

Edinburgh Research Explorer

Microplanning with Communicative Intentions: The SPUD
System

Citation for published version:
Stone, M, Doran, C, Webber, B, Bleam, T & Palmer, M 2003, 'Microplanning with Communicative Intentions:
The SPUD System', Computational Intelligence, vol. 19, no. 4, pp. 311-381. https://doi.org/10.1046/j.0824-
7935.2003.00221.x

Digital Object Identifier (DOI):
10.1046/j.0824-7935.2003.00221.x

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Computational Intelligence

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2024

https://doi.org/10.1046/j.0824-7935.2003.00221.x
https://doi.org/10.1046/j.0824-7935.2003.00221.x
https://doi.org/10.1046/j.0824-7935.2003.00221.x
https://www.research.ed.ac.uk/en/publications/922d73b1-66f2-4984-92b7-bd1d3a7c3102

Microplanning with Communicative Intentions:
The SPUD System

Matthew Stone Christine Doran Bonnie Webber Tonia Bleam Martha Palmer
Rutgers MITRE Edinburgh Pennsylvania Pennsylvania

Abstract
The process of microplanning encompasses a range of problems in Natural Language Generation
(NLG), such as referring expression generation, lexical choice, and aggregation, problems in which
a generator must bridge underlying domain-specific representations and general linguistic rep-
resentations. In this paper, we describe a uniform approach to microplanning based on declara-
tive representations of a generator’s communicative intent. These representations describe the RE-
SULTS of NLG: communicative intent associates the concrete linguistic structure planned by the
generator with inferences that show how the meaning of that structure communicates needed in-
formation about some application domain in the current discourse context. Our approach, imple-
mented in the SPUD (sentence planning using description) microplanner, uses the lexicalized tree-
adjoining grammar formalism (LTAG) to connect structure to meaning and uses modal logic pro-
gramming to connect meaning to context. At the same time, communicative intent representations
provide a RESOURCE for the PROCESS of NLG. Using representations of communicative intent, a
generator can augment the syntax, semantics and pragmatics of an incomplete sentence simulta-
neously, and can assess its progress on the various problems of microplanning incrementally. The
declarative formulation of communicative intent translates into a well-defined methodology for de-
signing grammatical and conceptual resources which the generator can use to achieve desired mi-
croplanning behavior in a specified domain.

Contents

1 Motivation 3

2 Introduction to Microplanning Based on Communicative Intent 5
2.1 Representing Communicative Intent . 5
2.2 Reasoning with Communicative Intent in Conversation 13
2.3 Communicative-Intent–Based Microplanning in SPUD 18

3 Grammar Organization 19
3.1 Syntactic Constructions . 19
3.2 Lexical Entries . 21
3.3 Lexico-grammar . 21
3.4 Morphological rules . 22

4 Grammatical Derivation and Communicative Intent 23
4.1 Grammatical Inference . 23
4.2 Contextual Inference . 26
4.3 Concrete Representations of Communicative Intent 30
4.4 Recognition of Communicative Intent . 34

1

5 Microplanning as a Search Task 35
5.1 A Formal Search Problem . 36
5.2 A Greedy Search Algorithm . 37

6 Solving NLG tasks with SPUD 39
6.1 Referring Expressions . 39
6.2 Syntactic Choice . 41
6.3 Lexical Choice . 42
6.4 Aggregation . 43
6.5 Interactions in Microplanning . 45

7 Building specifications 47
7.1 Syntax . 48
7.2 Semantic Arguments and Compositional Semantics 50
7.3 Lexical Semantics . 53

8 Previous Work 56

9 Conclusion 57

A Instruction Grammar Fragment 65
A.1 Syntactic Constructions . 65
A.2 Lexical Entries . 66

B Motion Verb Entries 68
B.1 Pure Motion Verbs . 68
B.2 Pure Change-of-state Verbs . 69
B.3 Near-motion Verbs . 70
B.4 Put Verbs . 71

Contact Address
Matthew Stone
Department of Computer Science
and Center for Cognitive Science
Rutgers, the State University of New Jersey
110 Frelinghuysen Road
Piscataway NJ 08854-8019
mdstone@cs.rutgers.edu
April 30, 2001

2

CONTENT PLANNING −→ MICROPLANNING −→ REALIZATION

Figure 1: Microplanning in the NLG pipeline.

1 Motivation
Success in Natural Language Generation (NLG) requires connecting domain knowledge and lin-
guistic representations. After all, an agent must have substantive and correct knowledge for others
to benefit from the information it provides. And an agent must communicate this information in
a concise and natural form, if people are to understand it. The instruction in (1) from an aircraft
maintenance manual suggests the challenge involved in reconciling these two kinds of representa-
tion.

(1) Reposition coupling nut.

The domain knowledge behind (1) must specify a definite location where the coupling nut goes,
and a definite function in an overall repair that the nut fulfills there. However, the linguistic form
does not indicate this location or function explicitly; instead, its precise vocabulary and structure
allows one to draw on one’s existing understanding of the repair to fill in these details for oneself.

In the architecture typical of most NLG systems, and in many psycholinguistic models of speak-
ing, a distinctive process of MICROPLANNING is responsible for making the connection between
domain knowledge and linguistic representations.1 Microplanning intervenes between a process
of CONTENT PLANNING, in which the agent assembles information to provide in conversation by
drawing on knowledge and conventions from a particular domain, and the domain-independent pro-
cess of REALIZATION through which a concrete presentation is actually delivered to a conversa-
tional partner. These processes are frequently implemented in a pipeline architecture, as shown in
Figure 1. Concretely, the content planner is typically responsible for responding to the informa-
tion goals of the conversation by identifying a body of domain facts to present, and by organizing
those facts into a rhetorical structure that represents a coherent and potentially convincing argument.
Microplanning takes these domain facts and recodes them in suitable linguistic terms. Finally, re-
alization is responsible for a variety of low-level linguistic tasks (including certain syntactic and
morphological processes), as well as such formatting tasks as laying out a presentation on a page
or a screen or performing speech synthesis. See Reiter and Dale for a thorough overview of these
different stages in NLG systems (Reiter and Dale, 2000).

Microplanning often looks like a grab-bag of idiosyncratic tasks, each of which calls for its own
representations and algorithms. For example, consider the three microplanning tasks that Reiter and
Dale survey: referring expression generation, lexical choice, and aggregation.

• In referring expression generation, the task is to derive an identifying description to take the
place of the internal representation of some discourse referent. To carry out this task, genera-
tors often execute rules to elaborate an incomplete semantic specification of an utterance (the

1The name microplanning originates in Levelt’s psycholinguistic model of language production (Levelt, 1989), and
is adopted in Reiter and Dale’s overview of NLG systems (Reiter and Dale, 2000). The process has also been termed
SENTENCE PLANNING, beginning with (Rambow and Korelsky, 1992).

3

rabbit, say) by incorporating additional descriptive concepts (for instance white, to yield the
white rabbit) (Dale and Haddock, 1991; Dale, 1992; Dale and Reiter, 1995).

• In lexical choice, the task is to select a word from among the many that describe an object
or event. To perform lexical choice, generators often invoke a pattern-matching process that
rewrites domain information (that there is a caused event of motion along a surface, say) in
terms of available language-specific meanings (to recognize that there is sliding, for example)
(Nogier and Zock, 1991; Elhadad et al., 1997; Stede, 1998).

• In aggregation, the task is to use modifiers, conjoined phrases, and other linguistic construc-
tions to pack information concisely into fewer (but more complex) sentences. Aggregation
depends on applying operators that detect relationships within the information to be expressed,
such as repeated reference to common participants (that Doe is a patient and that Doe is fe-
male, say), and then reorganize related semantic material into a nested structure (to obtain
Doe is a female patient, for example) (Dalianis, 1996; Shaw, 1998).

But tasks like referring expression generation, lexical choice and aggregation interact in system-
atic and intricate ways (Wanner and Hovy, 1996). These interactions represent a major challenge
to integrating heterogeneous microplanning processes—all the more so in that NLG systems adopt
widely divergent, often application-specific methods for sequencing these operations and combin-
ing their results (Cahill and Reape, 1999).

In contrast to this heterogeneity, we advocate a UNIFORM approach to microplanning. Our gen-
erator, called SPUD (for sentence planning using description), maintains a common representation
of its provisional utterance during microplanning and carries out a single decision-making strategy
using this representation. In what follows, we draw on and extend our preliminary presentations of
SPUD in (Stone and Doran, 1996; Stone and Doran, 1997; Stone and Webber, 1998; Stone et al.,
2000) to describe this approach in more detail.

The key to our framework is our generator’s representation of the INTERPRETATION of its pro-
visional utterances. We call this representation COMMUNICATIVE INTENT. In doing so, we em-
phasize that language use involves a LADDER OF RELATED INTENTIONS (Clark, 1996), from ut-
tering particular words, through referring to shared individuals from the context and contributing
new information, to answering open questions in the conversation. (Clark’s ladder metaphor par-
ticularly suits the graphical presentation of communicative intent that we introduce in Section 2.)
Since many of these intentions are adopted during the course of microplanning, communicative in-
tent represents the RESULTS of generation. At the same time, we emphasize that microplanning is a
deliberative process like any other, in which the provisional intentions that an agent is committed to
can guide and constrain further reasoning (Bratman, 1987; Pollack, 1992). Thus, communicative
intent also serves as a key resource for the PROCESS of generation.

Our specific representation of communicative intent, described in Sections 2–4, associates a
concrete linguistic structure with inferences about its meaning that show how, in the current dis-
course context, that structure describes a variety of generalized individuals2 and thereby commu-
nicates specific information about the application domain. As argued in Sections 5–6, this rep-
resentation has all the information required to make decisions in microplanning. For example, it

2meaning not only objects but also actions, events, and any other constituents of a rich ontology for natural language,
as described in (Bach, 1989) and advocated in (Hobbs, 1985)

4

records progress towards unambiguous formulation of referring expressions; it shows how alterna-
tive choices of words and syntactic constructions suit an ongoing generation task to different de-
grees because they encapsulate different constellations of domain information or set up different
links with the context; and it indicates how given structure and meaning may be elaborated with
modifiers so that multiple pieces of information can be organized for expression in a single sen-
tence. Thus, with a model of communicative intent, SPUD can augment the syntax, semantics and
pragmatics of an incomplete sentence simultaneously, and can assess its progress on the various
interacting subproblems of microplanning incrementally.

In communicative intent, the pairing between structure and meaning is specified by a gram-
mar which describes linguistic analyses in formal terms. Likewise, links between domain knowl-
edge and linguistic meanings are formalized in terms of logical relationships among concepts. To
construct communicative intent, we draw conclusions about interpretation by reasoning from these
specifications. Thus, communicative intent is a DECLARATIVE representation; it enjoys the numer-
ous advantages of declarative programming in Natural Language Processing (Pereira and Shieber,
1987). In particular, as we discuss in Section 7, the declarative use of grammatical resources leads
to a concrete methodology for designing grammars that allow SPUD to achieve desired behavior in
a specified domain.

Performing microplanning using communicative intent means searching through derivations of
a grammar to construct an utterance and its interpretation simultaneously. This search is facilitated
with a grammar formalism that packages meaningful decisions together and allows those decisions
to be assessed incrementally; SPUD uses the lexicalized tree-adjoining grammar formalism. Mean-
while, the use of techniques such as logic programming and constraint satisfaction leads to efficient
methods to determine the communicative intent for a given linguistic form and evaluate progress on
a microplanning problem. These design decisions, combined for the first time in SPUD, lend con-
siderable promise to communicative-intent–based microplanning as an efficient and manageable
framework for practical NLG.

2 Introduction to Microplanning Based on Communicative Intent
We begin with an extended illustration of communicative intent and motivation for its use in mi-
croplanning. In Section 2.1, we situate representations of communicative intent more broadly within
research on the cognitive science of contributing to conversation, and we use a high-level case-study
of communicative intent to discuss more precisely how such representations may be constructed
from linguistic and domain knowledge. In Section 2.2, we show how such representations could
be used to guide reasoning in conversational systems, particularly to support microplanning deci-
sions. Finally, in Section 2.3, we identify the key assumptions that we have made in SPUD, in order
to construct an effective NLG system that implements a model of communicative intent.

2.1 Representing Communicative Intent
Communicative intent responds to a view of contributing to conversation whose antecedents are
Grice’s description of communication in terms of intention recognition ((Grice, 1957), as updated
by Thomason (Thomason, 1990)) and Clark’s approach to language use as joint activity (Clark,
1996).

According to this view, conversation consists of joint activity undertaken in support of common
goals. Participants take actions publicly; they coordinate so that all agree on how each action is in-

5

Coupling Nut

Fuel line

Elbow

Fuel line

Sealing Ring

Before After

Figure 2: Carrying out instruction (2) in an aircraft fuel system.

tended to advance the goals of the conversation, and so that all agree on whether the action succeeds
in its intended effects. This joint activity defines a CONVERSATIONAL PROCESS which people en-
gage in intentionally and collaboratively, and, we might even suppose, rationally. The fundamental
component of conversational process is the coordination by which speakers manifest and hearers
recognize communicative intentions carried by linguistic actions. But there are many other aspects
of conversational process: acknowledgment, grounding and backchannels; clarification and repair;
and even regulation of turn-taking. (See (Clark, 1996) and references therein.) Dialogue systems
increasingly implement rich models of conversational process; see e.g. (Cassell, 2000). This makes
it vital that a sentence planning module interface with and support a system’s conversational pro-
cess.

Like any deliberative process (Pollack, 1992), this conversational process depends on plans,
which provide resources for decision-making. In conversation, these plans map out how the respon-
dent might use certain words to convey certain information: they describe the utterances of words
and linguistic constructions, spell out the meanings of those utterances, and show how these utter-
ances, with these meanings, could contribute structure, representing propositions and intentions, to
the CONVERSATIONAL RECORD, an evolving abstract model of the the dialogue (Thomason, 1990).
In other words, a communicative plan is a structure, built by reasoning from a grammar, which sum-
marizes the interpretation of an utterance in context. Such plans constitute our ABSTRACT LEVEL

OF REPRESENTATION OF COMMUNICATIVE INTENT. Note that this level of representation pre-
supposes, and thereby suppresses, the specific collaborative activity that determines how meaning
is actually recognized and ratified. Communicative intent is a resource for these processes in con-
versation, not a description of them.

We can develop these ideas in more detail by considering an illustrative example.

(2) Slide coupling nut onto elbow to uncover fuel-line sealing ring.

We draw (2) from an aircraft maintenance domain that we have studied in detail and report on
fully in Section 7; Figure 2 shows the effect of the action on the aircraft fuel system. In this system,
pipes are joined together using sealing rings that fit snugly over the ends of adjacent pipes. Some-
times these joints are secured by positioning a coupling nut around the seal to keep it tight and then
installing a retainer to keep the coupling nut and seal in place. In checking (and, if necessary, replac-
ing) such sealing rings, personnel must gain access to them by first removing the retainer and then

6

sliding the coupling nut away. Figure 2 illustrates part of this process for a case where an instructor
could use (2) to direct an actor to perform the step of sliding the coupling nut clear.

We draw on this account of the domain in which (2) is used, to describe the communicative
intent with which we represent (2). We consider three components of communicative intent in turn.

• The first derives from the update to the conversational record that the instruction is meant to
achieve. This update includes the fact that the actor is to carry out a motion specified in terms
of the given objects and landmarks—namely, the actor is to move the coupling nut smoothly
along the surface of the fuel line from its current position onto the elbow. But the update
also spells out the intended purpose of this action: the action is to uncover the sealing ring
and, we may presume, thereby enable subsequent maintenance steps. So communicative in-
tent must show how the meanings of the words in (2) are intended to put on the record this
characterization of movement and purpose.

• The second component relates to the set of referents that the instruction describes and evokes:
the elbow, the coupling nut adjacent to the elbow, the fuel line, and the sealing ring on the
fuel line. The actor is expected to be familiar with these referents; this familiarity might
come from the actor’s general experience with the aircraft, from a diagram accompanying
a block of instructions, or just from the physical surroundings as the actor carries out the in-
structions. In any case, the expectation of familiarity corresponds to a constraint on the ideal-
ized conversational record: the specified referents with the specified properties must be found
there. Indeed, in understanding (2), the actor can and should use this constraint together with
the shared information from the conversational record to identify the intended objects and
landmarks. Thus, communicative intent must represent this constraint on the conversational
record and anticipate the actor’s use of it to resolve the instructor’s references.

• The third component accounts for the collection of constructions by which the instructor frames
the instruction. The instruction is an imperative; that choice shows (among other things) that
the instructor’s relationship with the actor empowers the instructor to impose obligations for
action on the actor. (In our domain, maintenance instructions are in fact military orders.)
Meanwhile, the use of definite noun phrases that omit the article the reflects the distinctive
telegraphic style adopted in these instructions. Of course, the relationship of instructor and
actor and the distinctive linguistic style of the domain are both part of the conversational
record, and the instructor anticipates that the actor will make connections with these shared
representations in interpreting the constructions in (2). Thus communicative intent must also
represent these connections.

To represent communicative intent, then, we will need to associate a formal representation of the
utterance in (2) with a model of interpretation that describes these three components: how the ut-
terance adds information that links up with the goals of communication; how it imposes constraints
that link up with shared characterizations of objects; and how it establishes specific connections to
the status of participants and referents in the discourse.

Schematically, we can represent the form of the utterance using a dependency tree as shown in
(3).

7

(3)
slide (imperative)

��
��

��
��

��
��

�

HH
HH

HH
HH

HH
HH

H

coupling-nut (zero-def) onto (VP modifier)

elbow (zero-def)

〈purpose〉 (bare infinitival adjunct)

uncover (infinitive)

sealing-ring (zero-def)

fuel-line (N modifier)

This tree analyzes the utterance as being made up of ELEMENTS bearing specific content and real-
ized in specific syntactic constructions; these elements form the nodes in the tree. Thus, the left-
most leaf, labeled coupling-nut (zero-def), represents the fact that the noun coupling nut is used
here, in construction with the zero definite determiner characteristic of this genre, to contribute a
noun phrase to the sentence. Generally, these elements include lexical items, as coupling nut does;
but in cases such as the 〈purpose〉 element, we may simply find some distinctive syntax associated
with meaning that could otherwise be realized by a construction with explicit lexical material (in
order, for a purpose relation). Edges in the tree represent operations of syntactic combination; the
child node may either supply a required COMPLEMENT to the parent node (as the node for coupling-
nut does for its parent slide) or may provide an optional MODIFIER that supplements the parent’s
interpretation (as the node for 〈purpose〉 does for its parent slide).

We pair (3) with a record of interpretation by taking into account two sources of information:
the GRAMMATICAL CONVENTIONS that associate meaningful conditions with an utterance across
contexts, in a public representation accessible to speaker and hearer; and the SPEAKER’S PRESUMP-
TIONS which describe specific instantiations for these conditions in the current context, and deter-
mine the precise communicative effects of the utterance in context.

We assume that grammatical conventions associate each of the elements in (3) with an AS-
SERTION that contributes to the update intended for the utterance; a PRESUPPOSITION intended
to ground the utterance in shared knowledge about the domain; and a PRAGMATIC condition in-
tended to reflect the status of participants and referents in the discourse. There is a long history in
computational linguistics for the assumption that utterance meaning is a conjunction of atomic con-
tributions made by words (in constructions); see particularly (Hobbs, 1985). Our use of assertion
and presupposition reflects the increasingly important role of this distinction in linguistic semantics,
in such works as (van der Sandt, 1992; Kamp and Rossdeutscher, 1994); the particular assertions
and presuppositions we use draw not only on linguistic theory but also on research in connecting
linguistic meanings with independently-motivated domain representations, such as those required
for animating human avatars (Badler et al., 1999; Badler et al., 2000). Our further specification of
pragmatic conditions is inspired by accounts of constructions in discourse in terms of contextual
requirements, such as (Hirschberg, 1985; Ward, 1985; Prince, 1986; Birner, 1992; Gundel et al.,
1993).

As an illustration of these threefold conventions, consider the item slide as used in (2) and rep-

8

resented in (3). Here slide introduces an event a1 in which H (the hearer) will move N (the coupling
nut) along a path P (from its current location along the surface of the pipe to the elbow); this event
is to occur next in the maintenance procedure.

At the same time, slide provides a presupposed constraint that P start at the current location of
the nut N and that P lie along the surface of an object. This constraint helps specify what it means
for the event to be a sliding, but also helps identify both the nut N and the elbow E. As an impera-
tive, slide carries a presupposed constraint on who the participants in the conversation are, which
helps identify the agent H as the hearer, and at the same time introduces a variable for the speaker
S. Moreover, slide carries the pragmatic constraint that S be capable of imposing obligations for
physical action on H.

These conditions can be schematized as in (4)3:

(4) a Assertion: move(a1,H,N,P)∧next(a1)
b Presupposition: partic(S,H)∧ start-at(P,N)∧ surf (P)
c Pragmatics: obl(S,H)

Note that these conditions take the form of constraints on the values of variables; this helps explain
why we see DESCRIPTION as central to the problem of sentence planning. We call the variables
that appear in such constraints the DISCOURSE ANAPHORS of an element; we call the values those
variables take, the element’s DISCOURSE REFERENTS. Our terminology follows that of (Webber,
1988), where a discourse anaphor specifies an entity by relation (perhaps by an inferential relation)
to a referent represented in an evolving model of the discourse. (Throughout, we follow the Prolog
convention with anaphors–variables in upper case and referents–constants in lower case.)

When elements are combined by syntactic operations, the grammar describes both syntactic and
semantic relationships among them. Semantic relationships are represented by requiring corefer-
ence between discourse anaphors of combined elements. We illustrate this by considering the el-
ement coupling-nut, which appears in combination with slide. The grammar determines that the
element presupposes a coupling nut (cn) represented by some discourse anaphor R. The pragmat-
ics of the element is the condition that the genre supports the zero definite construction (zero-genre)
and that the referent for R has definite status in the conversational record. The element carries no
assertion. Thus, this use of coupling-nut carries the conditions schematized in (5).

