
Effects of intra-group conflict on packaged
software development team performance
Steve Sawyer

School of Information Sciences and Technology, The Pennsylvania State University,
University Park, PA 16802 USA, email: sawyer@ist.psu.edu

Abstract. Data from 40 packaged software development teams are used to test
a path model that relates three antecedents, the presence of intragroup conflict
and the level of conflict management to software development team performance.
Findings indicate that a combination of the team’s characteristics, team member
characteristics and existing levels of intragroup conflict accounts for nearly one-
half of the variance between the best and worst-performing teams. Furthermore,
the level of conflict management moderates the relationship between existing
levels of intragroup conflict and performance. These results highlight both the
complexity of the social processes of packaged software development and the
value of this perspective for gaining insight on software development performance.

Keywords: Conflict, conflict management, packaged software, path models, soft-
ware development, software development team performance, teams

INTRODUCTION

Intra-group conflict among members of a software development team is seen as both
inevitable and likely to lead to bad consequences (Brooks, 1974; Robey, 1984). There have
been two general approaches to minimizing such conflict. In the software engineering litera-
ture the typical approach is to hire the best individuals (Boehm, 1981; Walz et al., 1993). The
information systems development literature has emphasized conflict resolution and the selec-
tion of people who are socially skilled to do so. The primary focus of this second line of
research has been to focus on the relationship between the team’s members and various
users/external stakeholders (Robey, 1984; Robey et al., 1989; 1993). Both literatures suggest
that some combination of the ‘right’ skill blend (be they technical or social) will reduce the
negative consequences of conflict. Thus, the contemporary advice to software development
managers is to hire ‘team players’ and to carefully assemble teams of ‘compatible’ people.

We also believe that intragroup conflict is inevitable (Simmel, 1955). However, like others,
we contend that conflict, if it is well managed, may improve the software development team’s
performance (Carmel & Sawyer, 1998; Zachary, 1998). From this perspective, the presence
of conflict is less important than how it is managed: if a team manages their intragroup con-

Info Systems J (2001) 11, 155–178 155

© 2001 Blackwell Science Ltd

flict well they should out-perform a team that does not, even if the relative levels of conflict
are similar. This shifts the managerial emphasis from picking team members that can work
without too much conflict to selecting team members who can work well in an open, and often
contentious, social environment (McCarthy, 1995). The research reported on in this paper
explores:

1 What factors most affect the level of intragroup conflict in packaged software development
teams?
2 What effects do these factors have on packaged software development team performance?

To respond to these questions we draw on data collected from 40 packaged software devel-
opment teams at one site of a large, global, computer software and hardware manufacturer.
Selecting the teams from one site minimizes the potential confounding effects of varying indus-
trial/organizational factors. That is, by selecting teams from one site, we know that they share
common production goals, have a common software development methodology and use the
same software development tools. Project managers for these teams are trained in the same
techniques and also report to the same senior managers.

Studying packaged software development teams also allows us to explore the role of
intragroup conflict in a different context. Packaged software [also known as commercial,
commercial-off-the-shelf (COTS) or shrink-wrap] is licensed for use by others (Carmel, 1997).
Carmel & Sawyer (1998) argue that packaged software development differs from custom
development along a number of dimensions. The most pertinent of these dimensions for this
paper is the level of user involvement. As Keil & Carmel (1995) show, there is little direct
contact between most developers and users of packaged software. This means existing
models regarding the effects on intragroup conflict and performance due to the involvement
and/or participation of users (i.e. Robey et al., 1993) cannot be used without some additional
conceptualizing.

The paper continues in five sections. In the next section, we develop the concepts of intra-
group conflict among the members of packaged software development teams (called conflict
through the remainder of the paper), theorize about the antecedents to conflict and detail what
we mean by software development performance. The second section lays out how these con-
structs are measured. The research approach and data collection efforts are presented in the
third section, while the fourth contains the analyses and findings. The paper concludes with
a discussion of the findings and their implications to software development management and
research.

