks exhibit modest
annual growth rates. Since magnetic disks are mechanical devices with com-
plex control systems, physical limits related to power and manufacturing
tolerances limit the potential for improvement. The access time (related to
both seek time and rotational speed) has decreased by about 6% annually
since 1990 from 12ms to 3.94ms today and is expected to reach 3.48ms in
2010. The seek time decreased by 7% annually from 1990 and by 4% since
1999 from 13ms to 3.52ms today and is expected to reach 3.19ms in 2010.

This is summarized in Figure 4-5.
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Figure 4-4: Areal density as a function of time for single disk drive sys-
tems [13].

Figure 4-5: Disk drive latency as a function of time [13].
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Figure 4-6: Data rate for disk drives as a function of time [13].

The sustained transfer rate grows roughly as the product of the rota-
tional speed and the square root of the areal density (it comes from the track
density, which is governed by the control system, and the linear bit density).
Historical transfer rates are shown in Figure 4-6. A typical sustained trans-
fer rate was 20MB/second in 1998, and is currently about 110MB/second.

Again, it is clear that this is growing more slowly than prior to 2002.

Even though magnetic storage will remain the most economical storage
technology in the near future, there are changes coming. Advances in flash
memory mean that it is increasingly being used as an upper-level of the
storage hierarchy. It has a much lower read latency than magnetic disk, but
it is more expensive and has a lower density. As a result, some vendors are
using flash memory in front of disk arrays as a way to improve performance,

particularly for file system metadata operations.

There are other storage technologies on the horizon. There are typically
grouped together under the name Storage Class Memories and include Phase
Change or Ovonic memories, and Ferro-Electric RAM . Samsung has recently

created a sample of a 512Mb device based on phase-change memory. Phase-
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change memory uses the unique behavior of chalcogenide glass, which has
different resistivity in its crystalline and amorphous states. These states can
be changed by varying the heating and cooling profile of the memory cell.
The difference in resistivity is several orders of magnitude, and so recent
research has focused on establishing several levels and using this to store

multiple bits per cell.

Resistive random-access memory (RRAM) is being developed by a num-
ber of companies. Different forms of RRAM have been disclosed, based on
different dielectric materials, spanning from perovskites to transition metal
oxides to chalcogenides. The basic idea is that a dielectric, which is normally
insulating, can be made to conduct after application of a sufficiently high
voltage. The conduction path may be reset by the application of a suit-
able voltage. Hewlett-Packard announced in April 2008 the development of
a memristor, a previously unrealized circuit element that is another possi-
ble demonstration of RRAM, and subsequently announced they would begin
prototyping RRAM using their memristors. There are also more speculative
technologies such as carbon nanotubes that hold promise but have proven ex-
tremely difficult to take from laboratory demonstrations to a manufacturable

product.

It had been hoped that MRAM or magnetoresistive random access
memory, which uses the magneto-resistive effect on small magnetic domains,
would provide a fast and dense non-volatile memory technology, but it now
appears that it is reaching fundamental limits of cell size that are larger than
existing flash cells. It seems destined to remain a niche technology, mainly

of interest because it is radiation-hard.

Flash memory is by far the most popular non-volatile solid state mem-
ory technology, but it suffers from many limitations that make it poorly
suited for large-scale data storage. Flash memory is limited by the duration
of the erase/write cycle (which takes a very long time) and by its durabil-

ity due to the limited number of erase/write cycles (on the order of 10°).

37



Most commercially available flash products are guaranteed to withstand 10°
erase/write cycles for block 0 but provide no guarantees for the other blocks.
Recent research may extend the number of write cycles using ferroelectric
NAND flash (the inventors claim 10® erase/write cycles). As a result of the
limited number of erase/write cycles, wear leveling is required. This involves
heuristic algorithms that attempt to place data that is unlikely to be written
on blocks of the flash memory that are more worn (endured more erase/write
cycles) while placing data that is actively being written on less work blocks.
There is some degradation due to reads as well since a small amount of charge
is lost each time, but the number of read cycles before an error occurs is large

and the reports are anecdotal.

The density of flash also appears to be approaching a fundamental limit,
since the number of electrons stored in the gate is already small (some en-
gineers joke that there are so few electrons that they have names). Multiple
bits per cell are stored by having different levels of charge stored, but this

decreases the reliability of the memory.

Another interesting technology is holographic storage. The idea here is
to encode data in the form of holograms in several layers of a photosensitive
storage medium and to then read these back at high data rate using CMOS
detector technology. InPhase technologies [24] has developed a “write once
read many” (WORM) holographic disk storage system which shows promise
for archival data although at present data densities and transfer rates are
comparable to magnetic storage approaches. There have been further tech-
nology demonstrations by InPhase that achieve significantly higher density
with promising results and so over time it may be possible to achieve stor-
age volumes on the order of Petabytes from a single storage unit but this

technology appears to be several years in the future.

The overall conclusion that one can draw from the considerations above
is that the pace of improvement in storage technology has for the most part

slowed. Current trends indicate we cannot expect single storage units that
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can handle an exabyte or even a petabyte in the near future. Barring the
development of some disruptive technology (such as holographic storage as
discussed above), the only way forward is to use storage devices in parallel.
This is already being done for large scale parallel computing systems partly
to maintain data transfer rates and for redundancy in storing valuable data.
It is a key component of the data handling strategy for the research areas
discussed in Section 3. In the short term, this approach is the only direct
way to achieving large scale storage. The use of many storage devices in
parallel requires the consideration of hardware failure rates for components

of storage systems and this is described in the following section.

4.4 Estimates of HDD Reliability

The most commonly cited measure of hard disk drive (HDD) reliability
is mean time between failures (MTBF), which manufacturers currently give
in the range of 350,000 to 1,200,000 hours over the lifetime of a population
of enterprise class HDDs. It is important to remember that this measure is
over the entire population of that HDD family and not for the individual
HDD. The correct interpretation is that the entire population is expected to
accumulate the MTBF of operational hours before it begins to experience
failures. It is more realistic to consider the service life of the HDD or the
warranty period, since in the later case these are the periods of time the
manufacturer expects a minimum number of failures based on an economic

analysis.

There are also significant problems with the estimation of the MTBF,
since these numbers are often derived from sparse data sets and based on
assumptions such as constant failure rates. Manufacturers will, for example,
often calculate the MTBF taking the reciprocal of the calculated repair rate,
ignoring the infant mortality of the HDD population.
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It is commonly assumed that both HDD and RAID system failures fol-
low a homogeneous Poisson process. The calculation of meant time to failure
(MTTF) and mean time between failures (MTBF) are based on the expo-
nential assumption, which has been show to be untrue [10]. This assumption
is also used in the case of RAID arrays to derive mean-time-to-data-loss
(MTTDL) also known as the average time to double-disk failures (DDF).
Even if the HDD were to follow a homogeneous Poisson process, and it has
been shown that they do not, there is no statistical reason to believe that
the RAID system as a whole will follow such a process. It has been shown
that inaccurate modeling using MTTDL which assumes an constant failure
rate and an exponential distribution underestimates the number of double
disk failures by a factor of 2 to 1500 times [9]. The current state of the art
for modeling HDD reliability is to model the hazard rates as they evolve over

time by fitting multiple Weibull distributions [8, 9].

There is a misconception that SCSI (enterprise class) HDDs and ATA
(personal storage class) HDDs are internally the same technology and only
differ in the external interface [1]. In fact they differ significantly in per-
formance, reliability, and failure modes. These differences are driven by
various factors, including cost pressure and desired performance. Enterprise
class HDDs are typically higher performance with more rapid seeks, higher
rotational speeds and reliability; personal storage class drives are typically
slower, less reliable, but have a higher areal density since cost per unit ca-
pacity is important in that market. RAID arrays made of many personal
storage class HDDs are less expensive, but care must be taken to deal with
temperature and vibration, while enterprise class HDDs are engineered for

this environment.

It is also important to keep in mind that several factors can lead to
reads which are correct with regards to the error correcting codes (ECC) |
but are erroneous. Perhaps the most obvious is a burst of errors so large
that it exceeds not only the ability of the ECC to correct the error, but its

ability to detect the error. More common are erroneous reads which come
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Table 4.1: Range of read error rates [9].

Read Errors per Low Rate High Rate
per Byte per HDD | 1.35 x 10° | 1.35 x 10*°
Low 8.0x 1071 [1.08 x 107 | 1.08 x 107*
Medium | 8.0 x 107 | 1.08 x 10~ | 1.08 x 1073 | Errors/Hour
High 3.2x 10713 | 4.32 x 107* | 4.32 x 1073

from servo tracking errors: two writes occur next to each other along the
track, and depending on the alignment of the read head one or the other will

be read.

Table 4.1 presents data on observed error rates. A study of 282,000
HDDs by Network Appliance in 2004 found a read error rate (RER) of 8 x
10~ errors per byte read. Other analyses have found RER of 3.2 x 10713
errors per byte read among 66,800 HDDs and a study of 63,000 HDDs over
five months found an RER of 8 x 107!% errors per byte read. While it is
possible using current technology to read 4.32 x 10'? bytes/HDD/day, the
study of 63,000 previously mentioned had an average read rate of 2.7 x 10!
bytes/HDD /day. While recognizing that we are working with averages, if we
take the middle values then for 100 HDDs we can expect to have a read error

approximately once per month.

4.5 Interconnection Network Failure

The availability of large-capacity, low-cost storage devices have led to
active research in design of large-scale storage systems built from commod-
ity devices for super-computing applications. Such storage systems, com-
posed of thousands of storage devices, must provide high system bandwidth
and exascale data storage. A robust network interconnection is essential to

achieve high bandwidth, low latency, and reliable delivery during data trans-
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fers. However, failures, such as temporary link outages and node crashes,
are inevitable. It has been shown [29] that a good interconnect topology is

essential to fault-tolerance of a exascale storage system.