(5) a Assertion: —
b Presupposition: cn(R)
c Pragmatics: def (R)∧ zero-genre

Now, when this element serves as the direct object of the element slide as specified in (3), the coref-
erence constraints of the grammar kick in to specify that what is slid must be the coupling nut; for-
mally, in this case, the N of (4) must be the same as the R of (5). Applying this constraint, we would
represent the conditions imposed jointly by slide and coupling-nut in combination as in (6).

(6) a Assertion: move(a1,H,N,P)∧next(a1)
b Presupposition: partic(S,H)∧ start-at(P,N)∧ surf (P)∧cn(N)
c Pragmatics: obl(S,H)∧def (N)∧ zero-genre

3From here on, we adopt the abbreviations partic for participants, surf for surface, and obl for obligations.

9

Let us now return to instruction (2).

(2) Slide coupling nut onto elbow to uncover fuel-line sealing ring.

In all, our exposition in this paper represents the content of (2) with the three collections of con-
straints on discourse anaphors in (7); we associate (7) with (2) through the derivation of (2) as tree
(3) in our grammar for English.

(7) a Assertion: move(a1,H,N,P)∧next(a1)∧purpose(a1,a2)∧uncover(a2,H,R)
b Presupposition: partic(S,H)∧ start-at(P,N)∧ surf (P)∧cn(N)∧end-on(P,E)∧el(E)∧

sr(R)∧fl(F)∧nn(R,F,X)
c Pragmatics: obl(S,H)∧def (N)∧def (E)∧def (R)∧def (F)∧ zero-genre

Spelling out the example in more detail, we see that in addition to the asserted constraints move
and next contributed by the element slide, we have a purpose constraint contributed by the bare
infinitival adjunct and an uncover constraint contributed by the element uncover; in addition to the
presupposed constraints partic, start-at, surf and cn contributed by slide and coupling-nut, we have
an end-on constraint contributed by onto, an el constraint contributed by elbow, an sr constraint
contributed by sealing-ring and fl and nn constraints contributed by the noun-noun modifier use of
fuel-line; nn uses a variable X to abstract some close relationship between the fuel line F and the
sealing ring R which grounds the noun-noun compound.

In any use of an utterance like (2), the speaker intends the presupposition and the pragmatics
of the utterance to link up in a specific way with particular individuals and propositions from the
conversational record; the speaker likewise intends the assertion to settle particular open questions
in the discourse in virtue of the information it presents about particular individuals. These links
constitute the PRESUMPTIONS the speaker makes with an utterance; these presumptions must be
recorded in an interpretation over and above the shared conventions that we have already outlined.
We assume that these presumptions take the form of INFERENCES that the speaker is committed to
in generation and that the hearer must recover in understanding.

We return to the element slide of (3) to illustrate this ingredient of interpretation. We take the
speaker of (2) to be a computer system (including an NLG component), which represents itself as a
conversational participant s0 and represents its user as a conversational participant h0. We suppose
that the coupling nut to be moved here is identified as n11 in the system’s model of the aircraft,
the fuel-line joint is identified as j2 and the elbow is identified as e2. In order to describe paths,
we use a function l whose arguments are a landmark and a spatial relation and whose result is the
place so-related to the landmark. For example, l(on,e2) is the place on the elbow. We also use
a function p whose arguments are two places and whose result is the direct path between them.
For example, p(l(on, j2), l(on,e2)) is the path that the coupling nut follows here. (For a similar
spatial ontology, see (Jackendoff, 1990).) Then the system here intends the contribution that the
next action, a1, is one where h0 moves n11 by path p(l(on, j2), l(on,e2)). This contribution follows
by inference from the meaning of slide in general together with the speaker’s commitments to pick
out particular discourse referents from the conversational record and, where necessary, to rely on
background knowledge about these referents and about aircraft maintenance in general.

Let’s adopt the notation that a boxed expression represents an update to be made to the conver-
sational record, while an underlined expression represents a feature already present in the conver-
sational record; boxed and underlined expressions are DOMAIN representations and can be special-
ized, when appropriate, to application-specific ontologies and models. The other expressions we

10

have seen are LINGUISTIC representations, since they are associated with lexical items and syntac-
tic constructions in a general way. An edge indicates an inferential connection between a linguistic
representation and a domain representation. Then we can provide representations of the presump-
tion associated with the assertion of slide in (2) by (8).

(8)
move(a1,h0,n11, p(l(on, j2), l(on,e2)))

move(a1,H,N,P)

next(a1)

next(a1)

Given what we have supposed, in uttering (2), the system is also committed to inferences which
establish instances of the presupposition and the pragmatics of slide for appropriate referents. Our
conventions represent these further inferences as in (9).

(9)
partic(S,H)

partic(s0,h0)

start-at(P,N)

start-at(p(l(on, j2), l(on,e2)),n11)

surf(P)

surf(p(l(on, j2), l(on,e2)))
obl(S,H)

obl(s0,h0)

In (9), we use the same predicates for domain and linguistic relationships, so the inferences
required in all cases can be performed by simple unification. But our framework will enable more
complicated (and more substantive) connections. For example, suppose we use a predicate loc(L,O)
to indicate that the place L is the location of object O. Then we would represent the fact that the
nut is located on the joint as (10).

(10) loc(l(on, j2),n11)

We know that if an object is in some place, then any path from that place begins at the object; (11)
formalizes this generalization.

(11) ∀loe(loc(l,o)⊃ start-at(p(l,e),o))

Since they provide common background about this equipment and about spatial action in general,
both of these facts belong in the conversational record.

From (10) and (11) we can infer that the path on the joint starts at the nut; that leads to a record
of inference as in (12).

(12)
start-at(P,N)

loc(l(on, j2),n11)

That is, the understanding behind (12) is that loc(l(on, j2),n11) is a fact from the conversational
record intended to be linked with the linguistic presupposition start-at(P,N) by appeal to the premise
(11) from the conversational record.

Similarly, we propose to analyze the modifier fuel-line in keeping with the inferential account
of noun-noun compounds proposed in (Hobbs et al., 1988; Hobbs et al., 1993). This item carries
a very general linguistic presupposition. There must be a fuel line F and some close relationship
X between F and the object R that the modifier applies to. In the context of this aircraft, this pre-
supposition is met because of the fact that the particular ring intended here is designed for the fuel

11

Structure:
dependency representation of the utterance

Assert:
links for utterance assertion

Presuppose:
links for utterance presupposition

Pragmatics:
links for utterance pragmatic conditions

Figure 3: General form of communicative intent representation.

line: X = for. This link exploits a domain-specific inference rule to the effect that one thing’s be-
ing designed for another counts as the right kind of close relationship for noun-noun modification.
Concretely, we might use this structure to abstract the inference:

(13)
nn(R,F,X)

for(r11, f 4)

As with (12), (13) represents that for(r11, f 4) is a shared fact linked with the linguistic presuppo-
sition nn(R,F,X) by appeal to a shared rule, here (14).

(14) ∀ab(for(a,b)⊃ nn(a,b, for))

In general, then, the communicative intent behind an utterance must include three inferential
records. The first collection of inferences links the assertions contributed by utterance elements to
updates to the conversational record that the instruction is intended to achieve; in the case of (8),
we add instances of the assertion identified by the speaker. The second collection of inferences
links the presuppositions contributed by the utterance elements to intended instances in the conver-
sational record. The final collection of inferences links the pragmatic constraints of the utterance
elements to intended instances in the conversational record. We will represent these inferences in
the format of Figure 3. Reading Figure 3 from bottom to top, we find a version of Clark’s ladder
of intentions, with higher links dependent on lower ones: that is, the inference to pragmatics and
presupposition are prerequisites for successful interpretation, while the inferences from the asser-
tion contingently determine the contribution of interpretation. Such diagrams constitute a complete
record of communicative intent, since they include the linguistic structure of the utterance and lay
out the conventional meanings assigned to this structure as well as the presumed inferences link-
ing these meanings to context. For example, Figure 4 displays the communicative intent associated
with the utterance of slide.

Figure 5 schematizes the full communicative intent for (2) using the notational conventions
articulated thus far. As a whole, the utterance carries the syntactic structure of (3); in Figure 5
this structure is paired with inferential representations that simply group together the inferences
involved in interpreting the individual words in their specific syntactic constructions.

12

Structure:
slide-[onto] (imperative)

Assert:

move(a1,h0,n11, p(l(on, j2), l(on,e2)))

move(a1,H,N,P)

next(a1)

next(a1)

Presuppose:

partic(S,H)

partic(s0,h0)

start-at(P,N)

loc(l(on, j2),n11)

surf (P)

surf (p(l(on, j2), l(on,e2)))

Pragmatics:

obl(S,H)

obl(s0,h0)

Figure 4: Interpretation of slide in (2). The speaker’s presumptions map out intended connections
to discourse referents as follows: the speaker S, s0; the hearer H, h0; the nut N, n11; the path P,
p(l(on, j2), l(on,e2)); the elbow E, e2. The fuel-line joint is j2.

2.2 Reasoning with Communicative Intent in Conversation
We now return to our initial characterization of conversation as a complex collaborative and delib-
erative process, guided by representations of communicative intent such as that of Figure 5. This
characterization locates microplanning within the architecture depicted in Figure 6.

In Figure 6, content planning is one of a number of subtasks carried out by a general dialogue
manager. The dialogue manager tracks the content of conversation through successive turns, through
such functions as following up on an utterance (Moore and Paris, 1993; Moore, 1994), repairing an
utterance (Heeman and Hirst, 1995), and updating a model of the ongoing collaboration (Rich et al.,
2001). The dialogue manager also coordinates the interaction in the conversation, by managing
turn-taking, acknowledgment and other conversational signals (Cassell, 2000).

Once content planning has derived some updates that need to be made to the conversational
record, the dialogue manager passes these updates as input to the microplanning module. In re-
sponse, the microplanner derives a communicative-intent representation that spells out a way to
achieve this update using an utterance of concrete linguistic forms. To construct this representation,
the microplanner consults both the grammar and a general KNOWLEDGE BASE. This knowledge
base specifies the system’s private domain knowledge, as well as background information about the
domain that all participants in the conversation are presumed to share. It maintains information con-
veyed in the conversation, thus including and extending the system’s model of the conversational
record.

The output communicative intent constructed by the microplanner returns to the dialogue man-

13

Structure:

to slide (imperative)

��
��

��
��

��
��
�

HH
HH

HH
HH

HH
HH

H

coupling-nut (zero-def) onto

elbow (zero-def)

〈purpose〉 (bare infinitival adjunct)

uncover

sealing-ring (zero-def)

fuel-line (modifier)

Assert:

move(a1,h0,n11, p(l(on, j2), l(on,e2)))

move(a1,H,N,P)

next(a1)

next(a1)

purpose(a1,a2)

purpose(a1,a2)

uncover(a2,h0,r11)

uncover(a2,H,R)

Presuppose:

partic(S,H)

partic(s0,h0)

start-at(P,N)

loc(l(on, j2),n11)

surf(P)

surf(p(l(on, j2), l(on,e2)))

cn(N)

cn(n11)

end-on(P,E)

end-on(p(l(on, j2), l(on,e2)),e2)

el(E)

el(e2)

sr(R)

sr(r11)

fl(F)

fl(f 4)

nn(R,F,X)

for(r11, f 4)

Pragmatics:

obl(S,H)

obl(s0,h0)

def (N)

def (n11)

def (E)

def (e2)

def (R)

def (r11)

def (F)

def (f 4)

zero-genre

zero-genre

Figure 5: Communicative intent for (2). The grammar specifies meanings as follows: For slide,
assertions move and next; for the bare infinitival adjunct, purpose; for uncover, uncover. For slide,
presuppositions partic, start-at and surf ; for coupling-nut, cn; for onto, end-on; for elbow, el; for
sealing-ring, cn; for fuel-line, fl and nn. For slide, pragmatics obl; for other nouns, pragmatics def
and zero-genre. The speaker’s presumptions map out intended connections to discourse referents
as follows: the speaker S, s0; the hearer H, h0; the nut N, n11; the path P, p(l(on, j2), l(on,e2));
the elbow E, e2; the ring R, r11; the fuel-line F, f 4; the relation X, for. The fuel-line joint is j2.

14

DIALOGUE MANAGEMENT REALIZATION

INTERPRETATION

content planning

negotiation and repair

conversational feedback

MICROPLANNING

GRAMMAR

communicative intent

communicative intent
recognized

planned

planned
communicative intent

selected updates

CONVERSATIONAL RECORD

KNOWLEDGE BASE, AND

Figure 6: A conversational architecture for communicative-intent–based microplanning.

ager; the dialogue manager not only can forward this communicative intent for realization but also
can use it as a general resource for collaboration. Thus, Figure 6 reproduces and extends the NLG
pipeline of Figure 1. (Cassell et al., 2000) describes more fully the integration of dialogue manage-
ment and communicative-intent–based microplanning in one implemented conversational agent.

In a communicative-intent representation, as illustrated in the structure of Figure 5, we find the
resources required for a flexible dialogue manager to pursue instruction (2) with an engaged con-
versational partner. To start with, the structure is a self-contained record of what the system is doing
with this utterance and how it is doing it. The structure maps out the contributions that the system
wants on the record and the assertions that signal these contributions; it maps out the constraints
presupposed by the utterance and the unique matches for these constraints that determine the refer-
ents the instruction has. Because the structure combines grammatical knowledge and information
from the conversational record in this unambiguous way, the dialogue manager can utter it with the
expectation that the utterance will be understood (provided the model of the conversational record is
correct and provided the interpretation process does not demand more effort than the user is willing
or able to devote to it).

More generally, we expect that communicative-intent representations offer a resource for the
dialogue manager to respond to future utterances. Although we have yet to implement such delib-
eration, let us outline briefly how communicative intent may inform such responses; such consid-
erations help to situate structures such as that of Figure 5 more tightly within our general charac-
terization of conversation.

15

As a first illustration, suppose the user asks a clarification question about the instructed action,
such as (15).

(15) So I want to get at the sealing-ring at the joint under the coupling-nut?

By connecting the communicative intent from (2) with the communicative intent recognized for
(15), the dialogue manager can infer that the actor is uncertain about which sealing-ring the system
intended to identify with fuel-line sealing-ring. In carrying out this inference and in formulating an
appropriate answer (that’s right, perhaps), the explicit links in communicative intent between pre-
supposed content and the conversational record are central. In other words, the dialogue manager
can use communicative intent as a data structure for plan recognition and plan revision in negoti-
ating referring expressions, as in (Heeman and Hirst, 1995).

As a second illustration, suppose the user asks a follow-up question about the instructed action,
perhaps (16).

(16) How does that uncover the sealing ring?

(16) refers to the sliding and the uncovering introduced by (2); in fact, (16) shares with (2) not only
reference but also substantial vocabulary. Accordingly, by connecting the intent behind (16) to that
for (2), the dialogue manager may infer that the intent for (2) was successfully recognized. At the
same time, by comparing the intent for (16) with that for (2), the dialogue manager can discover
that, because the actor needs to know how the sliding will achieve the current purpose, the actor has
not fully accepted instruction (2). The information provided in (2) and (16) can serve as a starting
point for repair: knowing what information the actor has narrows what information the user might
need. More generally, if structures for communicative intent also record the inferential relationships
that link communicative goals to one another, the dialogue manager may attempt the more nuanced
responses to expressions of doubt and disagreement described in (Moore and Paris, 1993; Carberry
and Lambert, 1999).

With this background, we can now present the key idea behind the SPUD system: The structure
of Figure 5 provides a resource for deliberation not just for the dialogue manager but also for the
microplanner itself. The microplanner starts with a task set by the dialogue manager: this utterance
is to contribute, in a recognizable way, the updates that a move is next and its purpose is to uncover.
The microplanner can see to it that its utterance satisfies these requirements by adding interpreted
elements, such as the structure for slide of Figure 4, one at a time, to a provisional communicative-
intent representation. In each of these steps, the microplanner can use its assessment of the overall
interpretation of the utterance to make progress on the interrelated problems of lexical choice, ag-
gregation and referring expression generation.

Figure 7 offers a schematic illustration of a few such steps: it tracks the addition first of slide,
then of a purpose adjunct, then of uncover, and finally of coupling-nut, all to an initially empty
structure. (Note that in Figure 7 we abbreviate inference structures and specified updates to the
predicates they establish; we use the tag recognition as a mnemonic that the microplanner is re-
sponsible for making sure these structures can be recognized as intended.)

To start, the first transition in Figure 7, which results in a structure that repeats Figure 4, can
be viewed as a description of the use of the particular word slide in a particular syntactic construc-
tion to achieve particular effects. We will see that a generator can create such descriptions by an
inferential matching process that checks a pattern of lexical meaning against the discourse context

16

Structure:
(empty)

Assert:
(empty)

Presuppose:
(empty)

Pragmatics:
(empty)

Requirements:
move purpose
next uncover
(recognition)

⇒ Structure:
slide

Assert:
move next

Presuppose:
partic loc surf

Pragmatics:
obl

Requirements:
purpose
uncover
(recognition)

⇒

Structure:

slide

〈purpose〉

Assert:
move next
purpose

Presuppose:
partic loc surf

Pragmatics:
obl

Requirements:
uncover
(recognition)

⇒

Structure:

slide

〈purpose〉

uncover

Assert:
move next
purpose uncover

Presuppose:
partic loc surf

Pragmatics:
obl

Requirements:
(recognition)

⇒

Structure:

slide

��
�

HH
H

c.nut 〈purpose〉

uncover

Assert:
move next
purpose uncover

Presuppose:
partic loc surf cn

Pragmatics:
obl def zero-genre

Requirements:
(recognition)

Figure 7: A schematic view of the initial stages of microplanning for (2). Each state includes a
provisional communicative intent and an assessment of further work required, such as updates to
achieve. Each transition represents the addition of a new interpreted element.

and against the specified updates. In particular, to be applicable at a specific stage of generation, a
lexical item must have an interpretation to contribute: the item’s assertion must hold; the item’s pre-
supposition and pragmatics must find links in the conversational record. Moreover, to be prefered
over alternative options, use of the item should push the generation task forward: in general, the up-
dates the item achieves should include as many as possible of those specified in the microplanning
problem, and as few others as possible; in general, the links the item establishes to shared context
should appeal to specific shared content that facilitates the hearer’s plan-recognition interpretation
process.

Thus, in deriving structures like that of Figure 4 from its grammatical inventory, the genera-
tor can implement a model of lexical and grammatical choice. The generator determines available
options by inference and selects among alternatives by comparing interpretations.

Meanwhile, in extending provisional communicative intent as suggested in Figure 7, the gener-
ator’s further lexical and syntactic choices can simultaneously reflect the its strategies for aggrega-
tion and for referring expression generation. Take the addition of an element like the bare infinitival
purpose clause, in step two of Figure 7. As with slide, this entry represents a pattern of interpre-
tation where linguistic meaning mediates between the current context and potential update to the
context. In particular, the entry for a bare infinitival purpose clause depends on an event a1 with an
agent h0 already described by the main verb of the provisional instruction (in this case slide). The
entry relates a1 to another event a2 which a1 should achieve and which also has h0 as the agent;
here a2 is to be described as an uncovering by a subsequent step of lexical choice. Thus the syn-
tax and semantics of the entry amount to a pattern for aggregation: the modifier provides a way of
extending an utterance that the generator can use to include additional related information about
referents already described in the ongoing utterance.

17

As another illustration, take the addition of a complement like coupling nut, as in step four of
Figure 7, or a modifier like fuel-line. The contribution of these entries is to add constraints on the
context that the hearer must match to interpret the utterance. With coupling nut, for example, the
hearer learns that the referent for N must actually be a coupling nut; similarly, with fuel-line, the
hearer learns that the referent for R must be for some fuel line F. Here we find the usual means
for ensuring reference in NLG: augmenting the content of an utterance by additional presupposed
relationships.

2.3 Communicative-Intent–Based Microplanning in SPUD

Sections 2.1–2.2 have characterized microplanning as a problem of constructing representations of
communicative intent to realize communicative goals. Communicative intent is a detailed repre-
sentation of an utterance that combines inferences from a declarative description of language, the
grammar, and from a declarative description of context, the conversational record. This represen-
tation supports the reasoning required for a dialogue manager to produce, support and defend the
generated utterance as part of a broader conversational process. At the same time, by setting up ap-
propriate microplanning choices and providing the means to make them, this representation recon-
ciles the decision-making required for microplanning tasks like lexical choice, referring expression
generation and aggregation.

Our characterization of sentence planning is not so far from Appelt’s (Appelt, 1985). One differ-
ence is that Appelt takes a speech-act view of communicative action, so that communicative intent
is not an abstract resource for conversational process but a veridical inference about the dynam-
ics of agents’ mental state; this complicates Appelt’s representations and restricts the flexibility of
his system. Closer still is the work of Thomason and colleagues (Thomason et al., 1996; Thomason
and Hobbs, 1997) in the interpretation-as-abduction framework (Hobbs et al., 1993); they construct
abductive interpretations as an abstract representation of communicative intent, by reasoning from
a grammar and from domain knowledge.

A key contribution of our research, over and above these antecedents, is the integration of a suite
of assumptions and techniques for effective implementation and development of communicative-
intent–based microplanners.

• We use the feature-based lexicalized tree-adjoining grammar formalism (LTAG) to describe
microplanning derivations (Joshi et al., 1975; Schabes, 1990). Each choice that arises in us-
ing this grammar for generation realizes a specified meaning by concrete material that could
be added to an incomplete sentence, as advocated by (Joshi, 1987) and anticipated already in
Section 2.1. In fact, LTAG offers this space of choices directly on the derivation of surface
syntactic structures, eliminating any need for “abstract” linguistic structures or resources.