CONFLICT AMONG SOFTWARE DEVELOPMENT TEAM MEMBERS

Intra-group conflict is a general social phenomenon and the relevant literature contains several
definitions that encompass factors such as objective conditions, emotions, perceptions and
behaviour (Simmel, 1955; Pondy, 1967; Deutsch, 1969; Thomas, 1975; Green & Taber, 1980;
Wall, 1987; Volkema & Bergman, 1989). Rather than attempt to argue the superiority of any

156 S Sawyer

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

one specific definition, in this paper we treat conflict generically to be a difference between
two or more people about the meaning of some information (such as a requirement or need,
an idea, or a decision). Thus, the existence of conflict indicates neither a positive nor nega-
tive state, just a difference between how people interpret information (Simmel, 1955).

Conflict management (also known as conflict resolution) is the process of resolving these
differences (Green & Taber, 1980; Sambarmurthy & Poole, 1992). The resolution of conflict
can lead to both positive and negative outcomes (Simmel, 1955; Deutsch, 1969). For example,
Robey’s work on conflict among software developers posits conflict as a mostly negative effect
(Robey, 1984; Robey & Farrow, 1989; Robey et al., 1989; 1993). Walz et al. (1993) presents
evidence highlighting both the positive and negative aspects of conflict among software
developers.

There are at least two reasons why conflict and its management are critical aspects of team-
based software development. The first reason is that conflict is endemic among people when
they work together (Pondy, 1967; Thomas, 1975; Green & Taber, 1980). For instance, when
two developers bring contradictory data regarding system requirements to a meeting, the
members of that software development team must sort through the differences and reach a
shared understanding of the meaning of these disparate pieces (Crowston & Kammerer,
1998). Resolving this type of conflict demands both an articulation of differences and a nego-
tiation of alternatives to develop a reasonable compromise, agreement, or shared under-
standing (Pondy, 1967; Thomas, 1975; Robey et al., 1989; Walz et al., 1993). Moreover, there
is a diminished benefit for working together in teams if this does not create some level of con-
flict (Simmel, 1955). Group work provides one means of bringing multiple perspectives to bear
on a common problem. A lack of conflict among team members is often called ‘group-think’
and the literature provides several examples of poor decisions from groups with too little con-
flict (Deutsch, 1969; Janis, 1982).

The second reason conflict is an important aspect of team-based software development is
the relationship between conflict management and team-level performance (Robey et al.,
1993; Walz et al., 1993; Barki & Hartwick, 1994). From the example above, constructive con-
flict management would use the two differing requirements needs to improve the shared under-
standing of the issues, leading to improved team efforts (Pondy, 1967; Thomas, 1975; Green
& Taber, 1980; Robey et al., 1989; Walz et al., 1993). However, failing to resolve the differ-
ences between the two pieces of information the developers brought to the team is likely to
have negative consequences. Should conflict be badly managed, and a consensus not
reached, ill-feelings may fester, ambiguity over the requirements may increase and the ability
to communicate openly may be inhibited (Pondy, 1967; Thomas, 1975; Green & Taber, 1980;
Robey et al., 1989; Walz et al., 1993). Furthermore, patterns of poor conflict management
encourage people to not contribute to the team’s effort. This is the exact antithesis of working
together (Simmel, 1955; Pondy, 1967; Thomas, 1975). For example, Curtis et al. (1988) find
software developers: (1) often do not know enough about their system’s operational domain,
(2) are subjected to conflicting and ever-changing requirements and (3) have trouble com-
municating and co-ordinating their work. All three factors can raise the level of conflict in the
development team.

Conflict in packaged software development 157

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

STUDYING CONFLICT IN PACKAGED SOFTWARE DEVELOPMENT TEAMS

To date, the literature on the role of intragroup conflict and its effects in software development
has focused primarily on conflicts between users and developers (a broad term used here to
mean analysts, programmers and their managers) (Robey, 1984; Robey & Farrow, 1989;
Robey et al., 1989; 1993; Barki & Hartwick, 1994). However, software development is increas-
ingly being carried out by specialized firms. Thus, the interaction between users and devel-
opers is both diminishing and typically being carried out by intermediaries (Keil & Carmel,
1995; Carmel, 1997; Carmel & Sawyer, 1998). When the user is not a direct participant in
software development, existing models of intragroup conflict in software development may be
inadequate (see Robey et al., 1993; Barki & Hartwick, 1994).