System architects are building ever-larger data storage systems to keep
up with the ever-increasing demands of bandwidth and capacity for super-
computing applications. While high parallelism is attractive in boosting
system performance, component failures are now the rule rather than the
exception. In an exascale storage system with thousands of nodes and a
complicated interconnect structure, robust network interconnection is essen-

tial but difficult to achieve. Transient failures will be common.

Failures, which appear in various modes, have several effects on a large-
scale storage system. The first is connectivity loss: requests or data packets
from a server may not be delivered to a specific storage device in the presence
of link or switch failures. The result is disastrous: many I/O requests will
be blocked. Fortunately, today’s storage systems include various levels of
redundancy to tolerate failures and ensure robust connectivity. The second
effect is bandwidth congestion caused by 1/0 request detouring. The average
size of a single I/O request can be as large as several megabytes. Suppose
that such a large system suffers a failure on a link or delivery path on an I/O
stream. In this case, the stream has to find a detour or come to a temporary
standstill. The rerouting will bring 1/O delays and bandwidth congestion
and might even interrupt data transfer. The I/O patterns particular to high-
performance computing demand a network architecture that provides ultra-
fast bandwidth and strong robustness simultaneously. The third effect is data
loss caused by the failure of a storage device. As disk capacity increases faster
than device bandwidth, the time to write and hence to restore a complete
disk grows longer and longer. At the same time, the probability of single and

multiple failure increases with the number of devices in the storage system.
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Figure 4-7: Butterfly networks under failures.

There are three primary failure scenarios to consider: link failure, con-

nection node failure, and storage device failure.

1. Link failure: The connection between any two components in a sys-
tem can be lost. If there is only one path between two components,
a system is at risk when any link along this single path is broken. A
robust network interconnection must be tolerant of link failures. Mul-
tiple paths between two components will decrease the vulnerability of

a single-point of failure and effectively balance 1/O workload.

2. Connection node failure: Connection nodes include switches, routers,
and concentrators that link servers to storage nodes. They are used
for communications and do not store any data. Compared with link
outage, failures on an entire switch or router are more harmful for
network connection since a number of links that were attached on the
switch or the router are simultaneously broken, but losing connection

nodes will not directly lead to data loss.
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3. Storage device failure: When a storage device fails, it cannot carry
any load. Further, additional traffic for data reconstruction will be
generated. The increase in bandwidth utilization brought by data con-
struction is of great concern when data is widely declustered in such a

system.

4.6 Approaches to Enhanced Storage System Reliabil-
ity

The sections above detail the challenges of developing large scale storage
systems. An additional complication is that given the distributed nature of
the DOD mission, we can expect that storage systems will also be distributed
over multiple locations. Indeed, this is the concept of grid computing and
storage. Access of data across a grid presents several challenges. There are

several approaches:

Explicit copying This is the simplest approach and is exemplified by pro-
tocols such as ftp or Gridftp. The issue here is that keeping track
of multiple copies of the data is tedious and error-prone. It is also
difficult to maintain data provenance which as we will discuss later is
essential. Finally the scheduling and planning of data management and

synchronization are logistically very challenging.

Replica management This approach is exemplified by approaches such as
Globus RLS. It requires global registration of managed storage objects
but more importantly, it requires that data replicas be kept in sync

manually or via separate tools.

File access protocols Here the picture is one of one copy of the data with
updates done directly to a server (as in NFS). This is not scalable
as it requires high bandwidth and low latency and offers little or no

parallelism.

44



System Year TF GBfs | Nodes Cores Storage Disks
Blue Pacific 1998 3 3 1464 5856 43 TB 5040
White 2000 12 9 512 8192 147 TB 8064
Purple/C 2005 100 122 15636 12288 2000 TB 11000
HPCS 2011 6000 6000 65536 512K | 120000+ TB | 200000+
(rough est.)

Figure 4-8: Computing and storage requirements for several existing high
performance computing systems as well as the future DARPA high produc-
tivity computing system (HPCS)

A natural solution is to use a cluster of parallel file systems such as
GPFS. In fact, this is currently deployed at major sites of the NSF TeraGrid
offering a 500 GByte shared file system over a 30GByte per second backbone.
While this does work and eliminates the need for multiple copies of data, the
disk throughput is limited by network bandwidth and, more critically, if a

portion of the network goes out data becomes unavailable.

Given the discussion above regarding storage system reliability, modern
computers continue to push the growth rate of Moore’s law through increas-
ing parallelism. Some characteristics of current and future computer and
associated storage systems are shown in Figure 4-8. As can be seen, future
systems will require hundreds of thousands of computational cores as well
as disks to meet the requirements of maintaining Moore’s law in the face of
flattening capabilities for processors and storage media. These challenges are
pushing storage providers to develop global peer to peer file systems. The
idea here is that a file spans multiple sites and is also replicated across those
sites. This allows the application of traditional ideas like caching where data
is moved into position so as to be ready for use but to be reread should the

data change.
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In this picture, the I/O nodes of the storage system become much more
sophisticated and must participate in cache management as well as error cor-
rection. The requirements for future file systems and storage are substantial.
For the file system, one requires balanced capacity and performance. For the
applications discussed earlier, one expects something like a 100 Petabyte file
system with a file I/O rate of something like 6 TByte/sec. The system will
need to be reliable in the presence of localized failures. At the scales consid-
ered here, one or more of the drives will continually be in a state of rebuild
given the error rates for drives discussed earlier. The rebuild overhead must
be at an acceptable level. Standard RAID arrays are not appropriate for this
purpose. RAID rebuilds can severely affect performance as the data is not
available anywhere else. In general, for traditional parallel file systems, an
% degradation in service on one Logical Unit (LUN) of the file system will

translate into a similar degradation across the entire file system.

One solution as briefed to us by Haskin [13] is to dispense with hardware
RAID controllers and instead employ a more sophisticated 1/O node. In
this case the RAID function would be performed in software using much
stronger error correcting codes so as to ensure longer mean time to data
loss (MTTDL). IBM has proposed the use of Reed-Solomon codes that can
ensure an MTTDL of 10° years for a 100 PetaByte file system. Additional
safeguards include the use of end-to-end disk to file system to client check
sums to ensure that data does not get silently corrupted, and the use of
declustered RAID so that the rebuild and repair operations can take place

with minimal (~ 2%) performance degradation.

The latter idea is very much in the spirit of distributed large scale file
systems as we discuss in the next Section. In a conventional partitioned
RAID, one partitions the drives into arrays and then creates LUNs on top of
these arrays. As a result, one can only add drives in quanta of one partition.
A rebuild operation will take place on the remaining drives of a given array.
This is shown on the left of Figure 4-9 along with the relative read and write

throughput required for a rebuild. Because of the way the data are organized
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Figure 4-9: Read and write throughput associated with a RAID rebuild on
a conventional partitioned RAID (left) vs a declustered RAID array

20 physical disks

this makes the rebuild operation quite significant. In contrast, declustered
RAID distributes data and parity strips of logical tracks evenly across all
drives. This allows for an arbitrary number of drives in the array and indi-
vidual drives can then be added and removed as necessary. In addition, the

cost of rebuild is then spread evenly over the entire array.

Using the ideas described above it is possible to construct file systems
with a high level of reliability and responsiveness for very large data sets
even in the presence of frequent disk failures. In Figure 4-10, we plot the
MTTDL for a 20 Petabyte file system given various choices for the size of
error correcting codes as well as various failure probability distributions. As
can be seen in the Figure, depending on the various assumptions used, it is
possible to curate this amount of data over many years depending on the
strength of the error correction used. Figure 4-11 shows the data losses per
year for a larger data set of 100 Petabytes using the ideas of declustered RAID
and multiple data distribution so that several disk failures can be dealt with.
Using these approaches it is possible to bring down data losses to very low
levels. It should be emphasized that the failure models used here do not take

into account truly catastrophic events that may bring down some portion
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Figure 4-10: A plot of the mean time to data loss (MTTDL) for a 20 Petabyte
data set under various assumptions of failure distributions and strength of
error correcting codes [13].
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of a facility. Barring such events it is possible with significant investment in
software to deal with the data requirements of the DOD and other enterprises
for some time into the future. We have said nothing however about the need

to query this data. This will be discussed in the next Section.
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5 HANDLING DATA IN DIFFERENT WAYS

Traditional DOD systems have typically been engineered as “turn-key” sys-
tems. The sensors, storage and analysis systems are often tightly connected.
There is of course an advantage here: the turn-key system solves an imme-
diate problem and appears cost effective for the particular problem at hand.
However, as new sensors become available, a natural goal is to perform “mul-
tiple source” analyses by federating and fusing the data sources from the
various sensors. This is made difficult by the use of turn-key systems where
data acquisition methods and formats were not designed originally with the
goal of future data fusion. As a result, turn-key systems cannot generally be
gracefully evolved and the complexity of the data infrastructure increases.
This is not a hardware issue; it is a software design issue. In this section we
discuss some of the strategies utilized by large data providers such as Yahoo!
and Google and examine some of the infrastructure and algorithms involved.
This differs significantly from the use of turn-key systems. Instead, the ob-
jective is providing an infrastructure that enables generic investigation of the
data. For various DOD applications, such an approach may offer significant

benefit as we discuss below.

The approaches to handling large data in ways that are more architec-
ture and system neutral and which support fusion of data will differ depend-
ing on the requirements for the timeliness of the information. We can broadly

distinguish three cases:

Long time scale Here there is no critical timeliness requirement and one
may want to establish results on a time scale of perhaps days. Ap-
plications which match well include retrospective analysis of multiple
data sources, fusing of new data to update existing models such as ge-
ographic information systems or to establish correlations among events

recorded through different information gathering modalities. This type
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of data analysis lends itself well to a production or “batch” environ-

ment.