• We use a logic-programming strategy to link linguistic meanings with specifications of the
conversational record and updates to it. We base our specification language on modal logic
in order to describe the different states of information in the context explicitly (Stone, 1999;
Stone, 2000b); however, the logic programming inference ensures that a designer can assess
and improve the computational cost of the queries involved in constructing communicative
intent.

• By treating presuppositions as anaphors (cf. (van der Sandt, 1992)), we carry over efficient

18

constraint-satisfaction techniques for managing ambiguity in referring expressions from prior
generation research (Mellish, 1985; Haddock, 1989; Dale and Haddock, 1991).

• We associate grammatical entries with pragmatic constraints on context that model the differ-
ent discourse functions of different constructions (Ward, 1985; Prince, 1986). This provides
both a principled model of syntactic choice and a declarative language for controlling the
output of the system to match the choices observed in a given corpus or sublanguage.

• We adopt a head-first, greedy search strategy. Our other principles are compatible with search-
ing among all partial representations of communicative intent, in any order. But a head-first
strategy allows for a particularly clean implementation of grammatical operations; and the
modest effort required to design specifications for greedy search is easily repaid by improved
system performance.

Although many of these techniques have seen success in recent generation systems, SPUD’s distinc-
tive focus on communicative intent results in basic and important divergences from other systems;
we return to a more thorough review of previous work in Section 8.

In the remainder of this paper, we first describe the grammar formalism we have developed and
the model of interpretation that associates grammatical structures declaratively with possible com-
municative intent. We then introduce the SPUD sentence planner as a program that searches (greed-
ily) through grammatical structures to derive a communicative intent representation that describes
a desired update to the conversational record and that can be recognized by the hearer. We go on to
illustrate how SPUD’s declarative processing provides a natural framework for addressing sentence
planning subtasks like referring expression generation, lexical and syntactic choice and aggrega-
tion, and how it supports a concrete methodology for building grammatical resources for specific
generation problems.

3 Grammar Organization
In SPUD, a grammar consists of a set of SYNTACTIC CONSTRUCTIONS, a set of LEXICAL ENTRIES,
and a database of MORPHOLOGICAL RULES.

3.1 Syntactic Constructions
Syntactic constructions are specified by four components in SPUD:

(17) a a NAME, an identifier under which other parts of the grammar refer to the construction;
b a set of PARAMETERS, open variables for referential indices in the definition (which are

instantiated to discourse referents in a particular use of the construction);
c a PRAGMATIC CONDITION, which expresses a constraint that the construction imposes

on the discourse context in terms of its parameters; and
d a SYNTACTIC STRUCTURE, which maps out the linguistic form of the construction.

The syntactic structure is represented as a tree of compound nodes. Internal nodes in the tree bear
the following attributes:

(18) a a CATEGORY, such as NP, V, etc.;
b INDICES, a list of the parameters that the node refers to and that additional syntactic

material combined with this node may describe;

19

c a TOP FEATURE STRUCTURE, a list of attribute-value pairs (including variable values
shared with other feature structures elsewhere in the tree) which describes the syntactic
constraints imposed on this node from above; and

d a BOTTOM FEATURE STRUCTURE, another such list of attribute-value pairs which
describes the syntactic constraints imposed on this node from below.

Leaves in the tree fall into one of four classes: SUBSTITUTION SITES, FOOT NODES, GIVEN-WORD

NODES and lexically-dependent word nodes or ANCHOR NODES. Like internal nodes, substitution
sites and foot nodes are loci of syntactic operations and are associated with categories and indices.
Any tree may have at most one foot node, and that foot node must have the same category and in-
dices as the root. A given-word node includes a specific lexeme (typically a closed-class or function
item) which appears explicitly in all uses of the construction. An anchor node is associated with an
instruction to include a word retrieved from a specific lexical entry; trees may have multiple anchors
and lexical entries may contain multiple words. In addition, all leaves are specified with a single
feature structure which describes the constraints imposed on the node from above. Note that, in the
case of anchor nodes, these constraints must be satisfied by the lexical items retrieved for the node.

(19) shows the tree structure for the zero definite noun phrase required in (2) for coupling nut
and sealing ring.

(19)

CAT : NP

INDICES : U
TOP : [NUMBER : 1]
BOTTOM : [NUMBER : 1]

CAT : N

INDICES : U
TOP : [NUMBER : 1]
BOTTOM : [NUMBER : 1]

ANCHOR : #1
FEATURES : [NUMBER : 1]

Evidently such structures, and the full specifications associated with them, can be quite involved.
For exposition, henceforth we will generally suppress feature structures. We will write internal
nodes in the form CAT(INDICES); anchors, in the form CAT3N (for the Nth token of a lexical item,
a word of category CAT); substitution nodes, in the form CAT(INDICES) ↓; foot nodes, in the form
CAT(INDICES)*; and given-word nodes just by the words associated with them.

With these conventions, the syntactic entry for the zero definite construction (associated with
sealing-ring for example) is given in (20).

(20) a NAME: zerodefnptree
b PARAMETERS: U
c PRAGMATICS: zero-genre∧def (U)

20

d TREE:

NP(U)

N′(U)

N31

Observe that (19) appears simply as (20d).

3.2 Lexical Entries
SPUD lexical entries have the following structure.

(21) a a NAME, a list of the lexemes that anchor the entry (most entries have only one lexeme,
but entries for idioms may have several);

b a set of PARAMETERS, open variables for referential indices in the definition (which are
instantiated to discourse referents in a particular use of the entry);

c a TARGET, an expression constraining the category and indices of the node in a
syntactic structure at which this lexical entry could be incorporated, and indicating
whether the entry is added as a complement or as a modifier;

d a CONTENT CONDITION, a formula specifying a constraint on the parameters of the
entry that the entry will assert when the entry is used to update the conversational
record;

e PRESUPPOSITION, a formula specifying a constraint on the parameters of the entry that
the entry must presuppose;

f PRAGMATICS, a formula specifying a constraint on the status in the discourse of
parameters of the entry;

g an ANCHORING FEATURE STRUCTURE, a list of attribute-value pairs that constrain the
anchor nodes where lexical material from this entry is inserted into a syntactic
construction; and

h a TREE LIST, specifying the trees that the lexical item can anchor by name and
parameters (note that the tree list in fact determines what the target of the entry must be).

(22) gives an example of such a lexical item: the entry for sealing-ring as used, among other
ways, with the zero definite noun phrase illustrated in (20).

(22) a NAME: sealing-ring
b PARAMETERS: N
c TARGET: NP(N) [complement]
d CONTENT: sr(N)
e PRESUPPOSITION: —
f PRAGMATICS: —
g ANCHOR FEATURES: [NUMBER : SINGULAR]
h TREE LIST: zerodefnptree(N), . . .

3.3 Lexico-grammar
The basic elements of grammatical derivations are lexical entries used in specific syntactic construc-
tions. These elements are declarative combinations of the two kinds of specifications presented in

21

Sections 3.1 and 3.2. Abstractly, the combination of a lexical entry and a syntactic construction
requires the following steps.

(23) a The parameters of the lexical entry are instantiated to suitable discourse referents.
b The parameters of the construction are instantiated to discourse referents as specified by

the tree list of the lexical entry.
c Anchor nodes in the tree are replaced by corresponding given-word nodes constructed

from the name of the lexical entry; and the top feature structures of anchor nodes are
unified with the anchor features of the lexical entry to give the top features of the new
given-word nodes.

d The assertion and the presupposition of the combined entry are determined, in one of
two possible ways. In one possible case, the content condition of the lexical entry
provides the assertion while the presupposition of the lexical entry provides the
presupposition of the combined element. In the other, the content condition and any
presupposition of the lexical entry are conjoined to give the presupposition of the
combined element; in this case the element carries no assertion.

e The pragmatics of the syntactic construction is conjoined with the pragmatics of the
lexical entry.

Thus, abstractly, we can see the syntactic construction of (20) coming together with the lexical entry
of (22) to yield the particular lexico-grammatical option described in (24).

(24) a TREE:

NP(R)

N′(R)

sealing-ring
b TARGET: NP(R) [complement]
c ASSERTION: —
d PRESUPPOSITION: sr(R)
e PRAGMATICS: def (R)∧ zero-genre

(Again, feature structures are suppressed here, but note that feature sharing ensures that each of the
nodes in the tree is in fact marked with singular number.) This is the entry for sealing-ring which
is used in deriving the communicative intent of Figure 5.

3.4 Morphological rules
We have seen that lexico-grammatical entries such as (24) contain not specific surface word-forms
but merely lexemes labeled with features. This allows feature-values to be propagated through
grammatical derivations. In this way, the derivation can select an appropriate realization for an
underlying lexeme as a function of agreement processes in the language.

A database of morphological rules accomplishes this selection. Each lexeme is paired with a list
of feature-realization patterns. To determine the form to use in realizing a given lexeme at a node
with given features F in a grammatical derivation, SPUD scans this list until the feature structure in
a pattern subsumes F; SPUD uses the realization associated with this pattern.

For example, we might use (25) to determine the realization of sealing-ring in (24) as “sealing
ring”.

22

�
�
�
�
�
�
��

S
S
S
S
S
S
SS

T2

CAT : C

INDICES : V
TOP : S

�
�
�
�
��

S
S
S
S
SS

T1

CAT : C ↓
INDICES : V
TOP : T
BOT : B

=⇒

�
�
�
�
�
�
��

S
S
S
S
S
S
SS

T2

CAT : C

INDICES : V
TOP : S t T
BOT : B

�
�
�
�
��

S
S
S
S
SS

T1

Figure 8: Substitution of T1 into T2.

(25) a LEXEME: sealing-ring; PATTERNS:
b [NUMBER : SINGULAR]→ sealing ring
c [NUMBER : PLURAL]→ sealing rings

4 Grammatical Derivation and Communicative Intent
To assemble communicative intent, SPUD deploys lexico-grammatical entries like (24) one by one,
as depicted in Figure 7. As Section 2 suggested, these steps involve both grammatical inference to
link linguistic structures together and contextual inference to link linguistic meanings to domain-
specific representations. We now describe the specific form of these inferential processes in SPUD.

4.1 Grammatical Inference
In SPUD’s grammar, the trees of entries like (24) describe a set of elementary structures for a feature-
based lexicalized tree-adjoining grammar, or LTAG (Joshi et al., 1975; Vijay-Shanker, 1987; Sch-
abes, 1990). In all TAG formalisms, entries can be combined into larger trees by two operations,
called SUBSTITUTION and ADJOINING. Elementary trees without foot nodes are called INITIAL

trees and can only substitute; trees with foot nodes are called AUXILIARY trees, and can only ad-
join. The trees that these operations yield are called DERIVED trees; we regard the computation of
derived trees as an inference about a complex structure that follows from a declarative specification
of elementary structures. In a grammar with features, derived trees are completed by unifying the
top and bottom features on each node.

In substitution, the root of an initial tree is identified with a leaf of another elementary or derived
structure, called the SUBSTITUTION site. The top feature structure of the substitution site is unified
with the top feature structure of the root of the initial tree. Figure 8 schematizes this operation.

Adjoining is a more complicated splicing operation, where an elementary structure DISPLACES

some subtree of another elementary or derived structure. The node in this structure where the re-
placement applies is called the ADJUNCTION SITE; the excised subtree is then substituted back into
the first tree at the distinguished FOOT node. As part of an adjoining operation, the top feature struc-
ture of the adjunction site is unified with the top feature structure of the root node of the auxiliary

23

�
�
�
�
�
�
��

S
S
S
S
S
S
SS

T2a

CAT : C

INDICES : V
TOP : T2

BOT : B2

�
�
�
�
��

S
S
S
S
SS

T2b

�
�
�
�
�
�
��

S
S
S
S
S
S
SS

T1

CAT : C

INDICES : V
TOP : T1r

BOT : B1r

CAT : C∗
INDICES : V
TOP : T1 f

=⇒

�
�
�
�
�
�
��

S
S
S
S
S
S
SS

T2a

CAT : C

INDICES : V
TOP : T2 t T1r

BOT : B1r

�
�
�
�
�
�
��

S
S
S
S
S
S
SS

T1

CAT : C

INDICES : V
TOP

BOT
: B2 t T1 f

(NO ADJOINING)

�
�
�
�
��

S
S
S
S
SS

T2b

Figure 9: Adjunction of T1 into T2

tree; the bottom feature structure of the adjunction site is unified with the feature structure of the
foot node. After an adjoining operation, no further adjoining is possible at the foot node. This is
schematized in Figure 9.

In substitution, the substitution site and the root node of the substituted tree must have the same
category; likewise, in adjoining, the root node, the foot node and the adjunction site must all have
the same category. Moreover, as our trees incorporate indices labeling the nodes, there is the further
requirement that any nodes that are identified through substitution or adjoining must carry identical
indices.

The identification of indices in trees determines the interface between syntax and semantics in
SPUD. SPUD adopts an ontologically promiscuous semantics (Hobbs, 1985), in the sense that each
entry used in the derivation of an utterance contributes a constraint to its overall semantics. Syn-
tax determines when the constraints contributed by different grammatical entries describe the same
variables or discourse anaphors. For example, take the phrase slide the sleeve quickly. Its lexical
elements contribute constraints describing an event e in which agent x slides object y along path
p; describing an individual z that is a sleeve; and describing an event e′ that is quick. The syntax–
semantics interface provides the guarantee that y = z and e = e′ (i.e., that the sleeve is what is slid
and that the sliding is what is quick). It does so by requiring that the index y of the object NP sub-
stitution site of slide unify with the index z of the root NP for sleeve, and by requiring that the index

24

e of the VP adjunction site for slide unify with the index e′ of the VP foot node for quickly. (See
(Hobbs, 1985; Hobbs et al., 1993) for more details on ontologically promiscuous semantics.)

Note that this strategy contrasts with other approaches to LTAG semantics, such as (Candito
and Kahane, 1998), which describe meanings primarily in terms of function-argument relations.
(It is also possible to combine both function-argument and constraint semantics, as in (Joshi and
Vijay-Shanker, 1999; Kallmeyer and Joshi, 1999).) Like Hobbs, we use semantic representations
as a springboard to explore the relationships between sentence meaning, background knowledge
and inference—relationships which are easiest to state in terms of constraints. In addition, the use
of constraints harmonizes with our perspective that the essential microplanning task is to construct
extended descriptions of individuals (Stone and Webber, 1998; Webber et al., 1999).

Let us illustrate the operations of grammatical inference by describing how the structure for
fuel-line can combine with the structure for sealing ring by adjoining. Fuel-line will be associated
with a combined lexico-syntactic realization as in (26).

(26) a TREE:

N′(R)
��
�

HH
H

NP(F)

N′(F)

fuel-line

N′(R)*

b TARGET: N′(R) [modifier]
c ASSERTION: —
d PRESUPPOSITION: fl(F)∧nn(R,F,X)
e PRAGMATICS: def (F)

We can adjoin (26a) into (24a) using the N′(R) node as the adjunction site, to obtain the structure
in (27).

(27)

NP(R)

N′(R)

��
��

HH
HH

NP(F)

N′(F)

fuel-line

N′(R)

sealing-ring

When we put together entries by TAG operations, we can represent the meaning of the combined
structure as the component-wise conjunction of the meanings of its constituents. In the case of (24)
and (26) this would yield:

(28) a ASSERTION: —
b PRESUPPOSITION: fl(F)∧nn(R,F,X)∧ sr(R)
c PRAGMATICS: def (F)∧def (R)∧ zero-genre

25

(As explained in the next section, we can also directly describe the joint interpretation of combined
elements, in terms of intended links to the conversational record and intended updates to it.)

In addition to explicitly setting out the structure of a TAG derived tree as in (27), we can also
describe a derived tree implicitly in terms of operations of substitution and adjoining which gen-
erate the derived tree. Such a description is called a TAG DERIVATION TREE (see (Vijay-Shanker,
1987) for a formal definition and discussion of TAG derivation trees). Each node in a derivation
tree represents an elementary tree that contributes to the derived tree. Each edge in a derivation
tree specifies a mode of combination: the child node is combined to the parent node by a specified
TAG operation at a specified node in the structure. For example, (29) shows the derivation tree
corresponding to (27).

(29)

Tree (24a):sealing-ring

Tree (26a):fuel-line
by adjoining at node N′

Derivation trees indicate the decisions required to produce a sentence and outline the search space
for the generation system more perspicuously than do derived trees. This makes derivation trees
particularly attractive structures for describing an NLG system; for example, we can represent a
TAG derivation tree for utterance (2) with a structure isomorphic to the the dependency tree (3).

4.2 Contextual Inference
SPUD assembles structures and meanings such as (27)–(29) to exploit connections between linguis-
tic meanings and domain-specific representations. For example, the presupposition (28b) connects
the meaning of the constituent fuel-line coupling nut with shared referents f 4 and r11 in the aircraft
domain; SPUD might use the connection to identify these referents to the user.

SPUD’s module for contextual inference determines the availability of such connections. The
main resource for this module is a domain-specific knowledge base, specified as logical formulas.
This knowledge base describes both the private information available to the system and the shared
information that characterizes the state of the conversation. Tasks for contextual inference consult
this knowledge base: SPUD first translates a potential connection between meaning and context into
a theorem-proving query, and then confirms or rejects the connection by using a logic programming
search strategy to evaluate the query against the contextual knowledge base. When the inferential
connection is established, SPUD can record the inference as a constituent of its communicative in-
tent.4

We now describe SPUD’s knowledge base, SPUD’s queries, and the inference procedure that
evaluates them in more detail. SPUD’s knowledge base is specified in first-order modal logic. First-
order modal logic extends first-order classical logic by the addition of MODAL OPERATORS; these
operators can be used to relativize the truth of a sentence to a particular time, context or information-
state. We will use modal operators to refer to a particular body of knowledge. Thus, if p is a formula

4Note that this strategy is strongly monotonic: SPUD’s inference tasks are deductive and the links SPUD adds to
communicative intent cannot be threatened by the addition of further information. Previous researchers have pointed
out that much inference in interpretation is nonmonotonic (Lascarides and Asher, 1991; Hobbs et al., 1993). We take
it as future work to extend SPUD’s contextual inference, communicative-intent representations, and search strategy to
this more general case.

26

and2 is a modal operator, then2p is a formula;2p means that p follows from the body of knowl-
edge associated with 2.

For specifications in NLG, we use four such operators: [S] represents the private knowledge of
the generation system; [U] represents the private knowledge of the other party to the conversation,
the user; [CR] represents the content of the conversational record; and finally [MP] (for MEANING

POSTULATES) represents a body of semantic information that follows just from the meanings of
words. We regard the four sources of information as subject to the eleven axiom schemes presented
in (30):

(30) a [S]p⊃ p. [U]p⊃ p. [CR]p⊃ p. [MP]p⊃ p.
b [S]p⊃ [S][S]p. [U]p⊃ [U][U]p. [CR]p⊃ [CR][CR]p. [MP]p⊃ [MP][MP]p.
c [MP]p⊃ [CR]p. [CR]p⊃ [S]p. [CR]p⊃ [U]p

The system’s information, the user’s information, the conversational record and the background
semantic information are all accurate, according to the idealization of (30a). The effect of (30b) is
that hypothetical reasoning with respect to a body of knowledge retains access to all the information
in it. Finally, (30c) ensures that semantic knowledge and the contents of the conversational record
are in fact shared. (Stone, 1998) explores the relationship between this idealization of conversation
implicit in these inference schemes and proposals for reasoning about dialogue context by Clark
and Marshall (1981) and others. For current purposes, note that inferences using the schemes in
(30) are not intended to characterize the explicit beliefs of participants in conversation veridically.
Instead, the inferences contribute to a data structure, communicative intent, whose principal role is
to support conversational processes such as plan recognition, coordination and negotiation.

In this paper, we consider specifications of domain knowledge and queries of domain knowl-
edge that can be restricted to the logical fragment involving definitions of category D and queries
of category Q defined by the following, mutually-recursive rules:

(31)
D ::= Q | Q⊃ D | ∀xD
Q ::= [CR]D | [S]D | [U]D | Q∧Q | A

A schematizes over any atomic formula; x schematizes over any bound variable. We use the notation
?K−→ q to denote the task of proving a Q-formula q as a query from a knowledge base K consisting
of a set of D-formulas; we indicate by writing K −→ q that this task results in the construction of a
proof, and thus that the query succeeds.

This fragment allows for the kind of clauses and facts that form the core of a logic programming
language like Prolog. In addition, these clauses and facts may make free use of modal operators;
they may have nested implications and nested quantifiers in the body of rules, provided they are
immediately embedded under modal operators. There have been a number of proposals for logic
programming languages along these lines, such as (Fariñas del Cerro, 1986; Debart et al., 1992; Bal-
doni et al., 1998). Our implementation follows (Stone, 1999), which also allows for more general
specifications including disjunction and existential quantifiers. For a discussion of NLG inference
using the more general modal specifications, see (Stone, 2000b).

SPUD’s knowledge base is a set of D formulas. These formulas provide all the information about
the world and the conversation that SPUD can draw on to construct and to evaluate possible com-
municative intent. Concretely, for SPUD to construct communicative intent, the knowledge base
must support any assertions, presuppositions and pragmatics that SPUD decides to appeal to in its

27

utterance. Thus, the knowledge base should explicitly set up as system knowledge any information
that SPUD may assert; if some intended update relates by inference to an assertion, the knowledge
base must provide, as part of the conversational record, rules sufficient to infer the update from the
assertion. Moreover, the knowledge base must provide, as part of the conversational record, formu-
las which entail the presuppositions and pragmatic conditions that SPUD may impose. Meanwhile,
for SPUD to assess whether the hearer will interpret an utterance correctly, the knowledge base must
describe the context richly enough to characterize not just the intended communicative intent for a
provisional utterance, but also any potential alternatives to it.