For example, there is evidence that conflict among developers is at least as important to
performance as is the conflict between developers and users (Walz et al., 1993). Zachary
(1994; 1998) highlights contention as the single predominant means of interaction among
packaged software developers. He argues that these teams are set up to enforce an ‘armed
truce.’ In his study of Microsoft’s developers he found that ‘Consensus was not sought because
it was not desired. Conceptual stalemates did not stymie activities. . .. The ethos of armed
truce also forced advocates of a controversial decision to continually defend themselves’ (p.
64). Carmel & Sawyer (1998) argue that the team dynamics of packaged software – where
several members of a team may be either millionaires (or working for free in the hopes of
becoming a millionaire) – are markedly different than the development work currently dis-
cussed in the literature. The increased focus on contention as a means of working together
in packaged software development also implies that managing conflict is even more central
to successful team performance.

MODELLING CONFLICT IN PACKAGED SOFTWARE DEVELOPMENT TEAMS

As shown in Figure 1, defined in Table 1, discussed below and detailed in Appendix A, we
posit that the level of existing conflict in a packaged software development team is driven by
four sets of antecedents: organizational characteristics, project characteristics, team charac-
teristics and team member characteristics. In turn, the effect of the existing level of conflict
on software development team performance is moderated by the extent that conflict is reduced:
this is where the positive (and/or negative) effects of conflict management are realized.

Antecedents of conflict

At a broad level, Thomas (1975) argues that conflict stems from individual behavioural pre-
dispositions: the social pressures in working together and incentive structure, rules and/or pro-
cedures of the organization. The four sets of antecedents to conflict in our model build on
Robey’s (1984) categorization of conflict in software development. He posits four sources of
conflict: individual differentiation, sharing of resources, interdependence and distribution of

158 S Sawyer

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

power. Differentiation refers to the specialization of roles which leads to differing interpreta-
tions across team members. Sharing reflects that resources are always scarce. Interdepen-
dence is a form of mutual need which demands co-ordination and negotiation. The distribution
of power reflects both existing organizational and social pressures.

Individual characteristics are typically included in most models of conflict among software
developers. For example, Robey et al. (1993) build on the work of Robey et al. (1989) to high-
light how individual levels of participation and influence affect conflict, its resolution and project
success. Barki & Hartwick (1994) test a similar model and highlight how individual disagree-
ments further contribute.

Team-level characteristics serve as another common antecedent to conflict. For example,
Newman & Robey (1992) highlight how the act of working together creates a set of social
structures within which the software developers work and that guide resource allocation.
Kiesler et al. (1994) describe how resource sharing affects the way software developers work
together. Sawyer et al. (1997) describe how the level of interdependence between software
developers on the same team shapes how they deal with conflict.

Conflict in packaged software development 159

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

Figure 1. Conflict management model.

Table 1. Antecedents to conflict

Characteristics of the team members: Individual behaviours

Individual differentiation

Characteristics of the team: Social pressures

Sharing of resources

Interdependence

Characteristics of the project: Requirements volatility

Resource availability

Characteristics of the organization*: Organizational incentive structures rules and/or procedures

Distribution of power

* Controlled for in this study by selecting teams from one site.

Project characteristics are also common antecedent of conflict among software developers.
For example, at a broad scale, Kumar & Van Dissel, 1996) argue that resource availability is
the primary reason behind collaboration. In software development both Curtis et al. (1988)
and Walz et al. (1993) provide evidence showing that requirements volatility is an antecedent
to conflict. Furthermore, the issues of resource availability are highlighted by how Microsoft
often sets up its project teams to compete for resources (Zachary, 1994; 1998). Finally, as
mentioned above, data are drawn from software development teams at one site. This provides
some control over organizational characteristics. Thus, data regarding these variables are not
collected from each team.

Conflict

In this paper we explore whether the existence of conflict is driven by certain antecedents (i.e.
Thomas, 1975). Thus, to test this relationship we use a factor model of conflict to portray the
relationship of factors that contribute to conflict (Pondy, 1967; Markus & Robey, 1988). Fur-
thermore, our approach is to look at the factors, or structures, that help to account for varia-
tions in conflict. From a structural perspective there are three types of conflict in formal
organizations: bargaining, bureaucratic and systematic (Pondy, 1967). Bargaining conflict
occurs among parties who have an interest in maintaining and encouraging a shared rela-
tionship. For example, a bargaining conflict arises over how best to placate a disgruntled team
member. Bureaucratic conflict occurs between two or more parties where some form of power
relationship (superior–subordinate) exists. Systematic conflict occurs among parties as part
of a lateral or working relationship. For example, the tensions which often arise between quality
assurance people and software developers on the same team exist because they often have
different and even divergent goals that are difficult to synthesize. Furthermore, each form of
conflict can affect performance differently and may draw on antecedents in different ways
(Simmel, 1955; Pondy, 1967; Thomas, 1975). However, in keeping with the broad perspective
of conflict used in this paper, we acknowledge the existence of these forms, but treat them
collectively.