Medium time scale Such a time scale corresponds to activities like online
analysis with well structured data. Typically this is accomplished in an
interactive way using a client-server or “pull based” approach. We ar-

gue that this matches well to present day Service Oriented Architecture
(SOA).

Rapid time scale In this scenario, one wants to be cued immediately for
the occurrence of critical events. The time scale here may be very
near real time. We will argue that a “push based” or event driven

architecture is appropriate here.

We discuss ways in which data can be handled as guided by the timeli-

ness requirements for information in the sections below.

5.1 Approaches to Long Time Scale Analytics

Many organizations have a variety of big data problems. Even if most
effort goes into production processing, there is a need to accommodate in-

cremental improvements and upgrades.

The experience of big Internet companies gives a recent approach for
managing big data. Yahoo! and Google provide applications with homoge-
nous infrastructure and a computing model implemented in software that

together cover a large range of their big data processing problems.

A more conventional approach is to acquire hardware and software care-
fully tuned to the problem at hand. This seems to optimize initial costs, or
floor space, or power consumption, or whatever shows up in the spreadsheet.

The problem has been that it is very difficult to estimate the value of being
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Figure 5-1: A diagrammatic representation of “cloud computing”:. In this
approach, the user sees a cloud of computers with a set of offered services.
Provisioning is then performed based on the user’s needs.

able to cope with an uncertain future. If an organization has to deal with
different problems (and over time all organizations do), acquiring systems

optimized for each problem adds complexity.

In the experience of companies like Yahoo, Microsoft, and Google it
is better to build large data centers of essentially identical servers running
essentially the same operating system, and require all applications to make
use of these servers. Commodity servers are economical, and the common
infrastructure is flexible and can be reallocated among applications fairly
easily, especially as the machines can be loaded with essentially the same

environment.

This is the basis of what is today known as “cloud computing”. In this
approach to deploying hardware, users view a homogeneous infrastructure
(the location of which is made largely irrelevant by using high speed net-
working and virtualization). The way in which one interacts with the data
is also quite different in that one delivers algorithms to data rather than use
a data base to precompute various indices ahead of time. This approach is

shown illustratively in Figure 5-1.
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5.2 The Map-Reduce Archetype

Yahoo! and Google process large amounts of data using a map-reduce
framework. Yahoo! has released an open-source implementation of this
named Hadoop which also provides a file system architecture discussed be-
low. Map-reduce works on data set sizes of Terabytes and up. Typically the
data would be spread across multiple servers. A map-reduce job consists of
a controller, M mappers, and R reducers. The controller might try to put
the M mappers on machines close to the data. It breaks up the data into
pieces and gives each mapper pointers to a set of hunks of data to process.
Each mapper converts input records into output key-value pairs. The key-
value pairs are sorted by key into R segments, and each segment is sent to a
reducer, who sees its input in key order, and (presumably) processes it and
writes a hunk of output. Many large computations can be organized this
way, or by a sequence of map-reduces. One measure of success is that the
current “terasort” (sort a terabyte of data from disk to disk) record was set
by Yahoo! using Hadoop. For this application the mappers and reducers

implement the identity map, just copying their data from input to output.

For a different example, one might have many documents, and want to
index them by language and uniform resource identifier (URI). The mappers
read the document and put out language as the key and URI as the value.
The reducers create the index (possibly removing duplicates) directly, and
could also count the number of documents in each language. The idea is

shown graphically in Figure 5-2.

A very important aspect of this approach is that it is essentially em-
barrassingly parallel and is therefore ideal for parallel architectures. Because
each map and reduce operation can be dealt with autonomously, one can
envision the process as simply a set of tasks that must be accomplished but

which are not dependent on one another. This makes it possible to use even
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Figure 5-2: A diagrammatic representation of the map-reduce archetype.
The mapper processes M emit keyword value pairs which are then grouped
by key. This is then fed in key value order into reducer processes R which
then perform some reduction operation associated with the keys and their
values.

commodity hardware where hardware components will typically have a lower
mean time to failure then enterprise class hardware. This makes it possible
to simply monitor jobs and then just restart those that fail and in the process
migrate them to other processors. This is particularly important if we are to
contemplate Petabyte data sets and tens or hundreds of thousands of pro-
cessing elements. At that scale the probability of node failure is significant as
discussed in Section 4, and so one desires an approach that routes gracefully
around such failures. The parallelism idea is also easy expressed graphically
and is seen in Figure 5-3. Note there can be dependencies between various
mapper tasks and associated reduction tasks. The reducer will wait until the
appropriate answer is delivered. If a monitoring program sees that this has
not occurred it can simply replicate the mapping process and provide it with

the address of the target reduction.
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Figure 5-3: Parallel implementation of the map-reduce archetype

The canonical example of the use of map-reduce is counting the number
of occurrences of each word in a very large collection of documents. The user
would write the following pseudocode

map (String key, String value):
// key: document name

// value: document contents
for each word w in value:
EmitIntermediate (w,’’17"7);

reduce (String key, Iterator values):
//key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += Parselnt(v);

Emit ( AsString (result );

The map function emits each word encountered along with a count (in this
case just 1 indicating the word was encountered). The reduce function then

sums the counts for a particular word.
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There are surprisingly many types of data analyses which can be per-
formed using the map-reduce archetype which is why we term it an “archetype”.
It represents a specific type of computational pattern which can be reused.

We list some examples below:

Distributed grep The map function emits a line if it encounters a partic-
ular pattern. In this case the reducer simply emits the line to output.
This allows one to search in parallel for strings matching some given

pattern.

Count of URL access frequency In this case the mapper takes logs from
web page requests and emits a 1 for each URL encountered. The re-

ducer in this case adds the values for a given URL.

Reverse web link graph Here the mapper outputs <target, source> pairs
for each link to a given target web URL found in a web page named
source. The reduce function then concatenates the list of all source
URL’s associated with a given target URL and emits a pair <target, list (source)>.
This is a key step for example in page ranking algorithms which are

used in modern search engines.

5.3 The Hadoop File System

The above discussion illustrates alternative ways to query large amounts
of data even over distributed data stores. However, in order to access the
data one must be able to count on the reliability of the access mechanisms.
As mentioned in the previous section the high performance community is
developing solutions that use redundancy, caching and error correcting code

in order to ensure that large data sets can be reliably curated.

If the goal is to query data repeatedly in order to extract various correla-

tions, there are open source solutions available now that work on commodity
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hardware. One such is the Hadoop file system. Hadoop is a distributed file
system with many similarities to existing file systems but also has some im-
portant differences. It is designed to work on commodity hardware which
typically has a higher failure rate than enterprise storage platforms. As will
be seen below, it targets large data sets where the typical mode of access is
“write once, read many times”. It is not a good choice for data that changes

frequently. The design criteria are as follows:

Hardware failure is likely The system is built on the assumption that
hardware will fail. A typical Hadoop file system (HDFS) deployment
may consist of thousands of servers each with some commodity storage.
The assumption in HDFS operation is that for one reason or another
some server or servers is always nonfunctional. The system is built to

detect faults and recover gracefully.

Streaming data The idea behind Hadoop is to support archetypes like
map-reduce where data is essentially streamed through the mapper
and reduction processes. Map-reduce jobs are typically run in a batch
mode. Hadoop is not an appropriate choice for applications that need
random access to files. The emphasis here is throughput and not low

latency.

Large data is the norm Hadoop was designed for data sets that typically
will not or cannot be stored on one central storage system. Data sets
are typically Gigabytes or Terabytes in size. Scalability to these sizes
as well as the number of storage nodes required to store such data is a

key goal of the file system.

Coherency As stated previously, Hadoop is most appropriate for a “write
once read many” access model for files. The idea is that once the file is
created it will not change. This is indeed the model one would use in
surveillance although products derived from these files and files from
later surveillance activities would change but this information would

not need to be stored using Hadoop. This approach simplifies issues
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Figure 5-4: Architecture diagram for the Hadoop file system

of data coherency. Many retrospective analytics applications like web

crawling fit these assumptions.

It is cheaper to move computation than data The overall approach to
analysis using Hadoop is to move a computation close to the data
rather than move the data to a central point where computation takes
place. This minimizes congestion and is more scalable in that there are
fewer load imbalance bottlenecks due to data motion or computation.
Hadoop provides interfaces to adjust the “affinity” of a computation

for a particular location where important data resides.

Architecture neutrality The design of Hadoop makes no assumptions about
hardware capabilities and so it is ideal for analysis using heterogeneous

architectures and storage systems.

HDFS uses a master-slave architecture which is shown in Figure 5-4.
An HDFS cluster consists of a single master server that manages the file
system name space and regulates access to files by clients. There are also

data nodes (typically one per node in a cluster) which manage the storage of
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Figure 5-5: File segment replication strategy for the Hadoop file system

files. The overall approach is to simply let users store flat files rather than
impose any type of database structure. We will comment more about this
below. Internally, files are split into blocks and blocks are then stored on
data nodes. The mapping of the files is the responsibility of the head name
node. The data nodes then serve read and write requests from clients of the
file system including tasks like opening and closing files etc. HDF'S supports
a typical hierarchical file system organization and from the point of view
of the client it is possible to perform most of the usual file operations like
opening, closing, moving, and renaming. Importantly the file system does

not support editing in a file although it can support appending data.

The key property that leads to the reliability of the file system is the
aggressive use of block replication. Each file is stored as a sequence of blocks
and these are then replicated for fault tolerance. The replication factor and
file block size are all configurable for a given application. As stated above,
the files are “write once” and only one client at a time can write. The system
queries the storage nodes periodically and receives a “heartbeat” that implies
the node is functioning and also a report of which blocks are on which node.