For the communicative intent of Figure 5, then, the knowledge base must include the specific
private facts that underlie the assertion in the instruction, as in (32):

(32) [S]move(a1,h0,n11, p(l(on, j2), l(on,e2))).
[S]next(a1).
[S]purpose(a1,a2).
[S]uncover(a2,h0, r11).

(Recall that, in words, (32) describes the next action, a move event which takes the nut along a
specified path and whose purpose is to uncover the sealing-ring.) For this communicative intent, no
further specification is required for the links between assertions and updates. Updates are expressed
in the same terms as meanings here, so the connection will follow as a matter of logic.

At the same time, the knowledge base must include the specific facts and rules that permit the
presuppositions and pragmatics of the instruction to be recognized as part of the conversational
record. (33a) spells out the instances that are simply listed in the conversational record; (33b) de-
scribes the rules and premises that allow the noun-noun compound and the spatial presuppositions
to be interpreted by inference as in (12) and (13).

(33) a [CR]partic(s0,h0). [CR]obl(s0,h0).
[CR]surf (p(l(on, j2), l(on,e2))). [CR]zero-genre.
[CR]cn(n11). [CR]def (n11).
[CR]el(e2). [CR]def (e2).
[CR]sr(r11). [CR]def (r11).
[CR]fl(f 4). [CR]def (f 4).

b [CR]for(r11, f 4). [CR]∀ab(for(a,b)⊃ nn(a,b, for)).
[CR]loc(l(on, j2),n11)
[CR]∀loe(loc(l,o)⊃ start-at(p(l,e),o)). [CR]∀se(end-on(p(s, l(on,e)),e))

(Again, with our conventions, (33a) spells out such facts as that s0 and h0 are the speaker and hearer
participating in the current conversation, and that s0 is empowered to impose obligations on h0.
Likewise, (33b) indicates that the ring is for the fuel-line, and that for is the right kind of relationship
to interpret a noun-noun compound; that a path that starts where an object is located starts at the
object; and that any path whose endpoint is on an object ends on the object.)

Of course, the knowledge base cannot be limited to just the facts that figure in this particular
communicative intent. SPUD is designed to be supplied with a number of other facts, both private
and shared, about the discourse referents evoked by the instruction. This way SPUD has substantive
lexical choices that arise in achieving specified updates to the state of the conversation. SPUD also
expects to be supplied with additional facts describing other discourse referents from the context.

28

This way SPUD can consult the specification of the context to arrive at meaningful assessments of
ambiguities in interpretation. For instance, the knowledge base must describe any other fuel lines
and other sealing rings to settle whether there are is any referential ambiguity in the phrase fuel-line
sealing ring. For exposition, we note only the bare-bones alternatives required for SPUD to generate
(2) given the task of describing the upcoming uncovering motion:

(34) a [CR]sr(ar11)
b [CR]surf (p(l(on, j2), l(aon,ae2)))

There must be another sealing ring ar11 for SPUD to explicitly indicate r11 as the fuel-line sealing
ring; and there must be another path to slide n11 along, for SPUD to explicitly describe the intended
path as onto elbow.5

Now we consider the steps involved in linking grammatical structures such as (24) or (27)–(28)
to domain-specific representations. As described in Section 4.1, the grammar delivers an assertion
A, a presupposition P and pragmatics Q for each derivation tree. Links to domain-specific repre-
sentations come as SPUD constructs a communicative intent for this derivation tree by reasoning
from the context.

In doing this, SPUD must link up P and Q in a specific way with particular referents and propo-
sitions from the conversational record. We introduce an assignment σ taking variables to terms to
indicate the correspondence between anaphors and intended referents. (We write out assignments
as lists of the form {. . .Vi← ti . . .} where each variable Vi is assigned term ti as its value; for any
structure E containing variables, and any assignment σ of values to those variables, we use Eσ to
indicate the result of replacing the occurrences of variables in E by the terms assigned by σ.) In ad-
dition, SPUD must link up the assertion A with particular open questions in the discourse in virtue
of the information it presents about particular individuals. We schematize any such update as a
condition U .

These links between A, P and Q and the context constitute the presumptions that SPUD makes
with its utterance; SPUD explicitly records them in its representation of communicative intent. Since
these links are inferences, constructing them is a matter of proof. In SPUD, these proof tasks are
carried out using logic programming inference and a modal specification of context.

• Checking that the intended instance of the assertion A is true corresponds to the proof task:

?K −→ [S]Aσ

That is, does some instance of Aσ follow from the information available to the speaker? As
usual in logic programming, if σ leaves open the values of some variables, then the proof
actually describes a more specific instance [S]Aσ′ where the substitution σ′ possibly supplies
values for these additional variables.

• Checking that the intended instance of the assertion A leads to the update U corresponds to
the proof task:

?K −→ [CR]([CR]Aσ ⊃ [CR]U)

5SPUD’s greedy search also requires that this alternative path not end on anything, but instead end perhaps around
or over its endpoint. The explanation for this depends on the results of Section 4.4 and Section 5, but briefly, SPUD

will adjoin the modifier onto only if onto by itself rules out some path referents (and thus by itself helps the hearer to
interpret the instruction).

29

That is, considering only the content of the conversational record, can we show that when
Aσ is added to the conversational record, U also becomes part of the conversational record?
Note that [CR]([CR]p ⊃ [CR]p) is a valid formula of modal logic, for any p. Such a query
always succeeds, regardless of the specification K.

• Checking that a presupposition P is met for an intended instance corresponds to the proof
task:

?K −→ [CR]Pσ

That is, does Pσ follow from the conversational record? More generally, determining the
potential instances under which the presupposition P is met corresponds to the proof task:

?K −→ [CR]P

Each proof shows how the context supports a specific resolution σ′ of underspecified elements
in the meaning of the utterance, by deriving an instance Pσ′. Such instances need not be just
the one that the system intends. Checking that pragmatic conditions Q are met for an intended
instance also corresponds to a query ?K −→ [CR]Qσ.

Our logic programming inference framework allows queries and knowledge bases to be understood
operationally as instructions for search, much as in Prolog; see (Miller et al., 1991). For example, a
query2p is an instruction to move to a new possible world and consider the query p there; a query
∀x p is an instruction to consider a new arbitrary individual in place of x in proving p. A query
p⊃ q is an instruction to assume p temporarily while considering the query q; a query p∧q is an
instruction to set up two subproblems for search: a query of p and a query of q. Logical connec-
tives in knowledge-base clauses, meanwhile, are interpreted as describing matches for predicates,
first-order terms, and possible worlds in atomic queries, and as setting up subproblems with addi-
tional queries of their own. Overall then, each theorem-proving problem initiates a recursive pro-
cess where the inference engine breaks down complex queries into a collection of search problems
for atomic queries, backward-chains against applicable clauses in the knowledge base to search for
matches for atomic queries, and takes on any further queries that result from the matches.

As in Prolog, the course and complexity of the proof process can be determined from the form
of the queries and the knowledge-base. Thus, when necessary, performance can be improved by
astute changes in the representation and formalization of domain relationships. Proof search is no
issue with (2), for example; inspection of the clauses in (32), (33) and (34) will confirm that logic
programming search explores the full search space for generation queries for this instruction with-
out having to reason recursively through implications.

4.3 Concrete Representations of Communicative Intent
We can now return to the communicative intent of Figure 5 to describe the concrete representations
by which SPUD implements it. For reference, we repeat Figure 5 as Figure 10 here.

The grammar delivers a TAG derivation whose structure is isomorphic to the tree-structure of
Figure 10. That derivation is associated with a meaning that we represent as the triple of conditions
of (35a)–(35c); (35d) spells out the instantiation σ under which this meaning is to be linked to the
communicative context:

(35) a Assertion: move(a1,H,N,P)∧next(a1)∧purpose(a1,a2)∧uncover(a2,H,R)

30

Structure:

to slide (imperative)

��
��

��
��

��
��
�

HH
HH

HH
HH

HH
HH

H

coupling-nut (zero-def) onto

elbow (zero-def)

〈purpose〉 (bare infinitival adjunct)

uncover

sealing-ring (zero-def)

fuel-line (modifier)

Assert:

move(a1,h0,n11, p(l(on, j2), l(on,e2)))

move(a1,H,N,P)

next(a1)

next(a1)

purpose(a1,a2)

purpose(a1,a2)

uncover(a2,h0,r11)

uncover(a2,H,R)

Presuppose:

partic(S,H)

partic(s0,h0)

start-at(P,N)

loc(l(on, j2),n11)

surf(P)

surf(p(l(on, j2), l(on,e2)))

cn(N)

cn(n11)

end-on(P,E)

end-on(p(l(on, j2), l(on,e2)),e2)

el(E)

el(e2)

sr(R)

sr(r11)

fl(F)

fl(f 4)

nn(R,F,X)

for(r11, f 4)

Pragmatics:

obl(S,H)

obl(s0,h0)

def (N)

def (n11)

def (E)

def (e2)

def (R)

def (r11)

def (F)

def (f 4)

zero-genre

zero-genre

Figure 10: Communicative intent for (2). The grammar specifies meanings as follows: For slide,
assertions move and next; for the bare infinitival adjunct, purpose; for uncover, uncover. For slide,
presuppositions partic, start-at and surf ; for coupling-nut, cn; for onto, end-on; for elbow, el; for
sealing-ring, cn; for fuel-line, fl and nn. For slide, pragmatics obl; for other nouns, pragmatics def
and zero-genre. The speaker’s presumptions map out intended connections to discourse referents
as follows: the speaker S, s0; the hearer H, h0; the nut N, n11; the path P, p(l(on, j2), l(on,e2));
the elbow E, e2; the ring R, r11; the fuel-line F, f 4; the relation X, for. The fuel-line joint is j2.

31

b Presupposition: partic(S,H)∧ start-at(P,N)∧ surf (P)∧cn(N)∧end-on(P,E)∧el(E)∧
sr(R)∧fl(F)∧nn(R,F,X)

c Pragmatics: obl(S,H)∧def (N)∧def (E)∧def (R)∧def (F)∧ zero-genre
d Instance: {H← h0,S← s0,N← n11,P← p(l(on, j2), l(on,e2)),R← r11,E←

e2,F← f 4,X← for}
(We abbreviate the assertion (35a) by M; and abbreviate the instance (35d) by σ.)

SPUD connects these meanings with domain-specific representations as schematized by the in-
ference notation of Section 2.1 and as formalized by the modal logic queries described in Sec-
tion 4.2. For example, an inference schematized in (8), repeated as (36), is required to justify the
assertion-instance move(a1,h0,n11, p(l(on, j2), l(on,e2))) = move(a1,H,N,P)σ and to link it with
one of the system’s goals for the instruction.

(36)
move(a1,h0,n11, p(l(on, j2), l(on,e2)))

move(a1,H,N,P)
Concretely this corresponds to two proofs which we obtain from the knowledge base K:

(37) a K −→ [S]move(a1,H,N,P)σ
b K −→ [CR]([CR](Mσ ⊃ [CR]move(a1,h0,n11, p(l(on, j2), l(on,e2)))

The proof (37a) shows that the speaker knows about this motion; the proof (37b) shows that the
overall assertion of the sentence will add the description of this motion to the conversational record.
Note that (37b) relates the overall assertion of the utterance to the update achieved by a particular
word. In general, we anticipate the possibility that a single domain-specific fact may be placed on
the conversational record by combining the information expressed by multiple words. For example,
one word may both provide an inference on its own and complete a complex inference in combi-
nation with words already in a sentence. We return to this possibility in Section 6.5.

Each conjunct of the assertion in (35a) contributes its inference to the system’s communicative
intent. In each case, SPUD represents the inference portrayed informally as a tree in Figure 10 as a
pair of successful queries from K, as in (37).

Next, consider a presupposition, such as the general form nn(R,F,X) and its concrete instance
nn(r11, f 4, for) = nn(R,F,X)σ. Corresponding to the informal inference of (38) we have the proof
indicated in (39).

(38)
nn(R,F,X)

for(r11, f 4)

(39) K −→ [CR]nn(R,F,X)σ

The proof of (39) proceeds by backward chaining using the axiom [CR]∀ab(for(a,b)⊃ nn(a,b, for))
and grounds out in the axiom [CR]for(r11, f 4); hence the correspondence with (38).

Each conjunct of the presupposition and each conjunct of the pragmatics requires a link to the
shared context—an inference as in (38)—and in each case SPUD represents this link by a successful
query as in (39).

Appendix A gives a grammar fragment sufficient to generate (2) in SPUD. By reference to the
trees of this grammar, SPUD’s complete representation of communicative intent for (2) is given in
Figure 11.

32

Structure:

Tree (75): slide initial tree

��
��

��
��

��
��

��
�

HH
HH

HH
HH

HH
HH

HH
H

Tree (78):coupling-nut
by subst. at node NP

Tree (79):onto
by adjoing at node VPpath

Tree (78):elbow
by substituting at node NP

Tree (76): 〈purpose〉
by adjoining at node VPpurp

Tree (77): uncover
by subst. at node Si

Tree (78): sealing-ring
by subst. at node NP

Tree (80):fuel-line
by adjoining at node N′

Assert:
K −→ [S]move(a1,H,N,P)σ K −→ [S]next(a1)σ
K −→ [CR]([CR]Mσ⊃ [CR]move(a1,h0,n11, p(l(on, j2), l(on,e2))))
K −→ [CR]([CR]Mσ⊃ [CR]next(a1))

K −→ [S]purpose(a1,a2)σ
K −→ [CR]([CR]Mσ⊃ [CR]purpose(a1,a2))

K −→ [S]uncover(a2,H,R)σ
K −→ [CR]([CR]Mσ⊃ [CR]uncover(a2,h0,r11))

Presuppose:
K −→ [CR]partic(S,H)σ K −→ [CR]start-at(P,N)σ K −→ [CR]surf(P)σ
K −→ [CR]cn(N)σ K −→ [CR]end-on(P,E)σ K −→ [CR]el(E)σ
K −→ [CR]sr(R)σ K −→ [CR]fl(F)σ K −→ [CR]nn(R,F,X)σ

Pragmatics:
K −→ [CR]obl(S,H)σ K −→ [CR]def (N)σ K −→ [CR]def (E)σ
K −→ [CR]def (R)σ K −→ [CR]def (F)σ K −→ [CR]zero-genreσ

Figure 11: SPUD’s representation of the communicative intent in Figure 10. Note two abbreviations
for the figure:

M := move(a1,H,N,E)∧next(a1)∧purpose(a1,a2)∧uncover(a2,H,R)
σ := {H← h0,S← s0,N← n11,P← p(l(on, j2), l(on,e2)),R← r11,E← e2,F← f 4,X← for}

Note also that K refers to the knowledge base specified in (32) and (33).

33

4.4 Recognition of Communicative Intent
Recall from Section 2.1 that structures such as that of Figure 11 represent not only the interpretations
that speakers intend for utterances but also interpretations that hearers can recognize for them; in
the ideal case, an utterance achieves the updates to the conversation that the speaker intends because
the hearer successfully recognizes the speaker’s communicative intent. In generating an utterance,
SPUD anticipates the hearer’s recognition of its intent by consulting a final, inferential model.

This model incorporates some simplifications that reflect the constrained domains and the con-
strained communicative settings in which NLG systems are appropriate. Each of these assumptions
represents a starting point for further work to derive a more systematic and more general model of
interpretation.

• We assume that the hearer can identify the intended lexical elements as contributing to the
utterance, and can reconstruct the intended structural relationships among the elements. That
is, we assume successful parsing and word-sense disambiguation. On this assumption, the
hearer always has the correct syntactic structure for an utterance and a correct representation
of its assertion, presupposition and pragmatics. For example, for utterance (2) as in Figure 11,
the hearer gets the syntactic structure of the figure and the three conditions of meaning from
(35a)–(35c).

• We assume that each update that the utterance is intended to achieve must either be an in-
stance of an open question that has been explicitly raised by preceding discourse, or cor-
respond to an assertion that is explicitly contributed by one of the lexical elements in the
utterance itself. Once the hearer identifies the intended instance of the assertion Mσ, the
hearer can arrive at the intended update-inferences by carrying out a set of queries of the form
[CR]([CR]Mσ ⊃ [CR]Q). Our assumption dictates that the set of possible formulas for Q is
finite and is determined by the hearer’s information; we make the further assumption that
the domain inferences are sufficiently short and constrained that the search for each query
is bounded (of course, the generator requires this to design its utterances—whether or not
it assesses the hearer’s interpretation). The two assumptions justify counting all updates as
successfully recognized as long as the hearer can recognize the intended instance σ of the
assertion.

• We assume that the hearer attempts to resolve the presupposition according to a shared rank-
ing of SALIENCE. This ranking is formalized using the notion of a CONTEXT SET. Each
REFERENT, e, comes with a context set D(e) including it and its distractors; the context set
for e determines all the referents that a hearer will consider as possible alternatives in resolv-
ing a variable X that the speaker intends to refer to e. This can represent a ranking because
we can have a ∈ D(b) without b ∈ D(a); in this case a is more salient than b. During the
reference resolution process, then, the hearer might have to run through the context set for a
before expanding the search to include the context set for b. In practice, we simply assume
that the hearer must recognize the context set successfully. That means that the hearer will
consider a set of potential resolutions where variables are instantiated to elements of appro-
priate context sets; we represent this set of potential resolutions as a set of substitutions D(σ)
defined as follows:

34

(40) σ′ ∈ D(σ) if and only if for each variable X that occurs in the presupposition of
the utterance, σ′(X) ∈D(σ(X))

To make this assumption reasonable we have made limited use of gradations in salience.

• We assume that the hearer does not use the pragmatic conditions in order to determine the
speaker’s intended substitution σ. The hearer simply checks, once the hearer has resolved
σ using the presupposition, that there is a unique inference that justifies the corresponding
instance of the pragmatics.

It follows from these assumptions that interpretation is a constraint-satisfaction problem, as in (Mel-
lish, 1985; Haddock, 1989; Dale and Haddock, 1991). In particular, the key task that the hearer is
charged with is to recognize the inferences associated with the presupposition of the utterance. That
presupposition is an open formula P composed of the conjunction of the individual presupposition
formulas Pi contributed by lexical elements. The resolutions compatible with the hearer’s informa-
tion about the utterances are the instances of P that fit the conversational record and the attentional
state of the discourse. Formally, we can represent this as Σ′ defined in (41).

(41) Σ′ := {σ′ ∈D(σ) : K −→ [CR]Pσ′}

Each of the formulas Pi determines a relation Ri on discourse referents that characterizes in-
stances that the speaker may have intended; SPUD computes this relation by querying the knowl-
edge base as in (42), and represents it compactly in terms of the free variables that occur in Pi.

(42) Ri = {σ′ ∈D(σ) : K −→ [CR]Piσ′}

SPUD then uses an arc-consistency constraint-satisfaction heuristic on these relations to solve for Σ′
(Mackworth, 1987). (This is a conservative but efficient strategy for eliminating assignments that
are inconsistent with the constraints.) SPUD counts the inferences for the presupposition as success-
fully recognized when the arc-consistency computation leaves only a single possibility, namely the
intended resolution σ.

5 Microplanning as a Search Task
The preceding sections have been leading up to a characterization of microplanning as a formal
search task (Nilsson, 1971). We argued in Section 2 that a generator must represent the interpre-
tation of an utterance as a data structure which records inferences that connect the structure of an
utterance with its meaning, ground the meaning of an utterance in the current context, and draw
on the meaning of the utterance to register specified information in the conversational record. In
Section 3, we described the grammatical knowledge which defines the structure and meaning of
utterances; in Section 4.2, we described the inferential mechanisms which encode the relationships
between utterance meaning and an evolving conversational record. With these results, we obtain
the specific data structure that SPUD uses to represent communicative intent, in the kinds of records
schematized in Figure 11; and the concrete operations that SPUD uses to derive representations of
communicative intent, by the steps of grammatical composition and contextual inference described
in Sections 4.1, 4.2, and 4.4. Thus, we obtain a characterization of the microplanning problem as
a SEARCH, whose RESULT is an appropriate communicative-intent data structure, and which PRO-
CEEDS by steps of grammatical derivation and contextual inference.

35

5.1 A Formal Search Problem
In SPUD, the specification of a microplanning search problem consists of the following components:

(43) a a background specification of a GRAMMAR G describing the system’s model of
language (as outlined in Section 3) and a KNOWLEDGE BASE K describing the system’s
model of its domain, its user and the conversational record (as outlined in Section 4.2);

b a set of formulas, UPDATES, describing the specified facts that the utterance must add to
the conversational record;

c a specification of the ROOT NODE of the syntactic tree corresponding to the utterance.
This specification involves a syntactic category; variables specifying the indices of the
root node; a substitution σ0 describing the intended values that those variables must
have; and a top feature structure, indicating syntactic constraints imposed on the
utterance from the external context; cf. (18).

For instance, we might specify the task of describing the sliding action a1 by an instruction such as
(2) as follows.

(44) a The GRAMMAR G outlined in Appendices A and B; the knowledge base outlined in
(32), (33), and (34).

b Four UPDATES: move(a1,h0,n11, p(l(on, j2), l(on,e2))); next(a1); purpose(a1,a2);
uncover(a2,h0, r11).

c A root node S ↓ (E) with intended instance {E← a1}.