Managing conflict

With any level of existing conflict, some effort is made to manage it (Deutsch, 1969). Exam-
ples of such efforts include the use of humour to minimize the tension among team members.
Other efforts to manage conflict include attending to clear communication, co-ordinating work
tasks and resolving differences as they arise. These actions suggest that conflict manage-
ment serves as a moderating factor between the level of conflict and performance (Venka-
traman, 1989) A moderating influence means that variations in the levels of the moderating
variable (in this case conflict management) affect the relationship between two variables (in
this case the level of existing conflict and software development team performance). That is,
we posit that the level of conflict management affects the relationship between existing levels
of conflict and software development team performance.

160 S Sawyer

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

Conceptualizing conflict management as a moderating variable further implies two things.
On the one hand, the total amount of conflict should be a less important predictor of software
development team performance than is the unresolved conflict that remains after the team’s
efforts to manage conflict. So, high levels of existing conflict, well managed, can lead to small
levels of unresolved conflict and superior performance. Conversely, poor conflict management
may lead to relatively high levels of unresolved conflict even if there are low levels of exist-
ing conflict.

The other implication of this conceptualization of conflict management is that it does
not directly affect software development performance. As a moderating factor, variations
in the level of conflict management affect the relationship between existing levels of conflict
and software development team performance and not the two factors. Treating conflict man-
agement as a moderating factor means it can serve as a magnifier. Constructive conflict
management can improve performance and negative conflict management can reduce
performance.

Software development team performance

Software development team performance demands multiple measures as no single metric can
capture a total picture of the effort (Kemerer, 1989; Delone & McLean, 1992; Guinan et al.,
1997). Many contemporary metrics (e.g. defect rates, function points, line-of-code, complex-
ity metrics, elapsed time and resource consumption) typically focus on the production aspects
of software development. However, production measures provide a limited picture with little
insight on how the software is perceived and used by the user.

Other measures of software development team performance (such as perceived product
quality and user satisfaction) tap less tangible, but no less crucial, aspects of software devel-
opment (Bayer & Melone, 1989; Curtis, 1989; Delone & Mclean, 1992; Henderson & Lee,
1992). However, to be useful, perceptual measures should be assessed by people external to
the development teams (stakeholders in this study) to avoid response bias (Seidler, 1974; Lee
et al., 1991). A team’s stakeholders are typically distant from the team’s internal efforts and
rely on specific quantitative data such as project reports and meeting budget/schedule
commitments and also their perceptions of the team members competence to assess
performance.

Combining objective and perceptual measures is the most robust way to measure software
development performance (Kemerer, 1989). However, at this site, data on defect rates, product
size, complexity and delivery (time) schedules are collected at the product level. The data
cannot be directly linked to the individual project teams in this study as many teams work on
one product. In this sample, from three to six teams worked together on a shared product.
The teams in the sample worked on a total of eight distinct products. Thus, in this paper, we
use perceptual measure to evaluate software development team performance. These per-
ceptual measures include: the quality of the software, the ability of the team to work together
effectively, the efficiency of the team and satisfaction with the resulting product. The percep-
tual performance measures are asked of stakeholders to avoid self-report bias.

Conflict in packaged software development 161

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

HYPOTHESIZ ING A MODEL

To respond to the two research questions posed at the beginning of this paper, we test the
path model depicted in Figure 1. We use path analytic techniques for two reasons. First, they
provide a means to test a multistage model (Pedhazur & Schmelkin, 1991). Second, path
models are often employed in behavioural analysis when a moderation model is posited
(Venkatraman, 1989). In this section we explicitly hypothesize five paths (as shown in Figure
1) and implicitly hypothesize that all other paths are trivial. However, path analytic techniques
demand assessing all paths to ascertain their contribution. Given this, hypotheses H1, H2 and
H3 test the extent to which characteristics of the team members, the team and the project
directly affects the existing levels of conflict among the team’s members.