The placement of the replicas is also carefully designed so as to be “rack
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aware” so that if a node goes down the system goes to a rack close by to
access the data. Typically, a replica is also placed on a distant node so
that in case of some more catastrophic failure the data can still be retrieved
although access will be slower. The replica placement process is an important
optimization problem for which further research is required. The replication

idea is shown graphically in Figure 5-5.

5.4 Databases in the Context of Large Data Sets

The scientific community faces the challenge of storing, searching and
accessing large data sets, as well as the need to archive data in a robust
and enduring way. Databases would appear to offer just what is needed to
accomplish this, as in some ways the problem appears superficially similar to
that faced by financial institutions, where databases have long been used. In
fact database design and implementation has largely been driven by the needs
of financial institutions, not science. Databases have therefore evolved to deal
well with supporting concurrent transactions, dealing with both numerical

and text information.

Broadly speaking the segment of the scientific community that is push-
ing the forefront of large-data science has been disappointed with the capa-
bility and the performance of existing databases. Most projects have either
resorted to partitioned smaller databases, or to a hybrid scheme where meta-
data are stored in the database, along with pointers to the data files. In
this hybrid scheme the actual data are not stored in the database, and SQL
queries are run on either the metadata or on some aggregated statistical

quantities.

Partitioning the database into disjoint smaller pieces is always an option,
of course. For instances where there is no requirement to have a global

perspective this can work well. On the other hand if one wanted to run a
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conditional query that was not confined to one subspace then the partitioning
can extract a significant performance penalty, as the database indices do not

span the distinct partitions.

In the sections below we detail some of the database shortcomings that

the scientific community has encountered, and we end with a look ahead.

5.4.1 Dealing with uncertainties

As distinct from accounting information, scientific data have uncertain-
ties associated with nearly every measured quantity. In high-dimensionality
parameter space, one would like the ability to efficiently run sophisticated
queries that take into account not only uncertainties but also the covariance
between quantities. The data types in current databases do not easily lend
themselves to rapid and efficient interaction with the stored data, in the

context of underlying uncertainties.

5.4.2 The data provenance problem

The data reduction process starts with “raw” sensor data of some type,
and these data are then typically run through a sequence of processing stages,
each of which has source code and parameter settings that change over the
course of the experiment. There is no universally accepted way to store (in
a fashion that allows straightforward reproduction of results) not only the
reduced data, but also the code version and parameter choices that produced
the data. One could imagine a hybrid of database technology with version
and configuration management software, at the middle-ware level. We are
unaware of any robust, open source, platform-independent solution to this

problem.
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Figure 5-6: A graphical comparison of data mining approaches [3].

5.4.3 Some disappointing experiences to date with existing databases

The astronomy and high energy physics communities shared with us
their experiences to date with using database technology to support 100
Terabyte scale data sets. The experience of the BaBar project was illustra-
tive of the broad disappointment we heard. This group started with using
a commercial database product, but problems with both performance and
licensing costs drove them to drop this in favor of an open source partial
solution. They store their metadata in a database, but the actual scientific
data are kept in a file system that meshes with the database. Some groups
have described the time consuming process of needing to generate new index
information whenever new data are ingested into the database, and appears

in some cases to scale poorly as the size of the data set grows.

5.4.4 Evolution of databases

The difficulties described above with conventional database systems are
also present for DOD/IC applications. Data intensive enterprises such as

Google and Yahoo! do not use strict database approaches in their work and
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instead use a more homogeneous approach to data analysis which makes use
of the map-reduce archetype. The tension between conventional data base
technology and approaches such as those embodied in technologies like map-
reduce and Hadoop can be seen graphically in Figure 5-6. One can view the
tradeoft as one of sophistication vs. scalability. At the high end of sophistica-
tion are analytical approaches like Matlab, Excel, Access, etc which provide
ease of use and a rich set of analysis tools. But at present, these are designed
for the workstation market and it is not possible to apply them to large data
(although there is ongoing work in this direction). More scalable, but less
user friendly, are data base management systems which have traditionally
been applied in this arena. The advantages are that these are very efficient
and highly tuned but scalability is very expensive and as has been discussed
above, the adaptation of schemas has proven difficult. Archetypes like Map-
reduce running on infrastructure like Hadoop are very scalable but they come
with a high overhead and cannot be used for smaller problems. Here one em-
beds the schema in the mapper and reduction functions so that while the

system is very flexible it requires familiarity with algorithmic programming.

Interestingly, this has created pressures to improve data base flexibil-
ity at one end while providing more capable interfaces for approaches like
Map-Reduce. Database manufacturers are redesigning their engines for mul-
tiprocessor scalability and also examining the use of less traditional schema.
An example is the Vertica effort of Stonebraker and his colleagues which
attempts to address the issues that have been raised by the scientific com-
munity. There is also significant ongoing work in endowing the highly scalable
Map-Reduce approach with better interfaces such as for example SQL. For
example, Widom has researched the requirements to create streaming data
base architectures that extend the familiar SQL programming model to data
streams. There are implementations of this idea for example in the Hive lan-
guage which is used by Facebook for their data warehousing. As a result, we
can expect continued improvement in this area with a concomitant benefit

for DOD/IC data intensive applications.
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5.5 Probabilistic Streaming Algorithms

As can be seen from the previous sections, storing and curating large
volumes of data is feasible. However, querying the data can be prohibitively
expensive particularly if we require exact answers to our queries. Recall
that we forsee the querying of possible hundreds of Petabytes. Even with an
efficient map-reduce approach the time to develop exact responses to queries
may be prohibitive. Scanning all the data is effectively at least a linear
time operation so as to ensure all possibilities are exhausted. Large data
users such as Amazon face such challenges when they engage in customer
analytics. For example, the familiar quote “People who bought this product

b

also bought this...” exhorting one to purchase additional items is an example
of “collaborative filtering”. A similar requirement emerges when one wants
to check if a given document matches a library of stored documents or if
a fingerprint possesses a match in a fingerprint database. In this case even

linear time algorithms might be prohibitive.

One approach is to use probabilistic algorithms which are amenable to
streaming data. We give some examples below. The main point of this
discussion is not to provide specific solutions, but to illustrate the power of
such algorithms and to recommend that the computer science community be

fully engaged in developing such algorithms for DOD/IC applications.

5.5.1 Bloom filters

A Bloom filter is a very simple probabilistic technique for representing
a set in a very memory efficient way so as to facilitate membership queries.
Bloom filters were developed in the 1970’s as a tool for database systems. Re-
cently, their use has been proposed for networking applications which makes

them important for the type of distributed analysis required for data fu-
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Figure 5-7: An example of a Bloom filter [17].

sion. For example, Bloom filters can be used to summarize content to aid

collaboration in peer-to-peer networks.

The Bloom filter principle is that whenever a list or set has to be inter-
rogated and space is at a premium, then a Bloom filter is useful as long as
the effect of false positives can be mitigated. A Bloom filter for representing
a set S = {x1,29,...,2,} of n elements is described by an array of m bits,
initially all set to 0. A Bloom filter uses k independent hash functions la-
beled hq, ..., h; with a range {1...,m}. We assume the hash functions map
each item in the set to a random number which is uniform over the range of
hash values {1,...,m}. For each element z € S, the bits h;(x) are set to 1
for 1 < i < k. A given location can be set to 1 multiple times. To check if
some item y is a member of the set S we hash the value y k times and then
check whether all h;(y) are set to 1. If they are not, then the item y is not
a member of the set S. If all h;(y) are 1 then we assume y € S but there
is a probability of a false positive. This is shown graphically in Figure 5-7.
It is important to note that in using this idea we assume kn < m. A false
negative is impossible using this approach. False positives may be acceptable

provided their probability is small [17].

The probability of a false positive can be estimated provided the hash

functions are perfectly random. After all the elements of S are hashed into
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the Bloom filter, the probability that a specific bit is still 0 is

. (1 _ %)]m ~ exp(—kn/m). (5-1)

If we let p be the proportion of 0 bits after all the n elements are inserted in
the table. The expected value for p is p’. Conditioned on p, the probability

of a false positive is

(1-p)f~=1-p) (5-2)
It turns out because of the concentration of the distribution of p about its
mean which we do not discuss here, this is in fact the false positive probabil-
ity. Provided one can cope with the false positive rate, such a probabilistic

approach is of value [17].

5.5.2 Minhashing and locality sensitive hashing

We were also briefed by Prof. Jeffrey Ullman of Stanford University
on several algorithms that work well for large scale data mining where the
data cannot be exhaustively queried. These algorithms are used for what
is called similarity search. The objective is to find pairs of objects that
are similar in a collection of a set of objects. Similarity can be defined in
many ways, and will depend on the application, but a particularly useful
definition is that of Jaccard similarity which is the size of the intersection of
two sets divided by the cardinality of the union of the two sets. Among others,
important applications of Jaccard similarity include collaborative filtering
discussed above and document similarity. Here documents are represented
by their sets of what are called k-shingles which are strings of £ consecutive
characters. Other applications include fingerprint checking after a finger print
is discretized in terms of its minutiae, and entity resolution where one wants
to consider similarity of attribute/value pairs in order to match descriptions
of individuals[26].
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Figure 5-8: A schematic for the use of minhashing and locality sensitive
hashing in determining similarity of documents [26].

The ideas of minhashing and locality sensitive hashing share the philoso-
phy described above in the use Bloom filters. The application of minhashing
requires the construction of small signatures for sets so that the Jaccard
similarity of two sets can be determined from the signatures rather the ex-
amination of a detailed comparison of each record. Locality sensitive hashing
uses this idea to focus on pairs of sets that are likely similar without looking
at all the pairs. The flow of operations for determination of document simi-
larity is shown in Figure 5-8. These types of algorithms are very useful when
the sets are so large that checking all pairs for a match takes too much time.
Instead the idea is to determine some candidates and then examine these in

detail.