The grammar and knowledge base of (43a) determine the search space for the NLG task. States
in the search space are data structures for communicative intent, as argued for in Section 2 and as
illustrated in Section 4.3. In particular, each state involves:

(45) a a syntactic structure T derived according to G and paired with a meaning 〈A,P,Q〉
giving the assertion, presupposition and pragmatics of T (respectively);

b a substitution σ determining the discourse referents intended for the variables in A, P,
and Q;

c inferences K −→ [S]Aσ, K −→ [CR]Pσ, and K −→ [CR]Qσ—such inferences show that
the context supports use of this utterance to describe σ;

d inferences of the form K −→ [CR]([CR]Aσ−→ [CR]F) where F is an update—such
inferences witness that the utterance supplies needed information;

e a constraint network approximating Σ′ := {σ′ ∈D(σ) : K −→ [CR]Pσ′}—this network
represents the hearer’s interpretation of reference resolution.

The INITIAL STATE for search is given in (46).

(46) a a syntactic structure consisting of a single substitution site matching the root node of the
problem specification (43c) and paired with an empty meaning;

b the specified intended resolution σ0 of variables in this syntactic structure;
c no inferences—a record that suffices to justify the empty meaning of the initial state but

which shows that this state supplies no needed information;
d an unconstrained network realizing Σ′ := {σ′ ∈D(σ0)}.

36

A GOAL STATE for search is one where the three conditions of (47) are met.

(47) a The syntactic structure of the utterance must be complete: top and bottom features of all
syntactic nodes must agree, and all substitution sites must be filled.

b For each update formula F, the communicative intent must include an update inference
that establishes a substitution instance of F. More formally, on the assumption that M is
the assertion of the utterance and that σ is the intended instance of M, the requirement is
that the communicative intent include an inferential record of the form
K −→ [CR]([CR]Mσ ⊃ [CR]Fσ′).

c The arc-consistency approximation to the key presupposition-recognition problem the
hearer faces for the communicative intent, as defined in Section 4.4, identifies uniquely
the intended substitution of knowledge-base discourse referents for discourse-anaphor
variables in the utterance.

The requirements of (47) boil down simply to this: the generator’s communicative intent must pro-
vide a complete sentence (47a) that says what is needed (47b) in a way the hearer will understand
(47c). Observe that the communicative intent of Figure 11 fulfills the conditions in (47) for the
microplanning problem of (44).

To derive a new state from an existing state as in (45) involves the steps outlined in (48).

(48) a Construct a lexico-grammatical element L, according to the steps of (23).
b Apply a syntactic operation combining L with the existing syntactic structure T

(cf. Section 4.1); the result is a new structure T ′ and a new meaning
〈A∧A′,P∧P′,Q∧Q′〉 that takes into account the contribution 〈A′,P′,Q′〉 of L.

c Ensure that the use of this element is supported in context, by proving K −→ [S]A′σ,
K −→ [CR]P′σ and K −→ [CR]Q′σ; the result is a refined substitution σ′ describing the
intended instantiation not just of T but also of L.

d Record the communicative effects of the new structure in any inferences
K −→ [CR]([CR](A∧A′)σ′ −→ [CR]F) for outstanding updates F.

e Refine the constraint network to take into account the new constraint P′.

Any state so derived from a given state is called a NEIGHBOR of that state.
Because such searches begin at an initial substitution site and derive neighbors by incorporating

single elements into the ongoing structure, this characterization of microplanning in terms of search
builds in SPUD’s head-first derivation strategy. On the other hand, it is compatible with any search
algorithm, including brute-force exhaustive search, a traditional heuristic search method such as A∗

(Hart et al., 1968), or a stochastic optimization search (Mellish et al., 1998).

5.2 A Greedy Search Algorithm
We chose to implement a greedy search algorithm in SPUD. Greedy search applies iteratively to
update a single state in the search space, the CURRENT STATE. In each iteration, greedy search first
obtains all the neighbors of the current state. Greedy search then ranks the neighbors by a heuristic
evaluation intended to assess progress towards reaching a goal state. The neighbor with the best
heuristic evaluation is selected. If this state is a goal state, search terminates; otherwise this state
becomes the current state for the following iteration.

37

In developing SPUD, we have identified a number of factors that give evidence of progress to-
wards obtaining a complete, concise, natural utterance that conveys needed information unambigu-
ously.

1. How many update formulas the utterance has conveyed. Other things being equal, if fewer
updates remain unrealized, then fewer steps of lexical derivation will be required to convey
this further required information.

2. How many alternative values the hearer could consider for each free variable which the sys-
tem must resolve. Other things being equal, the fewer values remain for each variable, the
fewer steps of lexical derivation will be required to supply content that eliminates the ambi-
guity for the hearer. The concrete measure for this factor in SPUD is a sorted list containing
the number of possible values for each ambiguous variable in the constraint network; lists are
compared by the lexicographic ordering.

3. How SALIENT the intended values for each free variable are. Other things being equal, an
utterance referring to salient referents may prove more coherent and easier for the hearer to
resolve (irrespective of its length). Again, the concrete measure for this factor in SPUD is a
sorted list of counts, compared lexicographically; the counts here are the sizes of context sets
for each intended referent.

4. How many FLAWS remain in the syntactic structure of the utterance. Flaws are open substitu-
tion sites and internal nodes whose top and bottom features do not unify. Each flaw can only
be fixed by a separate step of grammatical derivation. Other things being equal, the fewer
flaws remain, the fewer further syntactic operations will be required to obtain a complete
grammatical utterance. We also prefer states in which an existing flaw has been corrected
but new flaws have been introduced, over a structure with the same overall number of flaws
but where the last step of derivation has not resolved any existing flaws.

5. How SPECIFIC the meanings for elements in the utterance are. In general, an element with
a more specific assertion offers a more precise description for the hearer; an element with a
more specific presupposition offers more precise constraints for identifying objects; an ele-
ment with a more specific pragmatic conditions fits the context more precisely. We assess
specificity off-line using the semantic information associated with the operator [MP] . If the
query ?K −→ [MP](M ⊃ N) succeeds, we count formula M as at least as specific as N. We
prefer words with more specific pragmatics; then (other things being equal) words with more
specific presuppositions; then (other things being equal) words with more specific content;
then (other things being equal) words in constructions with more specific pragmatics.

In our implementation of SPUD, we use all these criteria, prioritized as listed, to rank alternative
options. That is, SPUD ranks option S ahead of option S′ if one of these factors favors S over S′ and
all factors of higher priority are indifferent between S and S′.6

In designing SPUD with greedy search, we drew on the influential example of (Dale and Had-
dock, 1991), which used greedy search in referring expression generation; and on our own experi-
ence using greedy algorithms to design preliminary plans to achieve multiple goals (Webber et al.,

6It happens that this is also the treatment of ranked constraints in optimality theory (Prince and Smolensky, 1997)!

38

1998). As described in Sections 6 and 7, we believe that our experience with SPUD supports our
decision to use a sharply constrained search strategy; consistent search behavior makes it easier
to understand the behavior of the system and to design appropriate specifications for it. However,
we do NOT claim that our experience offers a justification for the specific ranking we used beyond
two very general preferences—a primary preference for adding lexical elements that make some
progress on the generation task over those that make none (on syntactic, informational or referential
grounds); and a secondary preference based on pragmatic specificity. In general, the relationships
between search algorithms, specification development and output quality for microplanning based
on communicative intent, remains an important matter for future research.

6 Solving NLG tasks with SPUD

In this section, we support our claims that decision-making based on communicative intent pro-
vides a uniform framework by which which SPUD can simultaneously address all the subtasks of
microplanning. We further argue that such a framework is essential for generating utterances that
are EFFICIENT, in that they exploit the contribution of a single lexico-grammatical element to mul-
tiple goals and indeed to multiple microplanning subtasks. Throughout the section, we illustrate
how SPUD’s grammatical resources, inference processes, and search strategy combine to solve these
problems together for instruction (2). Additional examples of using SPUD in generation can be
found in (Bourne, 1998; Cassell et al., 2000); we also investigate these issues from the perspec-
tive of designing specifications for SPUD in Section 7.

6.1 Referring Expressions
The problem of generating a referring expression for a simple (i.e., non-event) discourse referent
a is to devise a description that can be realized as a noun phrase by grammar G and that uniquely
identifies a in context K. Such a problem can be posed to SPUD by the problem specification of
(49).

(49) a the grammar G and context K
b no updates to achieve
c an initial node NP ↓ (X) and an initial substitution σ0 = {X← a}

By the criteria of (47), a solution to this task is a record of communicative intent which specifies
a complete grammatical noun phrase and which determines a constraint-satisfaction network that
identifies a unique intended substitution, including the assignment X← a.

The following example demonstrates the close affinity between SPUD’s strategy and the algo-
rithm of (Dale and Haddock, 1991). In Figure 12, we portray a context K which supplies a number
of salient individuals, including a rabbit r1 located in a hat h1; K records each individual with vi-
sual properties such as kind, size, and location. We consider the problem of generating a referring
expression to identify r1.

With a suitable grammar, K allows us to construct the communicative intent schematized in
Figure 13 for (50).

(50) the rabbit in the hat

SPUD’s model of interpretation, like Dale and Haddock’s, predicts that the hearer successfully rec-
ognizes this communicative intent, because the context supplies a unique pair of values for variables

39

Figure 12: A representation of the context for a referring expression generation task

Structure:

rabbit (definite)

in (noun postmodifier)

hat (definite)

Assert:
(none)

Presuppose:

rabbit(R)

rabbit(r1)

in(R,H)

in(r1,h1)

hat(H)

hat(h1)

Pragmatics:

def (R)

def (r1)

def (H)

def (h1)

Figure 13: Communicative intent for the rabbit in the hat.

R and H such that R is a rabbit, H is a hat, and R is in H. Thus, (50) represents a potential solution
to the reference task both for SPUD and for Dale and Haddock.

In fact, in deriving the rabbit in the hat, the two algorithms would use parallel considerations to
take comparable steps. SPUD’s derivation, like Dale and Haddock’s, consists of three steps in which
specific content enriches a description: first rabbit, then in and finally hat. For both algorithms, the
primary consideration to use these steps of derivation is that each narrows the domain of values for
variables more than the available alternative steps.

We note three important contrasts between SPUD’s approach and Dale and Haddock’s, however.
First, SPUD typically formulates referring expressions not in isolated subtasks as suggested in (49)
but rather as part of a single, overall process of sentence formulation. SPUD’s broader view is in

40

fact necessary to generate instructions such as (2)—a point we return to in detail in Section 6.5.
Second, SPUD’s options at each step are determined by grammatical syntax, whereas Dale and

Haddock’s must be determined by a separate specification of possible conceptual combinations. For
example, SPUD directly encodes the syntactic requirement that a description should have a head
noun using the NP substitution site; for Dale and Haddock this requires an ad hoc restriction on
what concepts may be included at certain stages of description.

Third, Dale and Haddock adopt a fixed, depth-first strategy for adding content to a description.
Particularly since (Dale and Reiter, 1995), such fixed (and even domain-specific) strategies have
become common for referring expressions made up of properties of a single individual. It is difficult
to generalize a fixed strategy to relational descriptions, however. Indeed, Horacek (Horacek, 1995)
challenges fixed strategies with examples that show the need for modification at multiple points in
an NP, such as (51).

(51) the table with the apple and with the banana

In SPUD, the order of adding content is flexible. An LTAG derivation allows modifiers to adjoin at
any node at any step of the derivation. This places descriptions such as (51) within SPUD’s search
space. (SPUD’s flexibility also contrasts with a top-down derivation in a context-free grammar,
where modifiers must be chosen before heads and there is a resulting tension between providing
what the syntax requires and going beyond what the syntax requires. See (Elhadad and Robin, 1992)
for discussion of the resulting difficulties in search.)

6.2 Syntactic Choice
The problem of syntactic choice is to select an appropriate grammatical construction in which to
realize a given lexical item. For example, for English noun phrases, the problem is to select an ap-
propriate determiner from among options including the indefinite marker a, the definite marker the
and the demonstrative markers this and that. With main verbs in English sentences, the problem in-
volves such decisions as the appropriate use of active or passive voice, and the appropriate fronting
or preposing of marked argument constituents.

For SPUD, alternatives for such syntactic choices are represented as alternative states which
SPUD’s greedy search must consider at some stage of generation. All alternative syntactic entries
whose pragmatic conditions are supported in the context will be available. Since these syntactic al-
ternatives share a common lexical specification, their interpretations differ only by the contribution
of the distinct pragmatic conditions. Recall that the pragmatics contributes neither to the updates
that an utterance achieves nor to the resolution of referential ambiguity, in SPUD’s model of inter-
pretation. Accordingly, SPUD’s ranking of these alternatives is based only on the specificity of the
pragmatic conditions. SPUD’s strategy for syntactic choice is to select a licensed form whose prag-
matic condition is maximally specific.

As an illustration of this strategy, consider the syntactic frame for the verb slide in instruction
(2). The instruction exhibits the imperative frame slide NP. Recall that we associate this frame se-
mantically with the condition that a sliding is the next action that the hearer should perform; we
associate it with the pragmatic condition that the speaker is empowered to impose obligations for
action on the hearer. This pragmatic condition distinguishes slide NP from other possible descrip-
tions of this action. One such possibility is you should slide NP; we would represent this as a neu-
tral alternative with an always true pragmatic condition. Thus, when SPUD considers both alterna-

41

tives, it favors slide NP because of its specific pragmatics. (In (Stone and Doran, 1997), we consider
choice of a topicalized frame, represented with the pragmatic conditions proposed for topicaliza-
tion in (Ward, 1985), over an unmarked frame; we describe how the generation of the syntax book,
we have follows from this specification under SPUD’s preference for specificity.)

Syntactic frames for the noun phrases provide a similar illustration. Noun phrases in our aircraft
maintenance manuals are realized in one of two frames: a zero definite realization for a unique ref-
erent, as in coupling nut, and a realization with an explicit numeral, used in the other cases (plural
referents, such as two coupling nuts, and indefinite singular referents, such as one coupling nut).
We associate the zero definite realization with a pragmatic condition, as in (20), requiring a definite
referent and an appropriate linguistic genre; the realization with the explicit numeral is a default
whose pragmatic conditions are always satisfied for this genre. The zero definite is chosen when-
ever applicable, by specificity. More generally, whichever of the two entries, the zero-definite noun
phrase or the numerical noun phrase, best applies to a referent in the maintenance domain, SPUD

will prefer that entry to the corresponding ordinary definite (the) or indefinite (a) noun-phrase entry.
The genre-restricted entry carries a pragmatic condition on genre which the ordinary entry lacks;
thus the genre-restricted entry is selected as more specific.

We credit to systemic linguistics the idea that choices in syntactic realization should be made
incrementally, by consulting a model of the discourse and a specification of the functional conse-
quences of grammatical choices. (Mathiessen, 1983) is a classic implementation for generation,
while (Yang et al., 1991) explores the close connection between systemic linguistics and TAG.
However, SPUD departs from the systemic approach in that pragmatic conditions are associated with
individual constructions rather than linguistic systems; this departure also necessitates SPUD’s cri-
terion of specificity. Inspiration for both of these moves can be found in such recent research on
the discourse function of syntactic constructions as (Prince, 1986; Hirschberg, 1985; Ward, 1985;
Gundel et al., 1993; Birner, 1992). More generally, as hinted in our contrast of zero-definite noun
phrases versus the noun phrases, we hypothesize that pragmatically-conditioned constructions, se-
lected in context by specificity, make for grammars that can incorporate general defaults in real-
ization while also modeling the tendency of specific genres or sublanguages to adopt characteristic
styles of communication (Kittredge et al., 1991). This hypothesis merits further detailed investiga-
tion.

6.3 Lexical Choice
Problems of lexical choice arise whenever a microplanner must apportion abstract content onto spe-
cific lexical items that carry this content (in context). Our model of this problem follows (Elhadad
et al., 1997). According to this approach, in lexical choice, the microplanner must select words to
contribute several independently-specified conditions to the conversational record. Some of these
conditions characteristically “float”, in that they tend to be realized across a range of syntactic con-
stituents at different linguistic levels, and tend to be realized by lexical items that put other needed
information on the record. We agree with the argument of Elhadad et al. that a solution to such
problems depends on declarative conceptual and linguistic descriptions of lexical items and accu-
rate assessments of the contribution of lexical items to interpretation. (We agree further that this
lexical choice cannot be solved as an isolated microplanning subproblem, and must be solved con-
currently with such other tasks as syntactic choice.)

Elhadad et al.’s example is (52); the sentence adopts an informal and concise style to describe

42

an AI class for an academic help domain.

(52) AI requires six assignments.

The choice of verb requires here responds to two generation goals. First, it conveys simply that
the AI class involves a given set of assignments. The generator has other lexical alternatives, such
as y has x or there are x in y, that do the same. In addition, requires conveys that the assignments
represent a significant demand that the class places on its students. This second feature distinguishes
requires from alternative lexical items and accounts for the generator’s selection of it.

Both for Elhadad et al. and for SPUD, the selection of requires for (52) depends on its lexical
representation, which must spell out the two contributions the verb can make. In SPUD, these con-
tributions can be represented as assertions made when using require to describe a state S associating
a class C with assignments A, as in (53).

(53) Assertion: involve(S,C,A)∧demand(A)

Meanwhile, a microplanning task might begin with goals to convey two specific instances about
the AI class, c1; its assignments, a1; and an eventuality, s1, as in (54).

(54) a involve(s1,c1,a1)
b demand(a1)

In a context which supplies the information in (54), SPUD can add an instance of require as in (53)
to augment a sentence about s1; the instantiation σ has {S← s1,C← c1,A← a1}. Using M to
abbreviate the require assertion from (53), SPUD’s assessment of interpretation now records the
completed inferences in (55).

(55) a [CR](Mσ ⊃ involve(s1,c1,a1))
b [CR](Mσ ⊃ demand(a1))

Thus, SPUD recognizes the opportunistic dual contribution of require, and will therefore prefer re-
quire to other lexical alternatives that do not make a similar contribution.

Despite the high-level similarity, SPUD’s mechanisms for grammatical and contextual inference
are quite different to those of (Elhadad et al., 1997). Elhadad et al. achieve flexibility of search
by logic-programming constructs that allow programmers to state meaningful dependencies and
alternatives in the generator’s decisions in constructing a context-free phrase structure by top-down
traversal. For SPUD, dependencies and alternatives are represented using the extended domain of
locality of LTAG; SPUD’s strategy for updating decisions about the linguistic realization of floating
constraints thus depend on its LTAG derivation and incremental interpretation.

Moreover, because SPUD’s model of interpretation is broader, we account for more diverse inter-
actions in microplanning; we explore this in more detail in Section 6.5 and explore its consequences
for the design of SPUD specifications for lexical choice in Section 7.3.

6.4 Aggregation
The microplanning process of aggregation constructs complex sentences in which assemblies of
lexical items achieve multiple simultaneous updates to the conversational record. Instruction (2)
represents a case of aggregation because the combination of slide, a bare infinitival purpose clause,

43

and uncover conveys four updates to the conversational record with a single sentence: the next event
is a sliding whose purpose is an uncovering.

Aggregation is so named because many microplanners produce complex sentences through syn-
tactic operations that combine together, or aggregate, specifications of simple linguistic structures
(Reiter and Dale, 2000). For example, such a system might derive instruction (2) by stitching to-
gether specifications for these simple sentences: slide the coupling nut to the elbow; the sliding has
a purpose; the purpose is uncovering the sealing ring. Each of these sentence specifications directly
corresponds to a single given update. The specifications can be combined by describing transforma-
tions that create embedded syntactic structures under appropriate syntactic, semantic and pragmatic
conditions.

In SPUD, aggregation is not a distinct stage of microplanning that draws on idiosyncratic linguis-
tic resources; instead, aggregation arises as a natural consequence of the incremental elaboration of
communicative intent using a grammar. Initial phases of lexicalization leave some updates unex-
pressed; for example, after SPUD’s selection in (2) of the imperative transitive verb slide, SPUD still
has the goals of updating the conversational record to the event’s purpose, of uncovering. These
lexical and syntactic decisions also trigger new grammatical entries that adjoin into SPUD’s provi-
sional linguistic structure and augment the provisional communicative intent. Such entries provide
the grammatical resources by which SPUD’s subsequent lexicalization decisions can directly con-
tribute to complex sentences that achieve multiple communicative goals.

For example, in (2), slide introduces a VPpurp node indexed by the sliding event a1 and its agent
h0. This is a site where the lexico-syntactic entry in (56) could adjoin.

(56) a TREE:
VPpurp(A1,H)

��
��

HH
HH

VPpurp(A1,H)∗ Si(A2,H) ↓
b TARGET: VPpurp(A1,H)
c ASSERTION: purpose(A1,A2)
d PRESUPPOSITION and PRAGMATICS: —

(56) is a declarative description of the form and meaning of an English bare infinitival purpose con-
struction, expressed in the general terms required for reasoning about the interpretation of assem-
blies of linguistic constructions in context. Specifically, (56a) assumes that the purpose clause mod-
ifies a specific VP node and subcategorizes for an infinitive S.7

At the same time, (56) also has an operational interpretation for generation, as a pattern of possi-
ble aggregation: (56) describes when and how a description of an event can be extended to include
a characterization of the purpose of the event. This operational interpretation provides a comple-
mentary motivation for each of the constituents of (56). An aggregation pattern must indicate how
new material can be incorporated into an existing sentence; this is the role of the target in (56b).
And it must indicate what updates are realized by the addition; this is the role of the assertion in
(56c).

More generally, an aggregation pattern must indicate how the syntactic realization of aggregated
material depends on its subordination to or coordination with other linguistic structure. Languages

7Lexicalization purists could add a covert subordinating conjunction to head the tree in (56a), but SPUD does not
require it.

44

generally offer lightweight constructs, such as participles and prepositional phrases, which augment
a sentence with less than another full clause. Syntactic trees such as that in (56a) provide a natural
specification of these constructs. Finally, the pattern must characterize the idiosyncratic interpretive
constraints that favor one aggregated realization over another. Not all realizations are equally good;
alternatives may require specific informational or discourse relationships, such as the inferrability
between events that some adjuncts demand (Cheng and Mellish, 2000). As an aggregation pattern,
(56) represents such characterizations of requirements on context by appropriate pragmatic condi-
tions or presuppositions.