H1: Characteristics of the team members are significant predictors of existing levels of pack-
aged software development team conflict.
H2: Characteristics of the team are significant predictors of existing levels of packaged soft-
ware development team conflict.
H3: Characteristics of the project are significant predictors of existing levels of packaged soft-
ware development team conflict.

Hypothesis H4 tests to see whether existing levels of conflict directly affect software devel-
opment team performance.

H4: Existing levels of conflict will be a significant predictor of software development team
performance.

Hypothesis H5 tests to see whether conflict management moderates the relationship
between existing conflict and software development performance (Venkatraman, 1989). This
moderating effect means, for example, that higher levels of conflict management should
magnify the inverse relationship between lower levels of unresolved conflict and higher levels
of team performance.

H5: Conflict management will moderate the relationship between existing levels of conflict
and software development team performance.

RESEARCH APPROACH AND DATA COLLECTION

Our field-based study employed cross-sectional surveys of development teams coupled with
phone-based surveys of the team’s stakeholders. Data were collected using a key-informants
approach (Campbell & Stanley, 1966; Seidler, 1974; Lee et al., 1991; Henderson & Lee, 1992).
Key informants are members of the team selected to provide a broad sample of the views
and perceptions of the entire team. Key informants for the teams included in this study included
the project leader, a key technical lead and at least one project member. Both surveys were
pre-tested and pilot tested at the site prior to use (Dillman, 1978). Respondents and stake-
holders were promised anonymity.

162 S Sawyer

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

The researcher contacted each team directly about being part of the study. Participation
was voluntary but, to be included, each team had to agree to contribute at least three surveys.
One motivation for participation was a follow-up meeting with each team to discuss the find-
ings. Members of 50 teams volunteered to participate. Of these 50 teams, 46 teams provided
data. Six teams (representing 14 respondents) which provided data were not software devel-
opment teams and are not included in this analysis, leaving a sample of 40 teams.

The teams included in this study build software for commercial sale. These commercial soft-
ware products are large, popular and include both databases and language compilers. Some
of these products have been in the market for more than two decades. Each team in the
sample is typically charged with one (or more) modules that, when combined, make up the
overall product. What this means is that, while the modules may be distinct segments and
identifiable at some level, they are also tightly integrated together. In development, this means
that teams are often highly dependent on one another and that the dependencies are not
sequential as two modules may pass data back and forth during the run which means the two
teams work closely together as both customer and producer.

Team size ranged from five to 15 people, with most less than 10, and they have been orga-
nized in a team-based manner for several years. Team members were surveyed as they com-
pleted their most recent module/project. The 40 teams participating in this study, while not
randomized, represent approximately 50% of the project teams at this site and include teams
from all departments. The 128 respondents represent nearly 11% of all developers. The lower
number of individual respondents is an artefact of the key informants approach as we asked
only a subset of each team to complete a survey.

For each team surveyed stakeholders were contacted to provide an external evaluation of
team and product performance. As indicated, stakeholders are people who are affected by
the team, or work with the team but not on a daily basis. Examples are senior managers, user
managers and consultants. Teams identified their stakeholders, who were then contacted by
the researchers to ask for participation. Fifty-six stakeholders (a 75% response rate) agreed.
Each team had at least one stakeholder. Each stakeholder had detailed knowledge of their
team and of the overall product, but only limited knowledge of other teams involved with that
product.

In Table 2 we present the reliability statistics for the factors used in this study. A coefficient
of 0.70 is considered satisfactory, and 0.90 or higher is excellent, as evaluated using Chron-
bach’s (1951) alpha test. The indicators are provided in Appendix A.

In Table 3 we present some of the pertinet sample demographics. These show that both
developers and stakeholders are well educated and have extensive software development
experience. The teams have an average of 7.1 years of software development experience per
member. However, while the team membership is relatively stable, working together for an
average of nearly 2 years, they change leaders almost yearly.