Consider the sets to be compared as represented by a matrix of zeros
and ones. Let the rows label the individual objects and the columns label
the various sets of objects. We place a one in a given row and column if a
particular object appears in a given set. To compute the similarity of two sets
of columns we count the rows where a given object appears in both columns

and then divide by the number of rows where at least one object appears.
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Clearly there are four types of rows as described by the table below:

Cy Oy
a 1 1
b 1 0
c 0 1
d 0 0

If we designate A as the number of rows of type a, B as the number of rows of
type b etc., then the similarity of the two columns C; and Cs or Sim(Cy, Cs)
is given by

A
S/l'm(Ch 02) = m

The idea of minhashing is to imagine permuting the rows of the matrix
randomly. We then define a hash function h(C) which is the number of
the first row in which column C has a one (in the permuted row order).
We then use an independent collection of such hash functions to create a
signature with say 100 such hash values. It turns out the probability over
all permutations that h(Cy) = h(Cs) is the same Sim(Cy,Cs). It is not
hard to see that the similarity of two signatures is the fraction of the rows
over which they agree. From a practical perspective we would not want to
permute these rows physically but a good approximation to this is to pick
say 100 hash functions. For each column C and each hash function h;, create
an array M (i,c) for that minhash value. We then take the minimum value

of the hashed value that corresponds to to non-zero values of M (i, c). [26]

This allows us to replace whole sets (which are columns of our matrix)
by short lists of integers. But to compute if something is similar to something
else we need to complete all pairs so we still have a problem in terms of the
number of operations to be done. Instead we map signatures to buckets of
signatures with the objective that two similar signatures will end up in the
same bucket with high probability. If two signatures are not similar there is
high probability that they don’t appear in a given bucket. Now we consider
the signature for each column (which recall is a set) as a column of what we
call the signature matrix S. We then divide the rows of S into b bands of

r rows each. For each band, we hash its portion of each column to a hash
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table with many buckets. Our candidate column pairs are those that hash
to the same bucket for >1 band. The values of b and r must be tuned to
catch most similar pairs and avoid the dissimilar pairs. A counting argument
shows that by using multiple bands it is possible to get high probability that
similar objects appear in similar buckets. The ideas are similar in character

to those presented above in the discussion of Bloom filters [26].

Algorithms such as these can be very useful when dealing with large
data sets. It will become essential to use such ideas as the DOD/IC face
analyses of Petabyte data sets. Continued research and development in this

area therefore would be of benefit.

5.6 Service Oriented Architecture

In this section we consider those approaches for data analysis that are
appropriate for more intermediate time activities. Here we endorse the use
of service oriented architecture (SOA) that is currently being explored in a
variety of DOD and IC research efforts. An SOA is an architecture that relies
on service orientation as its fundamental design principle and whose chief
characteristics are modularity and the ability to access the service remotely.
The idea is to create large scale components that perform a range of related
tasks and provide an interface for these components so that these functions
can be accessed via remote procedural calls by providing a well documented

“service” typically over the web.

Services are meant to be largely autonomous units of functionality and
communicate with each other via a protocol that typically implements a
remote procedure call (RPC). In many ways they are similar to client/server
architectures that use RPC or a request/reply communications approach.
In contrast to C++ classes the atomic level objects of an SOA are generally

substantial programs in their own right. The calling hierarchy associated with
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Figure 5-9: A graphical representation of an SOA for market based transac-
tions [16]

a typical application is not as deep as one sees in typical C++ class diagrams.
Applications are typically designed using special software which can discover

the services over the web and then orchestrate the flow of information.

A simple example of such an application might be the purchase of ser-
vices through a market application. This is shown graphically in Figure 5-9.
A buyer of services would make calls to a marketing service which would link
in a selling service and some sort of support for transactions. SOA is attrac-
tive for DOD applications where large data stores need to interoperate and
where fusion of their data is required at a higher level. We were briefed on
several projects where different agencies were proposing making their prod-
ucts available so that larger applications could be constructed that addressed
more specialized needs [2]. The DOD and IC have already built and utilized
several SOA applications. We were briefed on a system developed by NRL
called EVIS which provides weather information (displayed in Figure 5-10).
The important advantage in doing this is that the results can then be di-

rectly embedded so that DOD decision makers can fuse several data sources

71



EVIS Interoperability Examples

EVIS Portlet DSIDE
= [ = REDs
NGA GISA A —
— —

g s 1430 0 e By i i S8

Figure 5-10: An example of a service oriented architecture - the Environ-
mental Visualization (EVIS) can interoperate with information systems from
several DOD/IC agencies [2].

in a straightforward manner. One potential issue with this approach is the
problem of scalability and latency. Because of the use of the request/respond
approach it is possible that requests will not complete in a timely way as they
are waiting on other requests. This can be avoided through careful attention
to design and ensuring that time critical services respond on an appropriate

time scale.

We were also briefed on the use of SOA to integrate a number of
DOD/IC services in a project called Blackbook 2 developed by Johns Hop-
kins University and funded by TARPA. Blackbook is built as a data inte-
gration framework and provides a common data representation format using
semantic web technologies as well as provision for web services. Rather than
integrate vertically Blackbook takes very much the point of view of this study
in establishing a data sources layer where data (not necessarily data bases)
resides. Eventually the data can be queried using ideas such as map-reduce

with the results integrated though an infrastructure layer which provides a
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Figure 5-11: The architecture of Blackbook2. Data sources are integrated
via an infrastructure layer. Results can then be visualized in a number of
ways via the visualization layer [6].

variety of services. The use of web technologies such as Resource Description
Framework (RDF) and XML makes it possible to translate from a number of
data sources which can include relational data bases all the way to unstruc-
tured text. The user interface provides a number of ways to visualize the
information including a Google like search, spread sheets or even geospatial
information systems if the data being analyzed is geographic in nature. The
architectural diagram is shown in Figure 5-11. An example of the graphical

user interface is shown in Figure 5-12 [6].

Blackbook represents an important effort to remove the “stovepipes”
associated with some traditional DOD/IC data collection enterprises. The
use of modern technologies including architecture neutral data storage and
the development of an infrastructure that can be extended in numerous ways
is an important step forward. Because the project is geared towards infor-
mation sharing among the DOD and IC agencies there is a security model
already built into the transactions. The use of data neutral approaches such
as Map-Reduce and reliable file systems such as Hadoop will be of benefit in
dealing with the emerging DOD/IC large data requirements.
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Figure 5-12: An example of the multiple data representations available within
Blackbook 2 [6].

5.7 Event Driven Architecture

While SOA is of great use in aiding the data fusion and integration
problem, it is not directly useful for analyzing events on a rapid time scale.
For such situations, an event driven architecture may be more appropriate.
An event driven architecture (EDA) is an approach to software design that
deals directly with the production, detection, analysis of and reaction to,
various events. An event is simply a significant change of state associated

with some data that is being constantly monitored.

Programming for EDA applications differs from that of SOA although
one can merge one with the other. EDA applications use a publish/sub-
scribe model where loosely coupled software components subscribe to event
streams and then either react by actuating some response or by emitting
subsequent events to other components. The key idea behind this approach
is asynchronous broadcasting or “push” of events. The events may trigger

subsequent action but do not themselves define actions. An example of an
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Figure 5-13: An example of an event driven approach to market based pur-
chases [16].

event driven approach to a system which executes market based purchases
is shown in Figure 5-13. All components emit event streams to which other
components subscribe. When relevant events arrive to various components
analysis then triggers actions or results in further generation of events. An
important advantage over traditional SOA approaches is that event driven
systems are more responsive and are by design more tuned to dealing with

unexpected events.

The structure or content of an event depends on the application. Typ-
ically, it consists of two parts: a header which labels the type of event and
other important metadata such as time and geospatial information, and the
event body which would contain important information (image, text etc.)
that must be analyzed in order to develop a response if the event triggers
subsequent analysis and response. An event based architecture is generally

composed of four layers:

Event generation The event generator senses some occurrence and gen-
erates the information comprising an event. It can be anything from

a sensor that triggers on some change in a scene or even an e-mail
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client that receives a certain type of message. The event generator will
synthesize the appropriate data for handling down stream. The struc-
ture of the event will depend strongly on the application and there is
benefit to having analysts in the loop when the overall design of the
EDA is contemplated. The event data will most likely be transformed
downstream so standardization at this stage is not crucial. However,
for DOD/IC applications that rely on spatio-temporal events obvious
components of valuable event data are the time and GPS coordinates
associated with a given event. Interestingly, financial firms now use
GPS satellites with their highly accurate clocks to provide a standard

time and location for the generation of financial events.

Event data channel This is simply the mechanism whereby the event data
is transmitted to some event processing engine. It could be an IP
socket or even something as simple as the generation of a file. In an
event driven system the events will not appear ordered by the time they
were generated (as in modern packet driven networks) simply because
the latency associated with the channel and the high volume of events
make this impossible. In addition, the philosophy of EDA is to process
the events in near real time. This makes the use of time and spatial

information very critical in DOD/IC applications.

Event processing Here the event is identified and actions are triggered.
For financial applications this could be that the price of some com-
modity has reached a certain level triggering a transaction but it could
also be a signal to focus further analysis on some location and to thus

generate further events to cue other resources.

Downstream activity This describes the consequences of an event.

Event driven programming is already quite established. For simple event
processing one simply actuates consequences based on simple occurrences. In
a window-based GUI system a simple event might be a mouse click on a menu

triggering the display of the menu or the activation of a temperature control
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system. Event Stream Processing is the ongoing analysis of a stream of
events where both ordinary and extraordinary events occur. This is the style
of programming used in financial transactions and has spawned the design of
stream based data management systems. Academic work in this area can be
found for example in the design of the Continuous Query Language (CQL)
developed by Jennifer Widom and her colleagues at Stanford. CQL is a
streaming data base language that provides some of the analytical capabilities
of SQL but for stream data types. This work has already evolved into the

commercial sector with offerings such as Streambase.