Selecting entry (56) is SPUD’s analogue of an aggregation process; by using it, SPUD derives
a provisional sentence including slide and requiring a further infinitive clause. SPUD substitutes
to uncover for the infinitive sentence in the purpose clause in a subsequent step of lexicalization.
This grammatical derivation results in a single complex sentence that achieves four updates to the
conversational record.

6.5 Interactions in Microplanning
SPUD is capable of achieving specified behavior on isolated microplanning tasks, but a key strength
of SPUD is its ability to model INTERACTIONS among the requirements of microplanning. Different
requirements can usually be satisfied in isolation by assembling appropriate syntactic constituents—
for example, by identifying an individual using a noun phrase that refers to it or by communicating
a desired property of an action using a verb phrase that asserts it. However, many sentences exhibit
an alternative, more efficient strategy which we have called TEXTUAL ECONOMY: the sentences
satisfy some microplanning objectives implicitly, by exploiting the hearer’s (or reader’s) recogni-
tion of inferential links to material elsewhere in the sentence that is there for independent reasons
(Stone and Webber, 1998). Such material is therefore overloaded in the sense of (Pollack, 1991).8

The main clause of (2), repeated as (57), is in fact illustrative of textual economy that exploits
interactions among problems of referring expression generation and lexical choice within a single
clause.

(57) Slide coupling nut onto elbow.

Consider the broader context in which (57) will be used to instruct the action the depicted in Fig-
ure 2. Given the frequent use of coupling nuts and sealing rings to join vents together in aircraft,
we cannot expect this context to supply a single, unique coupling nut. Indeed, diagrams associated
with instructions in our aircraft manuals sometimes explicitly labeled multiple similar parts. Allo-
cating tasks of verb choice and referring expression generation to independent constituents in such
circumstances would therefore lead to unnecessarily verbose utterances like (58).

(58) Slide coupling nut that is over fuel-line sealing ring onto elbow.

Instead, it is common to find instructions such as (57), in which these parts are identified by
abbreviated descriptions; and such instructions seem to pose no difficulty in interpretation. Intu-
itively, the hearer can identify the intended nut from (57) because of the choice of verb: one of the
semantic features of the verb slide is the constraint that its object (here, the coupling nut) moves

8Pollack used the term overloading to refer to cases where a single intention to act is used to wholly or partially
satisfy several of an agent’s goals simultaneously.

45

in contact along a surface to reach its destination (here, the elbow). Identifying the elbow directs
the hearer to the coupling nut on the fuel line, since that coupling nut alone lies along a common
surface with the elbow.

The formal representation of communicative intent in Figure 11 implements this explanation.
It associates the verb slide with proofs K −→ [CR]surf (P), K −→ [CR]start-at(P,N) and K −→
[CR]end-on(P,E) which together require the context to establish that the nut lie on a common sur-
face with the elbow. Accordingly, the constraint-network model of communicative-intent recog-
nition described in Section 4.4 uses this requirement in determining candidate values for N and E.
The network will heuristically identify coupling nuts that lie on a common surface with an elbow. In
this case, the constraints suffice jointly to determine the arguments in the action. Thus, when SPUD

constructs the communicative intent in Figure 11, it models and exploits an interaction between the
microplanning tasks of referring expression generation and lexical choice.

In (Stone and Webber, 1998), we make a similar point by analyzing the instruction (59) in the
context depicted in Figure 12.

(59) Remove the rabbit from the hat.

From (59), the hearer should be able to identify the intended rabbit and the intended hat—even
though the context supplies several rabbits, several hats, and even a rabbit in a bathtub and a flower
in a hat. The verb remove presupposes that its object (here, the rabbit) starts out in the source (here,
the hat), and this distinguishes the intended rabbit and hat in Figure 12 from the other ones.

Where instructions such as (57) exploit interactions between referring expression generation
and lexical choice, instructions exhibiting PRAGMATIC OVERLOADING exploit interactions between
aggregation and lexical choice (Di Eugenio and Webber, 1996). DiEugenio and Webber character-
ize the interpretation of instructions with multiple clauses that describe complex actions, such as
(60).

(60) a Hold the cup under the spigot—
b —to fill it with coffee.

Here, the two clauses (60a) and (60b) are related by enablement, a kind of purpose relation. Because
of this relation, the description in (60b) forms the basis of a constrained inference that provides ad-
ditional information about the action described in (60a). That is, while (60a) itself does not specify
the orientation of the cup under the spigot, its purpose (60b) can lead the hearer to an appropri-
ate choice. To fill a cup with coffee, the cup must be held vertically, with its concavity pointing
upwards. As noted in (Di Eugenio and Webber, 1996), this inference depends on the information
available about the action in (60a) and its purpose in (60b). The purpose specified in (61) does not
constrain cup orientation in the same way:

(61) Hold the cup under the faucet to wash it.

In a representation of communicative intent, the pragmatic overloading of (60) manifests itself
in an update to the conversational record that is achieved by inference. Suppose that we represent
the cup as c1, the action of holding it under the spigot as a1, and the needed spatial location and
orientation as o1; at the same time, we may represent the filling as action a2, and the coffee as liq-
uid l1. We contribute by inference that the orientation is upright—upright(o1)—because we assert
that a1 is an action where the hearer h1 holds c1 in o1—hold(a1,h1,c1,o1)—whose purpose is the

46

action a2 of filling c1 with l1—purpose(a1,a2)∧ fill(a2,h1,c1, l1); and because we count on the
hearer to recognize that an event in which something is held to be filled must involve an upright
orientation—in symbols:

(62) [CR]∀ee′xcol[hold(e,x,c,o)∧purpose(e,e′)∧fill(e′,x,c, l)⊃ upright(o)]

The notation of Section 2.1 records this inference as in (63), a constituent of the communicative
intent for (60).

(63)

upright(o1)

��
��

��
��

��

HH
HH

HH
HH

HH

hold(a1,H,C,O) purpose(a1,a2) fill(a2,H,C,L)

Because SPUD assesses the interpretations of utterances by looking for inferential possibilities
such as (63), it can recognize the textual economy in utterances such as (60). Moreover, because
SPUD interleaves reasoning for aggregation and lexical choice (and referring expression genera-
tion), SPUD can orchestrate the lexical content of clauses in order to take advantage of inferential
links like that of (63).

Thus, suppose that SPUD starts with the goal of describing the holding action in the main clause,
describing the filling action, and indicating the purpose relation between them. For the holding ac-
tion, SPUD’s goals include making sure that the sentence communicates where the cup will be held
and how it will be held (i.e., upright). SPUD first selects an appropriate lexico-syntactic tree for
imperative hold; SPUD can choose to adjoin in the purpose clause next, in an aggregation move,
and then to make the appropriate lexico-syntactic choice of fill. After this substitution, the seman-
tic contributions of the sentence describe an action of holding an object which can bring about an
action of filling that object. As shown in (Di Eugenio and Webber, 1996), and as formalized in
(62), these are the premises of an inference that the object is held upright during the filling. When
SPUD assesses the interpretation of this utterance, using logical queries about the updates it could
achieve, it finds that the utterance has in fact conveyed how the cup is to be held. SPUD has no
reason to describe the orientation of the cup with additional content.

7 Building specifications
We have seen how SPUD plans sentences not by a modular pipeline of subtasks, but by general rea-
soning that draws on detailed linguistic models and a rich characterization of interpretation. While
this generality makes for an elegant uniformity in microplanning, it also poses substantial obstacles
to the development of SPUD specifications. Because of SPUD’s general reasoning, changes to any
lexical and syntactic entry have far-reaching and indirect consequences on generation results.

In response to this challenge, we have developed a methodology for constructing lexicalized
grammatical resources for generation systems such as SPUD. Our methodology involves guide-
lines for the construction of syntactic structures, for semantic representations and for the interface
between them. In this section, we describe this methodology in detail, and show, by reference to
a case study in a specific instruction-generation domain, how this methodology helps ensure that
SPUD deploys its lexical and syntactic options as observed in a corpus of desired output. In the

47

future, we hope that this methodology can serve as a starting point for automatic techniques of
specification development and validation from possibly paired corpora of syntactic and semantic
representations——a problem that has begun to draw attention from the perspective of interpreta-
tion as well (Hockenmaier et al., 2001).

The basic principle behind all of our guidelines is this: THE REPRESENTATION OF A GRAM-
MATICAL ENTRY MUST MAKE IT AS EASY AS POSSIBLE FOR THE GENERATOR TO EXPLOIT ITS

CONTRIBUTION IN CARRYING OUT FURTHER PLANNING. This principle responds to two con-
cerns. First, SPUD is currently constrained to greedy or incremental search for reasons of efficiency.
At each step, SPUD picks the entry whose interpretation goes furthest towards achieving its commu-
nicative goals. As the generator uses its grammar to build on these greedy choices, our principle
facilitates the generator in arriving at a satisfactory overall utterance. More generally, we saw in
Section 6 many characteristic uses of language in which separate lexico-syntactic elements jointly
ensure needed features of communicative intent. This is an important way in which any generator
needs to be able exploit the contribution of an entry it has already used, in line with our principle.

7.1 Syntax
Our first set of guidelines describes the elementary trees that we specify as syntactic structures for
lexical items (including lexical items that involve a semantically-opaque combination of words).

1. The grammar must associate each item with its observed range of complements and modifiers,
in the observed orders. This constraint is common to any effort in grammar development; it
is sufficiently well-understood to allow induction of LTAGs from treebanks (Chen and Vijay-
Shanker, 2000; Sarkar, 2001).

2. All syntactically optional elements, regardless of interpretation, must be represented in the
syntax as modifiers, using the LTAG operation of adjunction. This allows the generator to
select an optional element when it is needed to achieve updates not otherwise conveyed by
its provisional utterance. Recall that, in LTAG, a substitution site indicates a constituent that
must be supplied syntactically to obtain a grammatical sentence; we call a constituent so pro-
vided a SYNTACTIC ARGUMENT. The alternative is to rewrite a node so as to include addi-
tional material (generally optional) specified by an auxiliary tree; we call material so pro-
vided a SYNTACTIC ADJUNCT. If optional elements are represented as syntactic adjuncts,
it is straightforward to select one whenever its potential benefit is recognized. With other
representations—for example, having a set of syntactic entries, each of which has a different
number of syntactic arguments—the representation can result in artificial dependencies in the
search space in generation, or even dead-end states in which the grammar does not offer a way
to more precisely specify an ambiguous reference. To use this representation successfully, a
greedy generator such as SPUD would have to anticipate how the sentence would be fleshed
out later in order to select the right entry early on.

3. The desired linear surface order of complements and modifiers for an entry must be repre-
sented using hierarchies of nodes in its elementary tree. In constructions with fixed word-
order (the typical case for English), the nodes we add reflect different semantic classes which
tend to be realized in a particular order. In constructions with free word-order (the typical case
in many other languages), node-ordering would instead reflect the information-structure sta-

48

tus of constituents. Introducing hierarchies of nodes to encode linear surface order decou-
ples the generator’s search space of derivations from the overt output word-order. It allows
the generator to select complements and modifiers in any search order, while still realizing
the complements and modifiers with their correct surface order. This is important for SPUD’s
greedy search; alternative designs—representing word-order in the derivation itself or in fea-
tures that clash when elements appear in the wrong order—introduce dependencies into the
search space for generation that make it more difficult for the generator to build on its ear-
lier choices successfully. However, for a generator which explores multiple search paths, the
more flexible search space will offer more than one path to the same final structure, and ad-
ditional checks will be required to avoid duplicate results.

Because of strong parallels in natural language syntax across categories (see for example (Jackend-
off, 1977)), we anticipate that these guidelines apply for all constructions in a similar way. Here
we will illustrate them with verbs, a challenging first case that we have investigated in detail; other
categories, particularly complex adjectives, adverbials and discourse connectives, merit further in-
vestigation.

We collected occurrences of the verbs slide, rotate, push, pull, lift, connect, disconnect, remove,
position and place in the maintenance manual for the fuel system of the American F16 aircraft. In
this manual, each operation is described consistently and precisely. Syntactic analysis of instruc-
tions in the corpus and the application of standard tests allowed us to cluster the uses of these verbs
into four syntactic classes; these classes are consistent with each verb’s membership in a distinct
Levin class (Levin, 1993). Differences among these classes include whether the verb lexicalizes
a path of motion (rotate), a resulting location (position), or a change of state (disconnect); and
whether a spatial complement is optional (as with the verbs just given) or obligatory (place). The
sentences from our corpus in (64) illustrate these alternatives.

(64) a Rotate valve one-fourth turn clockwise. [Path]
b Rotate halon tube to provide access. [Path, unspecified]
c Position one fire extinguisher near aircraft servicing connection point. [Resulting

location]
d Position drain tube. [Resulting location, unspecified]
e Disconnect generator set cable from ground power receptacle. [Change of state,

specified source]
f Disconnect coupling. [Change of state, unspecified source]
g Place grommet on test set vacuum adapter. [Resulting location, required]

We used our guidelines to craft SPUD syntactic entries for these verbs. For example, we asso-
ciate slide with the tree in (65). The structure reflects the optionality of the path constituent and
makes explicit the observed characteristic order of three kinds of modifiers: those specifying path,
such as onto elbow, which adjoin at VPpath; those specifying duration, such as until it is released,
which adjoin at VPdur; and those specifying purpose, such as to uncover sealing ring, which adjoin
at VPpurp.

49

(65)

S

��
�

HH
H

NP VPpurp

VPdur

VPpath
�� HH

V31 NP ↓

The requirements of generation in SPUD induce certain differences between our trees and other
LTAG grammars for English, such as the XTAG grammar (Doran et al., 1994; The XTAG-Group,
1995), even in cases when the XTAG trees do describe our corpus. For example, the XTAG gram-
mar represents slide simply as in (66).

(66)

S

��
�

HH
H

NP VP

�� HH

V31 NP ↓

The XTAG grammar does not attempt to encode the different orders of modifiers, nor to assign any
special status to path PPs with motion verbs.

7.2 Semantic Arguments and Compositional Semantics
Recall that, to express the semantic links between multiple entries in a derivation, we associate each
node in a syntactic tree with indices representing individuals. When one tree combines with an-
other, and a node in one tree is identified with a node in the other tree, the corresponding indices
are unified. Thus, the central problem of designing the compositional semantics for a given entry
is to decide which referents to explicitly represent in the tree and how to distribute those referents
as indices across the different nodes in the tree. (Of course, these decisions also inform subsequent
specification of lexical semantics.)

We refer to the collection of all indices that label nodes in an entry as the SEMANTIC ARGU-
MENTS of the entry. This notion of semantic argument is clearly distinguished from the notion of
syntactic argument that we used in Section 7.1 to characterize the syntactic structure of entries. Each
syntactic argument position corresponds to one semantic argument (or more), since the syntactic ar-
gument position is a node in the tree which is associated with some indices: semantic arguments.
However, semantic arguments need not be associated with syntactic argument positions. For ex-
ample, in a verb entry, we do not have a substitution site that realizes the eventuality that the verb
describes. But we treat this eventuality as a semantic argument to implement a Davidsonian ac-
count of event modifiers, cf. (Davidson, 1980). Because we count these implicit and unexpressed
referents as semantic arguments, our notion is broader than that of (Candito and Kahane, 1998) and
is more similar to Palmer’s essential arguments (Palmer, 1990).

Our strategy for specifying semantic arguments is as follows. We always include at least one
implicit argument that the structure as a whole describes; these are the MAJOR ARGUMENTS of the
structure. (This is common in linguistics, e.g. (Jackendoff, 1990), and in computational linguistics,
e.g. (Joshi and Vijay-Shanker, 1999).) Moreover, since complements require semantic arguments,

50

we have found the treatment of complements relatively straightforward—we simply introduce ap-
propriate arguments.

The treatment of optional constituents, however, is more problematic, and requires special guide-
lines. Often, it seems that we might express the semantic relationship between a head h and a mod-
ifier m in two ways, as schematized in (67).

(67) a h(R,A)∧m(A)
b h(R)∧m(R,A)

In (67a), we represent the head as relating its major argument R to another semantic argument A;
we interpret the modifier m as specifying A further. In this case, we must provide A as an index at
the node where m adjoins. In contrast, in (67b), we interpret the modifier m as relating the major
argument R of the head directly to A. In this case, A need not be a semantic argument of h, and we
need only provide R as an index at the node where m adjoins.

We treat the case (67b) as a default, and we require specific distributional evidence before we
adopt a representation such as (67a). If a class of modifiers such as m passes any of the three tests
below, we represent the key entity A as a semantic argument of the associated head h, and include
A as an index of the node to which m adjoins.

1. The PRESUPPOSITION TEST requires us to compare the interpretation of a sentence with a
modifier m, in which the head h contributes an update, to the interpretation of a correspond-
ing sentence without the modifier. If the referent A specified by the modifier can be identified
implicitly as discourse-bound—so that the sentence without the modifier can have the same
interpretation as the sentence with the modifier—then the modifier must specify A as a se-
mantic argument of the head A. In fact, A must figure in the presupposition of h. This is only
a partial diagnostic, because semantic arguments need not always be presupposed.

(68) illustrates an application of the presupposition test for the locative modifier of the verb
disconnect.

(68) a (Find the power cable.) Disconnect it from the power adaptor.
b (The power cable is attached to the power adaptor.) Disconnect it.

In (68b), it is understood that the power cable is to be disconnected from the power adaptor;
the modifier in (68a) makes this explicit. Thus disconnect and from the power adaptor pass
the presupposition test.

The motivation for the presupposition test is as follows. In SPUD, implicit discourse-bound
references can occur in an entry h used for an update, only when the presupposition of h
evokes a salient referent from the conversational record, as suggested by (Saeboe, 1996). In
(68b), for example, this referent is the power adaptor and the presupposition is that the power
cable is connected to it. The representation of such presuppositions must feature a variable
for the referent—we might have a variable A for the adaptor of (68b). Accordingly, in SPUD’s
model of interpretation, the speaker and hearer coordinate on the value for this variable (that
A is the power adaptor, say) by reasoning from the presupposed constraints on the value of
this variable. To guarantee successful interpretation (again using greedy search), SPUD needs
to be able to carry out further steps of grammatical derivation that add additional constraints

51

on these variables. (For example, SPUD might derive (68a) from (68b) by adjoining from the
power adaptor to describe A.) But this is possible only if the variable is represented as a se-
mantic argument.

2. The CONSTITUENT ELLIPSIS TEST looks at the interpretationof cases of constituent ellipsis—
certain anaphoric constructions that go proxy for a major argument of the head h. If modifiers
in the same class as m cannot be varied across constituent ellipsis, then these modifiers must
characterize semantic arguments other than the major argument of h.

For verbs, do so is one case of constituent ellipsis. The locative PPs in (69a) pass the con-
stituent ellipsis test for do so, as they cannot be taken to describe Kim and Chris’s separate
destinations; the infinitivals in (69b), which provide different reasons for Kim and Sandy, fail
the constituent ellipsis test for do so:

(69) a ∗Kim ran quickly to the counter. Chris did so to the kiosk.
b Kim left early to avoid the crowd. Sandy did so to find one.

A suceesful test with do so suggests that m contributes a description of a referent that is inde-
pendently related to the event—in other words, that m specifies some semantic argument. Its
meaning should therefore be represented in the form m(A). For (69a), for example, we can
use a constraint to(P,O) indicating that the path P (a semantic argument of the verb) goes to
the object O.

A failed test with do so suggests that m directly describes a complete event. Its meaning
should therefore be represented in the form m(R,A), where m is some relational constraint
and R is an event variable. For (69b), for example, we can use the constraint purpose(E,E′),
which we have already adopted to describe bare infinitival purpose clauses.

A theoretical justification for the constituent ellipsis test depends on the assumption that ma-
terial recovered from context in constituent ellipsis is invisible to operations of syntactic com-
bination. (For example, the material might be supplied atomically as discourse referent, as
in (Hardt, 1999), where do so recovers a property or action discourse referent that has been
introduced by an earlier predicate on events.) Then a phrase that describes the major argu-
ment R can combine with the ellipsis, but phrases that describe any another implicit referent
A cannot; these implicit referents are syntactically invisible.

3. The TRANSFORMATION test looks at how modifiers are realized across different syntactic
frames for h; it is particularly useful when m is headed by a closed-class item. If some frames
for h permit m to be realized as a discontinous constituent with an apparent “long-distance”
dependency, then the modifier m specifies a semantic argument. (Note that failure of the trans-
formation test would be inconclusive in cases where syntax independently ruled out the al-
ternative realization.)

For verbs, wh-extraction constructions illustrate the transformation test:

(70) a What did you remove the rabbit from? (A: the hat)
b ∗What did you remove the rabbit at? (A: the magic show)

52

In these cases, a modifier is realized effectively in two parts: what...from in (70a) and what...at
in (70b). Intuitively, we have a case of extraction of the NP describing A from within m. When
this is grammatical, as in (70a), it suggests that m specifies A as a semantic argument of the
head; when it is not, as in (70b), the test fails.

In LTAG, a transformation is interpreted as a relation among trees in a tree family that have es-
sentially the same meaning and differ only in syntax. (In one formalization (Xia et al., 1998),
these relationships between trees are realized as descriptions of structure to add to elementary
trees.) A transformation that introduces the referent A in the syntax–semantics interface and
relates A to the available referent R in the semantics cannot be represented this way. How-
ever, if some semantic argument A is referenced in the original tree, the transformed analogue
to this tree can easily realize A differently. If we describe the source location as the semantic
argument A in (70a) for example, the new realization involves an initial wh-NP substitution
site describing the source A, and the corresponding stranded structure of the PP from t.

Of course, these tests are not perfect and have on occasion revealed difficult or ambiguous cases;
here too, further research remains in adapting these tests to categories of constituents that did not
require intensive investigation in our corpus.