In this study, the team is the level of theory, measurement and analysis (Klein, Danserou &
Hall, 1994). This means that the survey and interview questions were asked with regard to
team-level behaviours and data are analysed at the team level so individual responses have
been aggregated by the team (Jones & James, 1979; James, 1982). Table 4 presents the

Conflict in packaged software development 163

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

mean, standard deviation and correlation for each factor used in the analysis. The significant
correlations between the antecedent variables suggests that there may be low discriminant
validity and raises concerns regarding multicollinearity (which will be discussed again in the
next section). As discriminant validity criteria are debated and criterion not well formed (see
Pedhazur & Schmelkin, 1991, p. 75), Campbell and Fiske’s multitrait/multimethod approach is
often used to help assess discriminant validity (see Campbell & Stanley, 1966). Given the uni-
method approach taken, this comparison is not possible. Instead, the correlations of each indi-
cator for each variable were inspected to see whether the within-construct correlations were
higher and more significant than the between-variable indicator correlations. Of the 13 indi-
cators used to develop the three antecedent variables, only two indicators correlated more

164 S Sawyer

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

Table 2. Factor reliabilities

Factor (number of indicators) Reliability (Chronbach alpha)

CP: characteristics of the project (4) 0.70

CT: characteristics of the team (5) 0.72

CTM: characteristics of the team members (4) 0.77

TC: team (existing) conflict (4) 0.8

CM: conflict management (3) 0.70

TP: stakeholder-rated team performance (9) 0.93

Table 3. Sample demographics

Factor Respondents (mean) Stakeholders (mean)

Software development experience 7.25 years 13.9 years

Time with company 4 years 10.1 years

Time with present team 1.9 years 2 years

Number of previous projects 9.8 31

Education: 89% have a BA/BS and 41% of these also have MS/PhD.

Site restrictions prevented us from collecting gender and age data.

Table 4. Means, standard deviations and correlations between factors (n = 40)

Factor Mean (SD) CP CT CTM TC CM

Project characteristics (CP) 4.37 (0.94)

Team characteristics (CT) 4.12 (0.91) 0.564*

Team-member characteristics (CTM) 4.32 (0.93) 0.594* 0.681*

Team (existing) conflict (TC) 5.26 (1.10) 0.417* 0.458* 0.296

Conflict management (CM) 4.46 (1.13) 0.212 0.637* 0.453* 0.382†

Stakeholder-rated team performance (TP) 5.07 (0.72) 0.201 0.484* 0.340† 0.402* 0.260

† P < 0.05, * P < 0.01.

Seven-point scale with 1 = low/poor/worst and 7 = high/excellent/best.

strongly across variables than within the variable. Thus, we retain the three variables on the
basis of their conceptual relevance.

ANALYSIS AND FINDINGS

To assess the multistage model presented in Figure 1, we use path analysis. Path analytic
techniques provide a means to decompose the total effects of one variable on another into
direct, indirect and spurious elements. The total effects are the zero-order correlations and
the direct and indirect effects are calculated using the standardized coefficients of multiple
regressions. These are computed from the path relationships hypothesized and presented in
Figure 1 (Duncan, 1966; Spaeth, 1975).

Path analysis is premised on a fully specified model so all paths must be calculated (Duncan,
1966; Spaeth, 1975). However, as any argument for causality must be conceptually based (as
path models only imply a preconceived causal ordering) trivial paths are trimmed from the
analysis and the model re-estimated (Spaeth, 1975; Pedhazur & Schmelkin, 1991). The deter-
mination of what is a trivial path remains a topic of debate (see Duncan, 1966; Spaeth, 1975;
Cohen & Cohen, 1983; Pedhazur & Schmelkin, 1991). Typically, direct path effects of 0.10 or
less can be trimmed. One of the side-effects of trimming paths is that this increases the
amount of spurious – or unmeasured – effects as the indirect components of the trimmed
variables cannot be estimated. This means trimming also reduces the descriptive power of
the model and leads to a more conservative estimation.

Because path analysis draws on multiple regression and correlation (MRC) techniques,
multicollinearity may be an issue (Spector, 1977). The potential effects of multicollinearity
are assessed by calculating each variable’s tolerance (Pedhazur & Schmelkin, 1991, p. 436).
Tolerance refers to the portion a given variable does not share with all other independent
variables, and can range from 0.0 to 1.0 (where 1.0 means total independence). For a model
with two independent variables, tolerance can be assessed by the correlation between the
variables. For models with three or more independent variables tolerance must be calculated
separately and is typically an option in most statistical packages such as SPSS (which was
used to support this analysis). Tolerance statistics are reported in Appendix B.