The state of the art in this area is known as Complex Event Process-
ing [16]. Here one examines patterns of seemingly ordinary events to deter-
mine that a larger more complex set of events has occurred. The set of events
may occur over some period of time much longer than the natural frequency
of ordinary events and, as a result, deeper pattern analysis is required. Cor-
relations may be sought among temporal or spatial sets of events with the

goal of detecting anomalies.

Traditionally, EDA is being applied in areas such as financial transaction
information systems where it is necessary to deal with on the order of 10°
events per minute with the use of complex event processing in order to detect
larger shifts in a particular market. EDA is also routinely applied today in
the design of controllers for DOD weapons systems where several systems
such as radar, targeting and fire control must interact on a very short time
scale. The field of EDA is quite well established, but does not seem to be
employed in the type of enterprise-wide data analysis discussed here. It is
seems not to be used extensively as a tool for data sharing among diverse
DOD and IC organizations. Given its use in DOD contexts such as fire
control systems and the inherent distributed and loosely coupled nature of
this type of information flow it may be appropriate to explore this paradigm

more throughly particularly where one must respond rapidly.

The event driven approach outlined above matches with the “activity
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model” as briefed to JASON by Gordon Ainsworth. The idea is to focus
on activities in various areas of interest and to correlate these with previous
activities. The intelligence value of this approach was demonstrated recently
in the capture of high value targets in Iraq. The actual analysis was a result
of significant spade work by teams of analysts manually assembling various
sources of intelligence. It would therefore be of interest to investigate whether

EDA tools could make this type of analysis more efficient in the future.

5.8 Metadata Considerations - The Role of Registra-
tion

We close this section on various approaches to the handling of data
with a short discussion of metadata requirements. As discussed above in
Section 5.4.2, the data provenance problem remains an issue in understand-
ing the pedigree of data after it has been processed from raw sensor data.
One observation however, is that for image data the use of proper and accu-
rate georegistration in tagging the data may be essential in facilitating the
automatic correlation of image information in disparate databases and thus
aiding in the analysis of complex events. Surprisingly, such registration is

not yet standardized within the DOD and IC communities.

To be more precise, we define geolocation as the referencing of a par-
ticular location on the earth to a suitable absolute space-time earth-based
coordinate system. Coregistration is defined as the referencing and cross
registration of data in two or more data sources to a mutually reconciled
coordinate system. While this is certainly important and useful for analysis,
the ultimate goal should be georegistration which we define as the referencing
of data or derived information of two or more data sources to some absolute
coordinate system. It is the latter approach which will be of greatest value

for fusion of disparate image data.
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Figure 5-14: Voxel based approach to change detection of images Panel A
shows an artificial but as yet unseen image. Panel B shows hand marked
ground truth changes made to the image. Panel C shows the results of
a planar change detection algorithm applied to the image. In Panel D, a
probabilistic voxel-based algorithm is applied with improved results [20].

As more data is acquired from wide area surveillance at increasing res-
olution one might envision that the information could be used to update
existing image repositories and then change-detection algorithms could be
employed to cue further surveillance. There are still challenges associated
with this approach because each surveillance platform must correct for its
own attitude and parallax. Some interesting work on this problem has been
published recently by Thomas Pollard and Joseph Mundy on “change detec-
tion in 3-D world”. The authors use a 3-D voxel based approach to describe
changing scene data acquired from a sequence of images that are taken by
cameras with an arbitrary but known pose. By using a Bayesian approach,

the authors develop a 3-D model of probability distributions which can be
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continually updated as more imagery becomes available. These distributions
can be used to infer whether change detection is the result of real changes
or whether the change has been triggered because of occlusion of surfaces
which are due to the fact that all images are 2-D projections of 3-D scenes.
An example of this work is shown in Figure 5-14. Panel A shows an artificial
but as yet unseen image. Panel B shows hand marked ground truth changes
made to the image. Panel C shows the results of a planar change detection
algorithm applied to the image. Note the appearance of fictitious change due
to the attitude effects of the camera arising from the vertical but unchanged
facets of the image. In Panel D, the probabilistic voxel-based algorithm is ap-
plied which still shows some fictitious change in addition to the actual change
but the false positive rate is lower than that obtained from conventional 2-D
based change detection algorithms. Moreover, continuing imagery and up-
date of the voxel-based distribution functions have been shown to lead to
improved results with ROC curves that show increasing true positive detec-
tion for a given false positive fraction. What is critical here however, is that
the registration of the data must be the same for any given camera exposure.
This is an important emerging area which when coupled with a consistent
georegistration of image data would provide a useful basis for further devel-
opment of change detection algorithms that could then cue analysts based
on a number of image sources but with a hopefully acceptable false positive
rate [20].
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6 PROCESSING CLOSER TO THE SEN-
SOR

Over time the capabilities of DOD sensors for wide area surveillance have
grown impressively. This is best illustrated in Figure 6-1 which comes from
the briefing of Dr. Mark Duchaineau from LLNL. If we assume that a pixel
from a modern airborne sensor covers a square meter, then one can measure
area coverage by counting pixels. In current practice, the data from a large
sensor is collected and then stored using on-board storage on the airborne
platform. After surveillance is complete, the data (in fact the disks them-
selves) are sent to a ground station for processing. Despite the latency of
this approach, the impressive surveillance coverage afforded by present day
sensors such as the Sonoma system has provided very valuable information.
As can be seen from the Figure, the first 4 Mpixel Sonoma system fielded
in 2003 was capable of imaging over 10° square meters, roughly the size of a
city block with a repetition rate of 2 Hz. The Sonoma system fielded in 2004
imaged over 107 square meters, roughly the size of a small city. In 2009, MIT
Lincoln Labs will field a system that can image 10° square meters, which is
the size of a major city and it is projected that in 2010, the DARPA Argus
system will be able to image an area that is almost the size of the Los Angeles

basin at a repetition rate of 15Hz.

However, if one were to contemplate actually transmitting the informa-
tion in real time as it is collected, the data rates required become prohibitive.
For comparison the transfer rate of HD'TV is shown in Figure 6-1. Even with
present day sensors like Constant Hawk transfer rates of tens to hundreds
of Gigabytes per second are required. Note this is not a storage issue but a
bandwidth issue. Typical bandwidth available today is in the range of 100-
200 MBits per second whereas the figure indicates something like 300 Gbits

per second is required.
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While the latency in delivering data from modern day sensors is ac-
ceptable for forensic analysis, it is not acceptable for time critical analyses.
In this section we briefly discuss some strategies for processing sensor data
closer to the sensor platform itself. This is not a substitute for storing all

the data for later analysis but could be of use for time sensitive collection.

An obvious strategy is compression, but we were briefed that DOD
makes significant use of modern compression technologies. Frame by frame
compression using the JPEG 200 standard is well established as is the use of
video key frames and the subsequent transfer of frame updates as is done in
full motion video compression. However, the requirements will become more
and more stringent. As is shown in Figure 6-1 a 250 fold increase in data

rate is expected by 2010.

Overall a factor of 1500 is required to compress the information. Com-
pression from JPEG will yield only a factor of 10; the use of key frames as in
the H.264 standard yields a factor of 100 in compression but we are in need
of over a factor 1500 in compression. An obvious strategy is to do on-board
analysis and transmit the results in real time rather than the compressed

image [7].

6.1 Use of GPUs for On-Board Processing

We were briefed by Mark Duchaineau of LLNL on the proposed use
of a real time optimally adapting mesh so that analysts can selectively fo-
cus on objects of interest. The idea is to build an adaptive multi-resolution
hierarchy of images directly from the raw sensor feed on-board the observa-
tion platform. Then depending on requirements, further analysis would be
performed and sent to the analyst. For example, one might want to track
some moving object in a scene. The goal then is to develop algorithms to

isolate this motion and send only the object tracks (along with spatial infor-
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Figure 6-1: A plot of sensor capability vs. data rate for past, present day
and future sensor systems [7]

mation) to the analyst. Because the platform is in motion one must register
the imagery or it is impossible to follow any motion. But in addition, be-
cause of parallax effects there remain motion artifacts if one performs only
registration. Duchaineau and his colleagues have developed “dense image
correspondence” algorithms which utilize the overall evolution of the entire
image to further stabilize images. This makes it possible to more easily iden-
tify real moving objects and it also provides for improved compression of the

resulting scene. Figure 6-2 shows the results of this approach.

A remaining challenge is to implement the compression and extraction
algorithms on hardware that would operate on the sensor platform. Graphics
processing units (GPUs) show great promise for this as many of the opera-
tions needed are implemented optimally on the processor itself. In addition,
current and future generations of GPUs are fully programmable. For the
dense correspondence required to isolate movers one GPU is capable of pro-
cessing at a rate of 22 MPixels per second. An array of 16 GPUs can support
176 MPixels at the required 2 Hz repetition rate. The only issue that has
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Figure 6-2: An analysis of images using dense image correspondence. The
“movers” (in this case cars) are shown in green at a particular time. The
orange represents the detection of the mover over 100 previous frames [7].

not been studied carefully is whether sufficient power is available. GPUs are
not the only possible processing architecture although they do have advan-
tages for image-based data. We were briefed by J. Kepner of Lincoln Labs
on the use of the IBM Cell Broadband engine as a candidate for on-board
processing. Further investigation of both approaches is warranted so as to
understand the relative advantages and the constraints imposed by on-board

power requirements [15].