We have combined these tests to designing the syntax–semantics interface for verbs in our gen-
eration grammar. In the case of slide, these tests show that the path of motion is a semantic argument
but a syntactic modifier. (71) presents our diagnostics: extraction is good, do so substitution is de-
graded, and slide can make a presupposition about the path of motion that helps to identify both the
object and the path.

(71) a What did you slide the sleeve onto?
b ∗Mary slid a sleeve onto the elbow and John did so onto the pressure sense tube.
c Slide sleeve onto elbow [acceptable in a context with many sleeves, but only one

connected on a surface with the elbow].

Suppose we describe an event A in which H slides object O along path P. We label the nodes
of (65) with these indices as in (72).

(72) a subject NP: H
b object NP: O
c S, VPdur: A
d VPpurp: A, H
e VPpath: A, O, P

This labeling is motivated by patterns of modification we observed in maintenance instructions. In
particular, the index H for (72d) allows us to represent the control requirement that the subject of
the purpose clause is understood as the subject of the main sentence; meanwhile, the indices O and
P for (72e) allows us to represent the semantics of path particles such as back; back presupposes
an event or state preceding A in time in which object O was located at the endpoint of path P.

7.3 Lexical Semantics
To complete a SPUD specification, after following the methods outlined in Sections 7.1 and 7.2, we
have only to specify the meanings of individual lexical items. This task always brings potential

53

difficulties. However, the preceding decisions and the independent effects of SPUD’s specifications
of content, presupposition and pragmatics greatly constrain what needs to be specified.

By specifying syntax and compositional semantics already, we have determined what lexical-
ized derivation trees the generator will consider; this maps out the search space for generation.
Moreover, our strategy for doing so keeps open as many options as possible for extending a descrip-
tion of an entity we have introduced; it allows entries to be added incrementally to an incomplete
sentence in any order, subject only to the constraint that a head must be present before we propose
to modify it. Syntactic specifications guarantee correct word order in the result, while the syntax–
semantics interface ensures correct connections among the interpretations of combined elements.
Thus, all that remains is to describe the communicative intent that we associate with the utterances
in this search space.

The communicative intent of an utterance is made up of records for assertion, presupposition
and pragmatics that depend on independent specifications from lexical items. The content condi-
tion determines the generator’s strategy for contributing needed information to the hearer; the pre-
supposition determines, inter alia, reference resolution; the pragmatics determines other contextual
links. Thus we can consider these specifications separately and base each specification on clearly
delineated evidence. In what follows we will describe this process for the motion verbs we studied.

We begin with the content condition. We know the kind of relationship that this condition must
express from the verb’s syntactic distribution (i.e., for slide, the frames of (64) that lexicalize an
optional path of motion), and from the participants in the event identified as semantic arguments
of the verb (i.e., slide, the event itself and its agent, object and path). To identify the particular
relationship, we consider what basic information we learn from discovering that an event of this
type occurred in a situation where the possibility of this event was known. For verbs in our domain,
we found just four contrasts:

(73) a Whether the event merely involves a pure change of state, perhaps involving the spatial
location of an object but with no specified path; e.g., remove but not move.

b Whether the event must involve an agent moving an object from one place to another
along a specified path; e.g., move but not remove.

c Whether the event must involve the application of force by the agent; e.g., push but not
move.

d Whether the event must brought about directly through the agent’s bodily action (and
not through mechanical assistance or other indirect agency); e.g., place but not position.

Obviously, such contrasts are quite familiar from such research in lexical semantics as (Talmy,
1988; Jackendoff, 1990); they have also been explored successfully in action representation for
animation (Badler et al., 1999; Badler et al., 2000)

Many sets of verbs are identical in content by these features. One such set contains the verbs
move, slide, rotate and turn; these verbs contribute just that the event involves an agent moving an
object along a given path. Note that when SPUD assesses the contribution of an utterance contain-
ing these verbs, it will treat the agent, object and path as particular discourse referents that it must
and will identify. This is why we simply assume that the path is given in specifying the content
condition for these verbs. Of course, the verbs do provide different path information; we represent
this separately, as a presupposition.

To specify the presupposition and pragmatics of a verb, we must characterize the links that the

54

verbs impose between the action and what is known in the context about the environment in which
the action is to be performed. In some cases, these links are common across verb classes. For in-
stance, all motion verbs presuppose a current location for the object, which they assert to be the
beginning of the path traveled. In other cases, these links accompany particular lexical items; an
example is the presupposition of slide, that the path of motion maintains contact with some surface.

In specifying these links, important evidence comes from the uses of lexical items observed in a
corpus. The following illustration is representative. In the aircraft vent system, pipes may be sealed
together using a sleeve, which fits snugly over the ends of adjacent pipes, and a coupling, which
snaps shut around the sleeve and holds it in place. At the start of maintenance, one removes the cou-
pling and slides the sleeve away from the junction between the pipes. Afterwards, one (re-)positions
the sleeve at the junction and (re-)installs the coupling around it. In the F16 corpus, these actions
are always described using these verbs.

This use of verbs reflects not only the motions themselves but also the general design and func-
tion of the equipment. For example, the verb position is used to describe a motion that leaves its
object in some definite location in which the object will be able to perform some intended function.
In the case of the sleeve, it would only be IN POSITION when straddling the pipes whose junction it
seals. Identifying such distinctions in a corpus thus points to the specification required for correct
lexical choice. In this case, we represent position as presupposing some “position” where the object
carries out its intended function.

These specifications now directly control how SPUD realizes the alternation. To start, SPUD’s
strategy of linking the presupposition and pragmatics to a knowledge base of shared information re-
stricts what verbs are applicable in any microplanning task. For example, when the sleeve is moved
away from the junction, we can only describe it by slide and not by position, because the presup-
position of position is not met.

At the same time, in contexts which support the presupposition and pragmatics of several alter-
natives, SPUD selects among them based on the contribution to communicative intent of presuppo-
sition and pragmatics. We can illustrate this with slide and position. We can settle on a syntactic tree
for each verb that best fits the context; and we have designed these trees so that either choice can
be fleshed out by further constituents into a satisfactory utterance. Similarly, these items are alike
in that their assertions both specify the motion that the instruction must convey to the hearer.9 The
syntax, the syntax–semantics interface, and the assertion put slide and position on an equal footing,
and only the presupposition and pragmatics could distinguish the two.

With differences in presuppositions come differences in possible resolutions of discourse anaphors
to discourse referents; the differences depend on the properties of salient objects in the common
ground. The fewer resolutions that there are after selecting a verb, the more the verb assists the
hearer in identifying the needed action. This gives a reason to prefer one verb over another. In gen-
eral, we elect to specify a constraint on context as a presupposition exactly when we must model
its effects on reference resolution.

In our example, general background indicates that each sleeve only has a single place where it
belongs, at the joint; meanwhile, there may be many “way points” along the pipe to slide the sleeve

9Note that if the assertions were different in some relevant respect, the difference would provide a decisive reason
for SPUD to prefer one entry over another. SPUD’s top priority is to achieve its updates. For example, SPUD would
prefer an entry if its assertion achieved a specified update by describing manner of motion and alternative entries did
not.

55

to. This makes the anaphoric interpretation of position less ambiguous than that of slide; to obtain
an equally constrained interpretation with slide, an additional identifying modifier like into its po-
sition would be needed. This favors position over slide—exactly what we observe in our corpus of
instructions. The example illustrates how SPUD’s meaning specifications can be developed step by
step, with a close connection between the semantic distinctions we introduce in lexical entries and
their consequences for generation.

With differences in pragmatics come differences in the fit between utterance and context. The
more specific the pragmatics the better the fit; this gives another reason to prefer one verb over
another. We did not find such cases among the motion verbs we studied, because the contextual
links we identified all had effects on reference resolution and thus were specified as presuppositions.
However, we anticipate that pragmatics will prove important when differences in meaning involve
the perspective taken by the speaker on an event, as in the contrast of buy and sell.

Appendix B details our results for the ten verbs we studied; (74) presents the final sample entry
for slide. The tree gives the syntax for one element in the tree family associated with slide, with its
associated semantic indices; the associated formulas describe the semantics of the entry in terms of
presuppositions and assertions about the individuals referenced in the tree.

(74) a Syntax and syntax–semantics interface:

S(A)

��
��

HH
HH

NP(H) VPpurp(A,H)

VPdur(A)

VPpath(A,O,P)

��� HHH

V31 NP(O) ↓

b Assertion: move(A,H,O,P)
c Presupposition: start-at(P,O)∧ surf (P)

Of course, the corresponding entries (75) and (81) that we used in assembling concrete communica-
tive intent for (2) in Figure 11 refine (74) only in adopting the specific syntactic and semantic refine-
ments of an imperative use of the verb. The entries are provided as (75) and (81) in Appendix A.

8 Previous Work
In the discussion so far, we have been able to contrast SPUD with a range of research from the sen-
tence planning literature. As first observed in Section 2.3 and substantiated subsequently, SPUD’s
representations and algorithms, and the specification strategies they afford, greatly improve on prior
proposals for communicative-intent–based microplanning such as (Appelt, 1985; Thomason and
Hobbs, 1997). Meanwhile, as catalogued in Section 6, SPUD captures the essence of techniques for
referring expression generation, such as (Dale and Haddock, 1991); for syntactic choice, such as
(Mathiessen, 1983; Yang et al., 1991); for lexical choice, such as (Nogier and Zock, 1991; Elhadad
et al., 1997; Stede, 1998); and for aggregation, such as (Dalianis, 1996; Shaw, 1998).

At the same time, SPUD goes beyond these pipelined approaches in modeling and exploiting
interactions among microplanning subtasks, and SPUD captures these efficiencies using a uniform

56

model of communicative intent. In contrast, other research has succeeded in capturing particular
descriptive efficiencies only by specialized mechanisms. For example, Appelt’s planning formal-
ism includes plan-critics that can detect and collapse redundancies in sentence plans (Appelt, 1985).
This framework treats subproblems in generation as independent by default; and writing tractable
and general critics is hampered by the absence of abstractions like those used in SPUD to simulta-
neously model the syntax and the interpretation of a whole sentence. Meanwhile, in (McDonald,
1992), McDonald considers descriptions of events in domains which impose strong constraints on
what information about events is semantically relevant. He shows that such material should and
can be omitted, if it is both syntactically optional and inferentially derivable:

FAIRCHILD Corporation (Chantilly VA) Donald E Miller was named senior vice pres-
ident and general counsel, succeeding Dominic A Petito, who resigned in November,
at this aerospace business. Mr. Miller, 43 years old, was previously principal attorney
for Temkin & Miller Ltd., Providence RI.

Here, McDonald points out that one does not need to explicitly mention the position that Petito
resigned from in specifying the resignation sub-event, since it must be the same as the one that
Miller has been appointed to. Whereas McDonald adopts special-purpose module to handle this,
we regard it as a special case of pragmatic overloading.

More generally, like many sentence planners, SPUD achieves a flexible association between the
content input to a sentence planner and the meaning that comes out. Other researchers (Nicolov
et al., 1995; Rubinoff, 1992) have assumed that this flexibility comes from a mismatch between in-
put content and grammatical options. In SPUD, such differences arise from the referential require-
ments and inferential opportunities that are encountered.

Previous authors (McDonald and Pustejovsky, 1985; Joshi, 1987) have noted that TAG has
many advantages for generation as a syntactic formalism, because of its localization of argument
structure. (Joshi, 1987) states that adjunction is a powerful tool for elaborating descriptions. These
aspects of TAGs are crucial for us; for example, lexicalization allows us to easily specify local se-
mantic and pragmatic constraints imposed by the lexical item in a particular syntactic frame.

Various efforts at using TAG for generation (McDonald and Pustejovsky, 1985; Joshi, 1987;
Yang et al., 1991; Danlos, 1996; Nicolov et al., 1995; Wahlster et al., 1991) enjoy many of these
advantages. They vary in the organization of the linguistic resources, the input semantics and how
they evaluate and assemble alternatives. Furthermore, (Shieber et al., 1990; Shieber, 1991; Prevost
and Steedman, 1993; Hoffman, 1994) exploit similar benefits of lexicalization and localization. Our
approach is distinguished by its declarative synthesis of a representation of communicative intent,
which allows SPUD to construct a sentence and its interpretation simultaneously.

9 Conclusion
Most generation systems pipeline pragmatic, semantic, lexical and syntactic decisions (Reiter, 1994).
With the right formalism—an explicit, declarative representation of COMMUNICATIVE INTENT—
it is easier and better to construct pragmatics, semantics and syntax simultaneously. The approach
elegantly captures the interaction between pragmatic and syntactic constraints on descriptions in a
sentence, and the inferential interactions between multiple descriptions in a sentence. At the same
time, it exploits linguistically motivated, declarative specifications of the discourse functions of
syntactic constructions to make contextually appropriate syntactic choices.

57

Realizing a microplanner based on communicative intent involves challenges in implementa-
tion and specification. In the past (Appelt, 1985), these challenges may have made communicative-
intent–based microplanning seem hopeless and intractable. Nevertheless, in this paper, we have
described an effective implementation, SPUD, that constructs representations of communicative in-
tent through top-down LTAG derivation, logic-programming and constraint-satisfaction models of
interpretation, and greedy search; and we have described a systematic, step-by-step methodology
for designing generation grammars for SPUD.

With these results, the challenges that remain for the program of microplanning based on com-
municative intent offer fertile ground for further research. SPUD’s model of interpretation omits im-
portant features of natural language, such as plurality (Stone, 2000a), discourse connectivity (Web-
ber et al., 1999) and such defeasible aspects of interpretation as presupposition-accommodation
(Lewis, 1979). SPUD’s search procedure is simplistic, and is vulnerable to stalled states where
lookahead is required to recognize the descriptive effect of a combination of lexical items. (Gar-
dent and Striegnitz, 2001) illustrate how refinements in SPUD’s models of interpretation and search
can lead to interesting new possibilities for NLG. At the same time, the construction of lexicalized
grammars for generation with effective representations of semantics calls out for automation, using
techniques that make lighter demands on developers and make better use of machine learning.

Acknowledgments
This paper has been brewing for a long time—during which the investigation has been supported by:
NSF and IRCS graduate fellowships, a RuCCS postdoctoral fellowship, NSF grant NSF-STC SBR
8920230, NSF Resarch Instrumentation award 9818322, ARPA grant N6600194C6-043, and ARO
grant DAAH04-94-G0426. We are grateful for discussion and comments from Gann Bierner, Betty
Birner, Julie Bourne, Justine Cassell, Aravind Joshi, Alistair Knott, Ellen Prince, Owen Rambow,
Joseph Rosenzweig, Anoop Sarkar, Mark Steedman, Mike White and Hao Yan.

References
Appelt, D. (1985). Planning English Sentences. Cambridge University Press, Cambridge England.

Bach, E. (1989). Informal Lectures on Formal Semantics. State University of New York Press,
Albany, NY.

Badler, N., Bindiganavale, R., Allbeck, J., Schuler, W., Zhao, L., Lee, S.-J., Shin, H., and Palmer,
M. (2000). Parameterized action representation and natural language instructions for dynamic
behavior modification of embodied agents. In Agents.

Badler, N., Palmer, M., and Bindiganavale, R. (1999). Animation control for real-time virtual hu-
mans. Communications of the ACM, 42(7):65–73.

Baldoni, M., Giordano, L., and Martelli, A. (1998). A modal extension of logic programming:
Modularity, beliefs and hypothetical reasoning. Journal of Logic and Computation, 8(5):597–
635.

Birner, B. (1992). The Discourse Function of Inversion in English. PhD thesis, Northwestern Uni-
versity.

58

Bourne, J. (1998). Generating effective instructions: Knowing when to stop. PhD Thesis Proposal,
Department of Computer & Information Science, University of Pennsylvania.

Bratman, M. E. (1987). Intention, Plans, and Practical Reason. Harvard University Press, Cam-
brdige, MA.

Cahill, L. and Reape, M. (1999). Component tasks in applied NLG systems. Technical Report
ITRI-99-05, ITRI, University of Brighton.

Candito, M. and Kahane, S. (1998). Can the TAG derivation tree represent a semantic graph? an
answer in the light of Meaning-Text Theory. In TAG+4.

Carberry, S. and Lambert, L. (1999). A process model for recognizing communicative acts and
modeling negotiation subdialogues. Computational Linguistics, 25:1–53.

Cassell, J. (2000). Embodied conversational interface agents. Communications of the ACM,
43(4):70–78.

Cassell, J., Stone, M., and Yan, H. (2000). Coordination and context-dependence in the generation
of embodied conversation. In First International Confernence on Natural Language Genera-
tion, pages 171–178.

Chen, J. and Vijay-Shanker, K. (2000). Automated extraction of TAGs from the Penn treebank. In
Proceedings of the 6th International Workshop on Parsing Technologies, Trento, Italy.

Cheng, H. and Mellish, C. (2000). An empirical analysis of constructing non-restrictive NP com-
ponents to express semantic relations. In First International Conference on Natural Language
Generation, pages 108–115.

Clark, H. H. (1996). Using Language. Cambridge University Press, Cambridge, UK.

Clark, H. H. and Marshall, C. R. (1981). Definite reference and mutual knowledge. In Joshi, A. K.,
Webber, B. L., and Sag, I., editors, Elements of Discourse Understanding, pages 10–63. Cam-
bridge University Press, Cambridge.

Dale, R. (1992). Generating Referring Expressions: Constructing Descriptions in a Domain of
Objects and Processes. MIT Press, Cambridge MA.

Dale, R. and Haddock, N. (1991). Content determination in the generation of referring expressions.
Computational Intelligence, 7(4):252–265.

Dale, R. and Reiter, E. (1995). Computational interpretations of the Gricean maxims in the gener-
ation of referring expressions. Cognitive Science, 18:233–263.

Dalianis, H. (1996). Concise Natural Language Generation from Formal Specifications. PhD the-
sis, Royal Institute of Technology, Stockholm. Department of Computer and Systems Sci-
ences.

Danlos, L. (1996). G-TAG: A formalism for Text Generation inspired from Tree Adjoining Gram-
mar: TAG issues. Unpublished manuscript, TALANA, Université Paris 7.

59

Davidson, D. (1980). The logical form of action sentences. In Essays on actions and events, pages
105–148. Clarendon Press, Oxford.

Debart, F., Enjalbert, P., and Lescot, M. (1992). Multimodal logic programming using equational
and order-sorted logic. Theoretical Computer Science, 105:141–166.

Di Eugenio, B. and Webber, B. (1996). Pragmatic overloading in natural language instructions.
Internationl Journal of Expert Systems, 9(2):53–84.

Doran, C., Egedi, D., Hockey, B. A., Srinivas, B., and Zaidel, M. (1994). XTAG System - a wide
coverage grammar for English. In Proceedings of COLING.

Elhadad, M., McKeown, K., and Robin, J. (1997). Floating constraints in lexical choice. Compu-
tational Linguistics, 23(2):195–240.

Elhadad, M. and Robin, J. (1992). Controlling content realization with functional unification gram-
mars. In Dale, R., Hovy, E., Rösner, D., and Stock, O., editors, Aspects of Automated Natural
Language Generation: 6th International Workshop on Natural Language Generation, Lecture
Notes in Artificial Intelligence 587, pages 89–104. Springer Verlag, Berlin.

Fariñas del Cerro, L. (1986). MOLOG: A system that extends PROLOG with modal logic. New
Generation Computing, 4:35–50.

Gardent, C. and Striegnitz, K. (2001). Generating indirect anaphora. In Proceedings of IWCS, pages
138–155.

Grice, H. P. (1957). Meaning. The Philosophical Review, 66:377–388.

Gundel, J. K., Hedberg, N., and Zacharski, R. (1993). Cognitive status and the form of referring
expressions in discourse. Language, 69(2):274–307.

Haddock, N. (1989). Incremental Semantics and Interactive Syntactic Processing. PhD thesis,
University of Edinburgh.

Hardt, D. (1999). Dynamic interpretation of verb phrase ellipsis. Linguistics and Philosophy,
22(2):187–221.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on SSC, 4:100–107. Correction in SIGART Newslet-
ter 37:28–29.

Heeman, P. and Hirst, G. (1995). Collaborating on referring expressions. Computational Linguis-
tics, 21(3).

Hirschberg, J. (1985). A Theory of Scalar Implicature. PhD thesis, University of Pennsylvania.

Hobbs, J., Stickel, M., Appelt, D., and Martin, P. (1993). Interpretation as abduction. Artificial
Intelligence, 63:69–142.

Hobbs, J. R. (1985). Ontological promiscuity. In Proceedings of ACL, pages 61–69.

60

Hobbs, J. R., Stickel, M., Appelt, D., and Martin, P. (1988). Interpretation as abduction. In Pro-
ceedings of ACL, pages 95–103.

Hockenmaier, J., Bierner, G., and Baldridge, J. (2001). Providing robustness for a CCG system.
Submitted.

Hoffman, B. (1994). Generating context-appropriate word orders in Turkish. In Proceedings of the
Seventh International Generation Workshop.

Horacek, H. (1995). More on generating referring expressions. In Proceedings of the Fifth Euro-
pean Workshop on Natural Language Generation, pages 43–58, Leiden.

Jackendoff, R. (1977). X̄ Syntax: A Study of Phrase Structure. MIT.

Jackendoff, R. S. (1990). Semantic Structures. MIT Press, Cambridge, MA.

Joshi, A. and Vijay-Shanker, K. (1999). Compositional semantics with lexicalized tree-adjoining
grammar (LTAG). In International Workshop on Computational Semantics, pages 131–145.

Joshi, A. K. (1987). The relevance of tree adjoining grammar to generation. In Kempen, G., ed-
itor, Natural Language Generation, pages 233–252. Martinus Nijhoff Press, Dordrecht, The
Netherlands.