Table 5 summarizes the regression analyses used to build the path model(s) testing the first
four hypotheses. The table includes the direct, indirect and spurious effects for each path in
both the fully specified and trimmed models. The trimmed model, with all direct paths of less
than 0.10 removed, is also shown graphically in Figure 2. The trimmed model has two new
paths that indicate a direct effect from antecedents to performance. Furthermore, several
hypothesized links are not found to be significant.

Table 6 provides correlations for the split-sample analysis and Tables 7 and 8 summarize
the analyses testing hypothesis H5. Because H5 is a moderation hypothesis, the 40-
team sample is divided in two based on the level of the moderating variable (conflict man-
agement). The data in Table 6 show that the existing conflict among the two groups are
non-significantly different. However, the correlations among these variables are distinctly

Conflict in packaged software development 165

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

different. For example, the correlations between antecedents and levels of existing conflict
differ. Figure 3 provides a graphical representation of the teams with low levels of conflict
management. Figure 4 provides the same representation for the team with high levels of con-
flict management.

The two subsample models are similar to each other and to the full sample’s model, though
the weights of the effects differ. And, in the low conflict management model, there is a direct
effect of conflict on performance which is not present in the high conflict management model.
This difference between the two models is evidence of the moderating effect played by con-
flict management. Furthermore, in Figure 4, the antecedents are no longer significantly cor-
related. This is additional evidence of a difference in the ways these two groups of teams
manage conflict.

The aggregate performance measure of the two subsamples is not significantly different.
However, further investigation of the performance differences provides more evidence. If the
performance data of the entire sample is divided into four subsamples and the bottom (worst

166 S Sawyer

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

Table 5. Regression analysis supporting full and trimmed path models (H1–H4)

Independent variable (standardized betas) Dependent

Model Int. CP CT CTM TC Variable Adj. r 2 F(P)

Full –0.467 0.101 0.406* 0.284 0.106 TP 0.442 9.13 (.000)

Trimmed –0.297 removed 0.451** 0.289* 0.127 TP 0.450 12.17 (.000)

* P ≤ 0.05; ** P ≤ 0.01.

Full model

Effects Total Direct Indirect Spurious

CPÆTC 0.416 0.042 0.320 0.054

CTÆTC 0.457 0.186 0.094 0.178

CTMÆTC 0.206 0.059 0.000 0.147

CPÆTP 0.600 0.061 0.682 –0.142

CTÆTP 0.641 0.260 0.417 –0.036

CTMÆTP 0.521 0.148 0.081 0.292

CTÆTP 0.393 0.042 0.000 0.351

Trimmed model

Effects Total Direct Indirect Spurious

CTÆTC 0.457 0.206 0.094 0.157

CTMÆTC 0.206 0.060 0.000 0.146

CTÆTP 0.641 0.289 0.417 –0.065

CTM ÆTP 0.521 0.151 0.081 0.289

CTÆTP 0.393 0.050 0.000 0.343

performing) quartile is compared with the top (best performing quartile), two insights arise.
First, all but one of the worst performing teams have low levels of conflict management
whereas all but one of the highest performing teams have high levels of conflict management.
Second, a comparison of these two quartile’s performance values, using the Wilcox rank-
ordering test for non-parametric data (Howell, 1987, p. 558), shows a significant difference. It
is possible that the small sample size confounds parts of this analysis.

Conflict in packaged software development 167

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

Figure 2. Conflict management path model.

Table 6. Means, standard deviations and correlations between factors used in split-sample analysis

Teams with lower levels of conflict management (n = 22‡)

Factor Mean (SD) CP CT CTM TC

Project characteristics (CP) 4.24 (0.66)

Team characteristics (CT) 3.80 (0.78) 0.499*

Team member characteristics (CTM) 3.68 (1.03) 0.520* 0.559*

Team (existing) conflict (TC) 5.07 (1.03) 0.599* 0.469* 0.196

Stakeholder-rated team performance (TP) 4.65 (1.15) 0.400* 0.615* 0.545* 0.444†

Teams with higher levels of conflict management (n = 18‡)

Factor Mean (SD) CP CT CTM TC

Project characteristics (CP) 4.57 (1.28)

Team characteristics (CT) 4.64 (0.87) 0.633*

Team-member characteristics (CTM) 6.63 (0.77) 0.013 –0.154

Team (existing) conflict (TC) 5.56 (0.88) 0.259 0.319 –0.096

Stakeholder-rated team performance (TP) 5.55 (1.18) 0.508* 0.609* 0.335 0.185

† P < 0.05, * P < 0.01.