The notion of using on-board processing to download the urgent data
first is very much in line with the idea that when bandwidth is at a premium,
filtering is essential. Preliminary analyses can be performed quickly and
more detailed analyses can be performed retrospectively. Again, the use of
georegistration on the compressed data will enable rapid follow up if employed
in an event based architecture so that correlations with other events can be

inferred rapidly.
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7 GRAND CHALLENGES

The previous chapters detail important advances that make the collection,
handling and basic analysis of large data feasible. As described in earlier
sections, the data volumes are large but are not unmanageable based on
experience with other data intensive science activities such as high energy
physics, astronomy and climate research. The overarching goal in any of these
activities is to understand the end requirements. There do however remain
important challenges in automatic analysis of the data. Currently, human
participation and intervention remains a key aspect of successful exploitation
of DOD/IC data. As the data volumes grow more must be done to assist the
analyst via automation. Some improvement can come from the approaches
detailed in earlier sections by “triaging” data and making sure those results
requiring rapid response are made available as soon as possible. In contrast,
data more amenable to forensic analysis should be stored and should be easy
to access using some of the architecture-neutral ideas discussed in earlier
sections. However, this is only part of the solution and significant research is
required to develop approaches that provide deeper analysis of data. JASON
was asked by the DOD/IC whether grand challenge prize programs focused

on data analysis challenges could accelerate progress in this area.

When faced with the evaluation of a scientific program and its future
in this context, JASON often resorts to the notion of a “Grand Challenge”.
These challenges are meant to focus a field on a very difficult but imagin-
ably achievable medium-term (ten year) goal. Via these focus areas, the
community can achieve consensus on how to surmount currently limiting
technological issues and can bring to bear sufficient large scale resources to
overcome the hurdles. Examples of what may be viewed as successful grand
challenges are the Human Genome Project, the landing of a man on the
moon and, the successful navigation of an autonomous vehicle in the Mojave

desert and in an urban environment.
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The JASON criteria for grand challenges are

A one decade time scale: Everything changes much too quickly for a

multi-decadal challenge to be meaningful.

e Grand challenges cannot be open-ended: It is not a grand challenge
to “understand the brain”, because it is never quite clear when one is
done. It is a grand challenge to create an autonomous vehicle that can

navigate a course that is unknown in advance without crashing.

e One must be able to see one’s way, albeit dimly, to a solution. When
the Human Genome Project was initiated, it was fairly clear that it was
in principle doable. The major issue involved speeding up of sequencing
throughput and using computation (and appropriate fast algorithms)

to facilitate assembly of the genome at unprecedented levels.

e Grand challenges must be expected to leave an important legacy. This

criteria attempts to discriminate against one-time stunts.

With the above examples and definitions in mind, we put forth a set
of suggested challenge topics that would spur further development in auto-
mated analysis of large data. It should be emphasized that our proposals
below are by no means exhaustive. Instead, they are simply meant to pro-
vide example applications of a methodology that could lead to identification
of such grand challenge problems and thus to a rationale for significant in-
vestment in research in the area of machine assisted analysis of large data.
None of the grand challenge problems described below focus on hardware,
networking or storage. There are already many provisioning challenges in
these areas supported by various professional meetings such as the Super-
computing conferences. As stated previously, the challenge is not coming
from infrastructure. Rather, important advances in data fusion, registration,

and ultimately in machine learning are called for.
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7.1 City Model Grand Challenge

The challenge is to assemble a complete image and digital elevation
model (DEM) with accuracy of 1 m of a city from 3 hours of circling imagery
from a UAV and 3 hours of computation. This model must support rapid
enough access to support rendering of arbitrary views at human-visual speeds
(~1 sec), and ray tracing by automated algorithms seeking to register new

scenes against this model.

We suppose a sensor which has 100 Mpixels (e.g. 8 standard aerial
imagery cameras with overlapping field of view) of a typical pixel size of
0.5 m and a 5 km field of view, and sensor metadata which include position
which is accurate to 1 m, camera focal lengths and distortions which are
accurate to 107" (i.e. 1 m at a range of 10 km), and orientation which is

accurate to 1073 (i.e. 10 m at a range of 10 km).

The aspects which need to be addressed include

e Creation of a DEM data structure which can accommodate the salient
aspects of a city. Clearly an elevation drape described by posts is
not adequate for vertical walls, but it is acceptable to ignore higher
order topology such as bridges, open windows, etc. A faceted model
which permits vertical walls at arbitrary location is probably called for.
A triangulated irregular network (TIN) may be appropriate, although
it must support the rapid lookup described above. There is a large
premium in using existing data and file standards, and we suspect that
the computer graphics industry has such standards already defined.

The voxel based ideas detailed in Section 5.8 may also be of use here.

e Automated registration of features seen in different frames.
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Figure 7-1: A Google maps rendering of the Metropolitan Museum of Art in
New York. Elevation data is now available to provide 3-D perspectives

Triangulation of common features to refine orientation accuracy of the

different frames.

Construction of the facets, edges, and vertices which make up a city.

Computation of the images of the facets.

Identification and deletion of change (e.g. moving cars and people),

fusing the multiple views into a city which is as static as possible.

Note that most of these tasks are well within the reach of present day
algorithms and computer resources, but a substantial component of the chal-
lenge is organizational. Data formats need to be formulated and accepted.
Algorithms need to be robust enough that errors are automatically caught

and corrected. Google has begun to provide some of this information (see,

88



for example, Figure 7-1) but this is not at the level of accuracy and complete-
ness required for DOD/IC applications. The development of a computational
infrastructure to provide this data uniformly to the needed DOD/IC agen-
cies would represent a major advance. We anticipate that cross disciplinary

research would be required to achieve the task.

7.2 Automated Change Detection

This challenge is a companion to the previous one. The goal is to accept
a new stream of imagery from a different UAV over a city which has already
been mapped, and register, frame subtract, and detect change with a latency

of less than 15 minutes.

The aspects which need to be addressed include

e Automated registration of features seen in each frame, and correction

of metadata.

e Assembly of a “static city” model from the incoming imagery which
can be used as a reference for subtraction. Note that the different
view angles and obscuration must be accounted for, presumably by

reconstructing the images of the facets of the city model.
e Projection of the “static city” back into the sensor view for each frame.

e Subtraction of the “static city” from each frame, ideally with registra-

tion refinement and intensity and point spread function matching.

e Detection of changes arising from motion of vehicles, people, etc., lights

changing their state, or other activity.

e A report of change which includes position (long, lat, elevation) and

uncertainties, flux change and uncertainty, shape change, and the same
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Figure 7-2: Satellite imagery of Cheltenham, UK showing the central location
of the Government Headquarters (GCHQ). The goal of the geolocation grand
challenge is to take unlabeled imagery and determine the location.

properties derived from the “static city” if an object is present there

as well.

7.3 Geolocation Grand Challenge

The goal of this grand challenge is to develop methodologies to geolocate
imagery that comes with no location metadata. Given some imagery to be
provided to the challenge team the goal would be to develop a DEM model
and data architecture that could correlate the scenery (adjusting for the
random perspective) and identify a location. This could have several levels
of difficulty. For example, one might start with aerial imagery of the type

shown in Figure 7-2 to determine location.

A much more difficult problem would be to take video camera data taken
at ground level and attempt to geolocate the scenery. This would require a

3-D model of the earth that would track changes over time to scenery.
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Efficient algorithms for image correlation would need to be developed to

identify the location.

7.4 Conversational Analysis Grand Challenge

So far we have focused solely on grand challenges associated with image
analysis. It is also important to consider analysis of other media such as
voice or text. Some of the algorithms presented in Section 5 are useful for
identifying words in a document or in an audio transmission but this is far
from inferring the context of a conversation of interest. A grand challenge
in this area would bring the machine learning community together to assess
and improve the state of the art in this area. In order to provide a data
source that all entrants can access, we would propose to provide an open
source corpus of calls into a radio talk show. The challenge would be to
analyze some aspects of the context of the conversation. For example, can
one determine whether a given caller is in support of or is opposed to the
views of the host. Another challenge would be to summarize the conversation.
This could be extended to perform the same type of analysis with both video
and audio. Challenges might be to identify the speakers and to infer their
positions on issues. This is currently of interest to information providers such
as Google. They are currently analyzing the audio stream from news videos
and tagging the content by using speech to text translation. This allows one
to search news casts for particular topics and is particularly important to
an overall search capability. Google has made this publicly available as a

“Google gadget” shown in Figure 7-3.
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Figure 7-3: A Google gadget that analyzes the audio portion of video news

so that it can be searched for specific tags.

7.5 Role Discovery Grand Challenge

The objective of this grand challenge is to infer the membership and roles

of an organization of interest through an analysis of their communications.
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Figure 7-4: The use of network analyses and machine learning on a corpus
of open source e-mails to infer role discovery [11]

This is a key part of social network analysis. In order to allow open access,
a corpus of publicly available documents would have to be developed or one
might contemplate generating synthetic data. An example is the collection of
Enron e-mails which were made public after the collapse of the company. The
use of machine learning techniques to infer roles is an active research area. A
graphical representation of what is required is shown in Figure 7-4. We were
briefed by Tina Eliassi-Rad of LLNL on the application of network analysis
tools on the Enron corpus to determine the role of various employees. An

additional objective would be to characterize how roles evolve over time [11].

7.6 Cross Disciplinary Collaborative Challenge

The idea of this grand challenge is to support the development of ba-
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sic research in machine learning and information science. We consider the
teaming together some of top bio-informaticians with the top intelligence-
informaticians to work a grand challenge in personalized medicine. Today,
medicine is being challenged with how to meet the future of personalizing
treatment while lowering the cost of services. The belief is that the creation
of and access to electronic medical records and research records can change
the face of health, wellness, and medical practice. The intelligence field is
faced with the similar daunting task. JASON sees a range of experts from
the intelligence areas striving to develop methods of knitting together all

forms of information to build coherent assessments of various conditions.