Joshi, A. K., Levy, L., and Takahashi, M. (1975). Tree adjunct grammars. Journal of the Computer
and System Sciences, 10:136–163.

Kallmeyer, L. and Joshi, A. (1999). Factoring predicate argument and scope semantics: underspec-
ified semantics with LTAG. In 12th Amsterdam Colloquium.

Kamp, H. and Rossdeutscher, A. (1994). DRS-construction and lexically driven inference. Theo-
retical Linguistics, 20:97–164.

Kittredge, R., Korelsky, T., and Rambow, O. (1991). On the need for domain communication
knowledge. Computational Intelligence, 7(4):305–314.

Lascarides, A. and Asher, N. (1991). Discourse relations and defeasible knowledge. In Proceedings
of ACL 29, pages 55–62.

Levelt, W. J. M. (1989). Speaking. MIT, Cambridge, MA.

Levin, B. (1993). English Verb Classes and Alternations: A preliminary investigation. University
of Chicago, Chicago.

Lewis, D. (1979). Scorekeeping in a language game. In Semantics from Different Points of View,
pages 172–187. Springer Verlag, Berlin.

Mackworth, A. (1987). Constraint Satisfaction. In Shapiro, S., editor, Encyclopedia of Artificial
Intelligence, pages 205–211. John Wiley and Sons.

61

Mathiessen, C. M. I. M. (1983). Systemic grammar in computation: the Nigel case. In Proceedings
of EACL, pages 155–164.

McDonald, D. (1992). Type-driven suppression of redundancy in the generation of inference-rich
reports. In Dale, R., Hovy, E., Rösner, D., and Stock, O., editors, Aspects of Automated Natural
Language Generation: 6th International Workshop on Natural Language Generation, Lecture
Notes in Artificial Intelligence 587, pages 73–88. Springer Verlag, Berlin.

McDonald, D. D. and Pustejovsky, J. D. (1985). TAG’s as a grammatical formalism for generation.
In Proceedings of the 23rd Annual Meeting of the Association for Computational Linguistics,
pages 94–103, Chicago, IL.

Mellish, C., O’Donnell, M., Oberlander, J., and Knott, A. (1998). An architecture for opportunistic
text generation. In 9th International Workshop on Natural Language Generation.

Mellish, C. S. (1985). Computer Interpretation of Natural Language Descriptions. Ellis Horwood,
Chichester, UK.

Miller, D., Nadathur, G., Pfenning, F., and Scedrov, A. (1991). Uniform proofs as a foundation for
logic programming. Annals of Pure and Applied Logic, 51:125–157.

Moore, J. (1994). Participating in Explanatory Dialogues. MIT Press, Cambridge MA.

Moore, J. D. and Paris, C. L. (1993). Planning text for advisory dialogues: capturing intentional
and rhetorical information. Computational Linguistics, 19(4):651–695.

Nicolov, N., Mellish, C., and Ritchie, G. (1995). Sentence generation from conceptual graphs.
In G. Ellis, R. Levinson, W. R. and Sowa, F., editors, Conceptual Structures: Applications,
Implementation and Theory (Proceedings of Third International Conference on Conceptual
Structures), pages 74–88. Springer.

Nilsson, N. (1971). Problem-solving Methods in Artificial Intelligence. McGraw-Hill, New York.

Nogier, J. and Zock, M. (1991). Lexical choice as pattern-matching. In Nagle, T., Nagle, J., Gerholz,
L., and Eklund, P., editors, Current Directions in Conceptual Structures Research. Springer.

Palmer, M. (1990). Semantic Processing for Finite Domains. Cambridge Univeristy Press.

Pereira, F. C. N. and Shieber, S. M. (1987). Prolog and Natural Language Analysis. CSLI, Stanford
CA.

Pollack, M. (1991). Overloading intentions for efficient practical reasoning. Noûs, 25:513–536.

Pollack, M. E. (1992). The uses of plans. Artificial Intelligence, 57:43–68.

Prevost, S. and Steedman, M. (1993). Generating contextually appropriate intonation. In Proceed-
ings of the Sixth Conference of the European Chapter of ACL, pages 332–340, Utrecht.

Prince, A. and Smolensky, P. (1997). Optimality: From neural networks to universal grammar.
Science, 275:1604–1610.

62

Prince, E. (1986). On the syntactic marking of presupposed open propositions. In Proceedings of
the 22nd Annual Meeting of the Chicago Linguistic Society, pages 208–222, Chicago. CLS.

Rambow, O. and Korelsky, T. (1992). Applied text generation. In Applied Natural Language Pro-
cessing Conference, pages 40–47.

Reiter, E. (1994). Has a consensus NL generation architecture appeared, and is it psycholinguisti-
cally plausible? In Seventh International Workshop on Natural Language Generation, pages
163–170.

Reiter, E. and Dale, R. (2000). Building Natural Language Generation Systems. Cambridge.

Rich, C., Sidner, C. L., and Lesh, N. (2001). COLLAGEN: applying collaborative discourse theory
to human-computer interaction. AI Magazine. to appear.

Rubinoff, R. (1992). Integrating text planning and linguistic choice by annotating linguistic struc-
tures. In Dale, R., Hovy, E., Rösner, D., and Stock, O., editors, Aspects of Automated Natural
Language Generation: 6th International Workshop on Natural Language Generation, Lecture
Notes in Artificial Intelligence 587, pages 45–56. Springer Verlag, Berlin.

Saeboe, K. J. (1996). Anaphoric presuppositions and zero anaphora. Linguistics and Philosophy,
19(2):187–209.

Sarkar, A. (2001). Applying co-training methods to statistical parsing. In Proceedings of the North
Americal Association for Computational Linguistics.

Schabes, Y. (1990). Mathematical and Computational Aspects of Lexicalized Grammars. PhD
thesis, Computer Science Department, University of Pennsylvania.

Shaw, J. (1998). Clause aggregation using linguistic knowledge. In Ninth International Workshop
on Natural Language Generation, pages 138–148.

Shieber, S., van Noord, G., Pereira, F., and Moore, R. (1990). Semantic-head-driven generation.
Computational Linguistics, 16:30–42.

Shieber, S. M. (1991). A uniform architecture for parsing and generation. In ICLP, pages 614–619.

Stede, M. (1998). A generative perspective on verb alternations. Computational Linguistics,
24(3):401–430.

Steedman, M. (1997). Temporality. In van Benthem, J. and ter Meulen, A., editors, Handbook of
Logic and Language, pages 895–935. Elsevier.

Stone, M. (1998). Modality in Dialogue: Planning, Pragmatics and Computation. PhD thesis,
University of Pennsylvania.

Stone, M. (1999). Indefinite information in modal logic programming. Technical Report RUCCS
Report 56, Rutgers University.

63

Stone, M. (2000a). On identifying sets. In First International Confernence on Natural Language
Generation, pages 116–123.

Stone, M. (2000b). Towards a computational account of knowledge, action and inference in in-
structions. Journal of Language and Computation, 1:231–246.

Stone, M., Bleam, T., Doran, C., and Palmer, M. (2000). Lexicalized grammar and the description
of motion events. In TAG+: Workshop on Tree-Adjoining Grammar and Related Formalisms,
pages 199–206.

Stone, M. and Doran, C. (1996). Paying heed to collocations. In International Natural Language
Generation Workshop, pages 91–100.

Stone, M. and Doran, C. (1997). Sentence planning as description using tree-adjoining grammar.
In Proceedings of ACL, pages 198–205.

Stone, M. and Webber, B. (1998). Textual economy through close coupling of syntax and semantics.
In Proceedings of International Natural Language Generation Workshop, pages 178–187.

Talmy, L. (1988). Force dynamics in language and cognition. Cognitive Science, 12:49–100.

The XTAG-Group (1995). A Lexicalized Tree Adjoining Grammar for English. Tech-
nical Report IRCS 95-03, University of Pennsylvania. Updated version available at
http://www.cis.upenn.edu/˜xtag/tr/tech-report.html.

Thomason, R. H. (1990). Accommodation, meaning and implicature. In Cohen, P. R., Morgan, J.,
and Pollack, M. E., editors, Intentions in Communication, pages 325–363. MIT Press, Cam-
bridge, MA.

Thomason, R. H., Hobbs, J., and Moore, J. (1996). Communicative goals. In ECAI Workshop on
Gaps and Bridges: New Directions in Planning and Natural Language Generation.

Thomason, R. H. and Hobbs, J. R. (1997). Interrelating interpretation and generation in an abduc-
tive framework. In AAAI Fall Symposium on Communicative Action.

van der Sandt, R. (1992). Presupposition projection as anaphora resolution. Journal of Semantics,
9(2):333–377.

Vijay-Shanker, K. (1987). A Study of Tree Adjoining Grammars. PhD thesis, Department of Com-
puter and Information Science, University of Pennsylvania.

Wahlster, W., André, E., Bandyopadhyay, S., Graf, W., and Rist, T. (1991). WIP: The coordinated
generation of multimodal presentations from a common representation. In Stock, O., Slack,
J., and Ortony, A., editors, Computational Theories of Communication and their Applications.
Berlin: Springer Verlag.

Wanner, L. and Hovy, E. (1996). The HealthDoc sentence planner. In Seventh International Work-
shop on Natural Language Generation, pages 1–10.

64

Ward, G. (1985). The Semantics and Pragmatics of Preposing. PhD thesis, University of Pennsyl-
vania. Published 1988 by Garland.

Webber, B., Knott, A., Stone, M., and Joshi, A. (1999). Discourse relations: A structural and pre-
suppositional account using lexicalised TAG. In Association for Computational Linguistics,
pages 41–48.

Webber, B. L. (1988). Tense as discourse anaphor. Computational Linguistics, 14(2):61–73.

Webber, B. L., Carberry, S., Clarke, J. R., Gertner, A., Harvey, T., Rymon, R., and Washington, R.
(1998). Exploiting multiple goals and intentions in decision support for the management of
multiple trauma: A review of the TraumAID project. Artificial Intelligence, 105:263–293.

Xia, F., Palmer, M., Vijay-Shanker, K., and Rosenzweig, J. (1998). Consistent grammar develop-
ment using partial tree-descriptions for lexicalized tree-adjoining grammars. In TAG+4.

Yang, G., McCoy, K. F., and Vijay-Shanker, K. (1991). From functional specification to syntac-
tic structures: systemic grammar and tree-adjoining grammar. Computational Intelligence,
7(4):207–219.

A Instruction Grammar Fragment
A.1 Syntactic Constructions
(75) a NAME: axnpVnpopp

b PARAMETERS: A,H,O,P,S
c PRAGMATICS: obl(S,H)

d TREE:

S(A)

��
��

HH
HH

NP(H)

ε

VPpurp(A,H)

VPdur(A)

VPpath(A,O,P)

��� HHH

V31 NP(O) ↓

(76) a NAME: bvpPsinf
b PARAMETERS: A1,H,A2
c PRAGMATICS: —

d TREE:
VPpurp(A1,H)

��
��

HH
HH

VPpurp(A1,H)∗ Si(A2,H) ↓

(77) a NAME: anpxVinp
b PARAMETERS: A,H,O
c PRAGMATICS: —

65

d TREE:

Si(A,H)

��
��

HH
HH

NP(H)

ε (PRO)

VPpurp(A,H)

��
�

HH
H

to VPpurp(A,H)

VPdur(A,H)
��� HHH

V31 NP(O) ↓

(78) a NAME zeroDefNP
b PARAMETERS: R
c PRAGMATICS: zero-genre∧def (R)

d TREE:

NP(R)

N′(R)

N31

(79) a NAME: bvpPnp
b PARAMETERS: E,O,P,R
c PRAGMATICS: zero-genre∧def (R)

d TREE:

VPpath(E,O,P)

��
���

HH
HHH

VPpath(E,O,P)* PP(P)
�� HH

P31 NP(R) ↓

(80) a NAME: bNnn
b PARAMETERS: A,B
c PRAGMATICS: def (A)

d TREE:

N′(B)
��� HHH

NP(A)

N′(A)

N31

N′(B)*

A.2 Lexical Entries
(81) a NAME: slide

b PARAMETERS: A,H,O,P,S
c CONTENT: move(A,H,O,P)∧next(A)
d PRESUPPOSITION: start-at(P,O)∧ surf (P)∧partic(S,H)
e PRAGMATICS: —

66

f TARGET: S(A) [complement]
g TREE LIST: axnpVnpopp(A,H,O,P,S)

(82) a NAME: 〈purpose〉
b PARAMETERS: A1,H,A2
c CONTENT: purpose(A1,A2)
d PRESUPPOSITION: —
e PRAGMATICS: —
f TARGET: VP2(A1,H) [modifier]
g TREE LIST: bvpPsinf(A1,H,A2)

(83) a NAME: uncover
b PARAMETERS: A,H,O
c CONTENT: uncover(A,H,O)
d PRESUPPOSITION: —
e PRAGMATICS: —
f TARGET: Si(A,H)
g TREE LIST: anpxVinp(A,H,O)

(84) a NAME: sealing-ring
b PARAMETERS: N
c CONTENT: sr(N)
d PRESUPPOSITION: —
e PRAGMATICS: —
f TARGET: NP(N) [complement]
g TREE LIST: zerodefnptree(N)

(85) a NAME: coupling-nut
b PARAMETERS: N
c CONTENT: cn(N)
d PRESUPPOSITION: —
e PRAGMATICS: —
f TARGET: NP(N) [complement]
g TREE LIST: zerodefnptree(N)

(86) a NAME: onto
b PARAMETERS: E,O,P,R
c CONTENT: end-on(P,R)
d PRESUPPOSITION: —
e PRAGMATICS: —
f TARGET: VPpath(E,O,P) [modifier]

67

g TREE LIST: bvpPnp(E,O,P,R)

(87) a NAME: elbow
b PARAMETERS: N
c CONTENT: el(N)
d PRESUPPOSITION: —
e PRAGMATICS: —
f TARGET: NP(N) [complement]
g TREE LIST: zerodefnptree(N)

(88) a NAME: fuel-line
b PARAMETERS: N,R,X
c CONTENT: fl(N)∧nn(R,N,X)
d PRESUPPOSITION: —
e PRAGMATICS: —
f TARGET: N′(R) [modifier]
g TREE LIST: bNnn(N)

B Motion Verb Entries
B.1 Pure Motion Verbs
The verbs slide, rotate, turn, push, pull, and lift all share a use in which they describe an event A in
which some agent H moves an object O along a path P. Our analysis of this use was presented in
detail in Section 7. (89) gives the syntactic frame for this class.

(89)

S(A)

��
��

HH
HH

NP(H) VPpurp(A,H)

VPdur(A)

VPpath(A,O,P)
�� HH

V31 NP(O)↓

Semantically, slide, rotate and turn all assert simple motions; the verbs differ in that slide presup-
poses motion along a surface while turn presupposes a circular or helical path around an axis by
which an object can pivot and rotate presupposes a circular path around an axis through the center
of an object. (90) represents this.

(90) a slide: assert move(A,H,O,P); presuppose start-at(P,O)∧ surf (P)
b turn: assert move(A,H,O,P); presuppose start-at(P,O)∧around(P,X)∧pivot(O,X)
c rotate: assert move(A,H,O,P); presuppose start-at(P,O)∧around(P,X)∧center(O,X)

The verbs push, pull and lift involve force as well as motion; they differ in presuppositions about
the direction of force and motion: for push, it is away from the agent; for pull, it is towards the
agent; lift has an upward component:

68

(91) a push: assert forced-move(A,H,O,P); presuppose start-at(P,O)∧away(P,H)
b pull: assert forced-move(A,H,O,P); presuppose start-at(P,O)∧ towards(P,H)
c lift: assert forced-move(A,H,O,P); presuppose start-at(P,O)∧upwards(P)

B.2 Pure Change-of-state Verbs
This category of verbs describes an event A in which an agent H changes of state of an object O;
these verbs appeal to a single optional semantic argument U which helps to specify what the change
of state is. Examples of this class are remove [from U], disconnect [from U] and connect [to U];
U is a landmark object and the change-of-state involves a spatial or connection relation between O
and U .

Our diagnostic tests give a number of reasons to think of the parameterU as a semantic argument
that is referenced in the tree but described by syntactic adjuncts. Here are illustrations of these tests
for the case of disconnect. It is possible to extract from it, and impossible to supply it by do so
substitution.

(92) a What did you disconnect the cable from ε?
b ?Mary disconnected a coupling from system A, and John did so from system B.

It is possible to take the initial connection between O and U as presupposed, and to factor in this
constraint in identifying O and U . Thus, with many systems and couplings, we might still find:

(93) Disconnect the coupling from system A.

These considerations lead to the syntactic frame of (94).

(94)

S(A)

��
��

HH
HH

NP(H) VPpurp(A,H)

VPdur(A)

VParg(A,O,U)
�� HH

V31 NP(O)↓

Note that syntactic features can allow the verb to determine which preposition is used to specify
the optional argument. That is, we can use lexical entries for verbs that indicate that they impose
feature-value constraints on the syntactic features of the anchor V3 node.

In order to characterize the semantics of change-of-state verbs, we introduce a predicate caused-event(A,H,O)
indicating that A is an event in which H has a causal effect on O; and an operator result(A, p) indi-
cating that the proposition p holds in the state that results from doing A. (For more on this ontology,
see (Steedman, 1997).) (95) uses this notation to describe connect, disconnect and remove.

(95) a connect: assert caused-event(A,H,O)∧ result(A,connected(O,U)); presuppose
free(O,U)

b disconnect: assert caused-event(A,H,O)∧ result(A, free(O,U)); presuppose
connected(O,U)

69

c remove: assert caused-event(A,H,O)∧ result(A, free(O,U)); presuppose
dependent(O,U)

That is, connecting causes O to be connected to the optional argument U where O is presupposed to
be presently spatially independent of, or free of, U; disconnecting, conversely, causes O to be free of
U , where O is presupposed to be connected to U . Finally, remove is more general than disconnect. It
presupposes only that there is some dependent spatial relation between O and U; O may be attached
to U , supported by U , contained in U , etc.

B.3 Near-motion Verbs
Distinct from motion verbs and ordinary change-of-state verbs is a further class which we have
called near-motion verbs: near-motion verbs are change-of-state verbs that encode a spatial change
by evoking the final location where an object comes to rest. Semantically, they involve arguments
A, H, O, and L—the fourth, spatial argument L represents a spatial configuration rather than a path
(as in the case of motion verbs). The canonical near-motion verb is position; others are reposition
and install. According to our judgments, turn and rotate can be used as near-motion verbs as well
as genuine motion verbs, whereas slide, push, pull and lift cannot.

Now, whenever there is a change of location, there must be motion (in our domain); and when-
ever an object moves to a new place, there is a change of location. This semantic correspondence be-
tween motion verbs and near-motion verbs is mirrored in similar syntactic realizations with prepo-
sitional phrases that describe an final location. So we find both:

(96) a Push the coupling on the sleeve.
b Position the coupling on the sleeve.

The difference between motion verbs and near-motion verbs is that motion verbs permit an ex-
plicit description of the PATH the object takes during the motion, while near-motion verbs do not:

(97) a Push the coupling to the sleeve.
b ∗Position the coupling to the sleeve.

Another way to substantiate the contrast is to consider the interpretation of ambiguous modi-
fiers. In (98a), downward modifies the path by describing the direction of motion in the event. In
(98b), with the near-motion verb, this path interpretation is not available: the reading of downward
instead is that it describes the final orientation of the object that is manipulated.

(98) a Push handle downward.
b Position handle downward.

These readings are paraphrased in (99).

(99) a Push handle in a downward direction.
b Position handle so that it is oriented downward.

The natural wh-questions associated with the two constructions are also different:

(100) a { In which direction, ∗How } did you push the handle? Downward.

70

b { ∗In which direction, How } did you position the handle? Downward.

(101) schematizes the syntax of near-motion verbs.

(101)

S(A)

��
�

HH
H

NP(H) VPpurp(A,H)

VPdur(A)

VParg(A,O,L)
�� HH

V31 NP(O)↓

Like motion verbs, near-motion verbs share a common assertion—there is an event A of H acting
on O whose result is that O is located at place L. The differences among near-motion verbs lie in
their presuppositions: position presupposes that L is a position in which O will be able to perform
its intended function, as in (102a); reposition further presupposes a state preceding A where O was
located at L—we write this as back(A,O,L) in (102b); finally, install presupposes that the spatial
position for O is one which fastens O tightly, as in (102c).

(102) a position: assert caused-event(A,H,O)∧ result(A, loc(L,O)); presuppose
position-for(L,O)

b reposition: assert caused-event(A,H,O)∧ result(A, loc(L,O)); presuppose
position-for(L,O)∧back(A,O,L)

c install: assert caused-event(A,H,O)∧ result(A, loc(L,O)); presuppose
position-for(L,O)∧ fastening(L,O)

B.4 Put Verbs
Closely related to the near-motion verbs are the put verbs. These differ from near-motion verbs only
in that put verbs take the configuration PP as a syntactic complement—rather than as an optional
syntactic modifier.

(103)

S(A)

��
���

HH
HHH

NP(H) VPpurp(A,H)

VPdur(A)

VP(A)

��
��
�

HH
HH

H

V31 NP(O)↓ PP(L)↓

Verbs in this class include not only put, but also place.

(104) a put: assert caused-event(A,H,O)∧ result(A, loc(L,O))
b place: assert body-caused-event(A,H,O)∧ result(A, loc(L,O)); presuppose

place-for(L,O)

71

Note that a placement must be performed by hand; the presupposition that L be a place for O sig-
nifies that O’s specific location at L is required for the success of future actions or events. (Place
contrasts with position in that places depend on the action of an agent on the object in a particu-
lar activity whereas positions are enduring regions that depend on the functional properties of the
object itself; contrast working place and working position.)

72