Bringing together the strengths of these disciplinary-similar communi-
ties, and possible unique approaches to problems, could help directly con-
tribute to the vision of personalized medicine. For example, new imaging
technologies are being developed daily, new understandings of disease pro-
gressions are being discovered, advances in nanoscience and technology are
opening up avenues for drug delivery. There are also aggressive activities
that have been mounted to begin to capture and manage the information,
e.g. semantic web. There is, however, a gap emerging in where we are today
to where we need to go to achieve the personalized medicine vision. This
gap is in the area of integrated informatics (of all sorts). Major emphasis
must be placed on the integration of what can be learned from the massive
amount of information generated and the creation of actionable knowledge.
It is through the integration and use of the information that medicine and

medical treatment will be transformed.

The feedback loop of this collaboration should result in new methods
for the intelligence community. The reason for mounting the exercise in the
personalized medicine area is to keep access as open as possible and to draw
a large range of interest. There may even be an opportunity for collaboration
between DOD and NIH.
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The challenge would need to pose some complex questions regarding
personalized health, wellness, and the delivery of services. The challenge
would need to identify a starting set of data sources. If the challenge focused
on cancer, several data sources being created by the National Cancer Insti-
tute would be leveraged. These could include Cancer Bioinformatics Grid
(caBIG) [14], The Cancer Genome Atlas [18], and anonymized patient hospi-
tal or clinical records perhaps through the Veterans Administration. Other

sources of data may be identified by the collaborative team(s).

If the challenge were to go beyond modeling, into how the information
gets conveyed to the health care providers, it would benefit the collaboration

to include expertise from social behavioral sciences and management sciences.
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8 CONCLUSION

The preceding sections provide some context for the large data problems faced
by the DOD. Comparisons with activities in data intensive science areas such
as high energy physics and astronomy show that the data volume for all these
activities is certainly challenging (hundreds of Petabytes) but, as has been
seen, this is not an unmanageable data volume. Significant filtering of the
data is a key component of any data collection activity. Sometimes this has
to be done at the data source and in other cases can be done retrospectively.
In all such cases, an understanding of the end requirements is the best way to
assess the relevant data size and the corresponding required infrastructure.
As has been seen for data sets on the order of hundreds of Petabytes, data
storage technology will keep up even in the face of flattening technology

trends for single storage devices.

Requirements for the handling of data (particularly wide area surveil-
lance data) will differ depending on timeliness requirements. Where time
permits detailed retrospective analysis, JASON recommends the use of ho-
mogeneous data architectures, “cloud computing” (the provisioning of ser-
vices from a generic cloud of servers) and the use of streaming data analysis
algorithms that do not tie the data to particular data base schema or to
a specific set of queries. Such approaches are currently in wide use by in-
formation providers such as Google and others. One could envision several
facilities that can share resources to provide an overall capability that can
be shared among multiple agencies. There are issues of security of course
and these are quite complex. It is obviously critical to preserve aspects of
security classification and also to ensure that a proper “need to know” is
verified before some piece of data is incorporated in a specific analysis. How-
ever, the potential advantages that arise from seamless data sharing among

appropriate DOD and IC agencies could be significant.

On more intermediate time scales, a service oriented architecture is ap-
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propriate and such applications are being deployed by the DOD/IC. This
approach is also connected to the use of homogeneous data architectures.
The web services would utilize the data store and mine it using approaches
perhaps along the same lines as those described in Section 5 although clearly
more work is required in this area that is specific to DOD/IC objectives.
Once mined, services could be integrated to form web based applications
that could be used to fuse diverse data and present it in the most informa-

tive manner to the relevant analyst or decision maker.

When rapid response is required, a push-based or event-driven archi-
tecture is most appropriate. For DOD/IC applications the most critical
metadata is accurate space and time registration. Combined with more ac-
curate georegistration capabilities this will more easily facilitate the analysis
of correlated activity in locations of interest. Again, the event streams can

be monitored in real time or stored and mined later for correlations.

The key issue is not the availability or development of hardware; there
seems to be ample capability in this regard both in the development of data
sources (sensors) and data storage media. What does seem to be lacking is
an adequate investment in software, so that the analyst can keep pace with

the impressive developments to date in wide area surveillance.

As the greatest challenge will come from the need to automate analy-
sis, the most immediate need is for algorithmic advances that can help cue
the analyst and trigger closer observation as well as possible fusing of other
relevant data. The notion of fully automated analysis is today at best a
distant reality, and for this reason it is critical to also invest in research to
promote algorithmic advances; one way to effectively engage the relevant re-
search communities is through the use of grand challenges in the area of data
analysis and machine learning. The key requirements for such grand chal-
lenges are that they focus on a difficult but ultimately achievable goal, be
science-driven, and that success will leave a clear legacy in the target area.

Several such challenges have been suggested but it would be useful to con-
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sider other challenges solicited from broader communities that could engage

the research community.

Our findings as regards data analysis challenges for the DOD/IC are as

follows:

e DOD/IC data volumes as generated via various sensing modalities are,
and will continue to be, significant, but they are in many ways compa-

rable to those faced by other large enterprises.

e Important parallels can be drawn with data intensive science efforts

such high energy physics and astronomy.

e End user analysis requirements must drive the design of all aspects
of the data enterprise including storage, database design and analysis

tools.

e At present there is insufficient investment in software to more effectively

process data as opposed to hardware to both collect and store data.

e Data organization and processing approaches such as cloud computing
would appear to be best suited at present to facilitate future data fusion

and discovery.

e Continued investment in technologies such as service-oriented archi-
tecture coupled with additional investment in event-driven architec-
ture and software will be of benefit in enabling data fusion across the
DOD/IC enterprise.

e Significant gains in data fusion can be realized in the short term through

accurate spatial georegistration and time registration of sensor data,

e Processing closer to the sensor can yield important benefits provided

there is a clear formulation of critical time sensitive data requirements.

e The greatest challenge will come from the need to perform automated

analysis in support of the DOD/IC analyst.
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e Grand challenges to stimulate further research in automated analysis

can be used to assess and prioritize future research activities.

Given these findings, JASON recommends as follows:

e The DOD/IC communities should formulate a data analysis doctrine

that
— Continually assesses data requirements by matching analysis ob-
jectives to the data stream,
— Focuses on homogeneous storage solutions with open interfaces,

— Focuses on flexible analytic techniques that do not tie data to the
query,

— Focuses as strongly on software development as it does on sensor,

storage, and network development,

— Differentiates between time sensitive analyses and retrospective

analyses and applied the appropriate paradigm in each case.

e The DOD/IC communities should put into place efforts to validate the

doctrine via several use cases.

e Continued investment should take place in interdisciplinary research in

data analytics, machine learning and optimization.

e Invest in several grand challenges to assess and improve the state of

the art in automated data analysis.
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A APPENDIX: Briefers

Briefer | Affiliation

| Briefing title

Gordon Ainsworth NGA

Activity Model

Dr.

Chris Arney

Army Research Office

Data Analysis Challenges & Shifting the Decision-
Making Paradigm

Dr. Jim Ballas Naval Research Lab Using Web Services for Streaming Content

Dr. Rich Baraniuk Rice University Compressive sensing

Dr. Jacek Becla SLAC Data Intensive Data Management

Dr. Amy Braverman | JPL Massive Data Set Analysis in Climate Research at
JPL

Dr. Nevin Bryant JPL Path to Automatic and Precise Global Imagery
Co-registration

Dr. Julian Bunn Caltech Tera, Peta, and Exabyte data collection distribu-

tion, analysis and management for CERN’s large
hadron collider

. Randal Burns

Johns Hopkins University

The store everything model for high performance
computing

. John Callahan

APL, Johns Hopkins

TARPA Blackbook and RDEC

. Mark Duchaineau

Lawrence Livermore National Lab

Sensor-based video processing

. Georg Djorgovski

Caltech

Real-Time Mining, Anomalous Event Detection,
and Follow-Up in massive Data Streams: Exam-
ples and Challenges from Synoptic Sky Surveys

Dr. Tina Eliassi-Rad | Lawrence Livermore National Lab | Role discovery in dynamic graphs

Dr. Eric Fetzer JPL Challenges to understanding Earth’s climates with
Satellite Observations

Dr. Maya Gokhale Lawrence Livermore National Lab | Data-Intensive Supercomputing Architectures

Dr. Roger Haskin IBM Almaden Storage for Data Intensive Computing

Dr. Bobby Junker Office of Naval Research Fusion / Integration of Large Databases of Dis-
parate Information

Dr. Jeremy Kepner Lincoln Lab Processing closer to the sensor data; implementa-
tion challenges

Dr. Scott Kohn Lawrence Livermore National Lab | Document Triage via Faceted Search and Archi-

tectures for Large Semantic Graphs

Martin Kruger

Office of Naval Research

Human Terrain Research

Dr. Mark Linderman | AFRL, Rome Information management, Experimental results

Dr. Steven Low Caltech Internet Congestion Control

Dr. John Marion Logos Technologies Constant Hawk

Dr. Jim Siegrist Lawrence Berkeley Lab Data Handling and Data Fusion Issues in High
Energy Physics: lessons for DOD

Dr. Alex Szalay Johns Hopkins University Petascale Scalable Computing

Dr. John Tonry University of Hawaii and JASON | Pan-STARRS - Hardware and Pipeline Analysis
Challenges

Dr. Craig Tull Lawrence Berkeley Lab The Software Framework Approach to HEP Data
Handling

Dr. Jeffrey Ullman Stanford University My favorite algorithms for large scale similarity
search

Dr. Cliff Weinstein Lincoln Laboratory Research in Modeling, Simulation and Recognition

of Terror Networks and Threat Scenarios
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