Seven-point scale with 1 = low/poor/worst and 7 = high/excellent/best.
‡ Split-sample sizes differ because several teams were grouped together as their values were identical.

CONFLICT IN PACKAGED SOFTWARE DEVELOPMENT TEAMS

Findings indicate that a revision to the hypothesized model presented in Figure 1 can account
for nearly one-half of the variance in software development team performance among the 40
teams in this sample. That is, the analyses presented here provide support for H2 and H4.
And, as hypothesized (H5), variations in the level of conflict management moderates the rela-
tionship between existing levels of team conflict and team performance. This moderation is
seen in the differences between high and low levels of conflict management. In the teams
with low levels of conflict management there is a significant link between existing levels of
conflict and performance (see Figure 3). This is not so for teams with higher levels of conflict
management (see Figure 4).

The trimmed models presented in Tables 7 and 8 have significantly different intercepts
(based on a Wilcox rank-ordered test, Howell, 1987, p. 558). This was tested by developing
a jack-knife sample. There are several means to test whether there are significant differences

168 S Sawyer

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

Table 7. Regression analysis supporting full and trimmed path models: for lower levels of conflict management

Independent variable (standardized betas) Dependent

Model Int. CP CT CTM TC Variable Adj. r 2 F(P)

Full 0.131 –0.137 0.339 0.369 0.295 TP 0.388 4.96 (0.006)

Trim –0.296 removed 0.334 0.314 0.226 TP 0.405 6.68 (0.002)

* P ≤ 0.05; ** P ≤ 0.01

Lower CM model, full

Effects: Total Direct Indirect Spurious

CPÆTC 0.599 –0.082 0.336 0.345

CTÆTC 0.469 0.159 0.110 0.200

CTMÆTC 0.196 0.072 0.000 0.124

CPÆTP 0.400 –0.055 0.856 –0.401

CTÆTP 0.615 0.208 0.513 –0.106

CTMÆTP 0.545 0.201 0.087 0.257

TCÆTP 0.444 0.131 0.000 0.313

Lower CM model, trimmed

Effects: Total Direct Indirect Spurious

CTÆTC 0.469 0.157 0.110 0.203

CTMÆTC 0.196 0.062 0.000 0.134

CTÆTP 0.615 0.205 0.513 –0.103

CTMÆTP 0.545 0.171 0.087 0.287

TCÆTP 0.444 0.100 0.000 0.344

between two regression models. Two possible empirical tests are the difference in r 2 and the
difference in the intercept. Given the small sample, all tests must be non-parametric. Wilcox’s
rank-order test is used because it is a distribution free test (Howell, 1987, p. 558). Using
Wilcox’s rank-ordering requires a jack-knife sample of models. That is, for each of the two
subsamples one team’s data were systematically removed from the group and a model was
developed. This led to two sets of models (of n = 18 and n = 22). Each has an intercept and
adjusted r 2. These were ranked and the ranks summed by group to allow for rank-order testing.
This led to a non-significant difference for the two sample’s adjusted r2. The two sample’s inter-
cepts are significantly different. Moving from empirical tests of difference to a conceptual basis,
the differences in the path models suggests that there are structural differences in how con-
flict is linked to performance in these software development teams.

Hypothesis H1 is not supported. The hypothesized effect of team member characteristics
on existing levels of team conflict is not significant. However, there is an unhypothesized direct
effect of team member characteristics on performance. Finally, and contrary to the hypothe-

Conflict in packaged software development 169

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

Table 8. Regression analysis supporting full and trimmed path models: for higher levels of conflict management

Independent variable (standardized betas) Dependent

Model Int. CP CT CTM TC Variable Adj. r 2 F(P)

Full –2.781 0.125 0.594* 0.425* 0.003 TP 0.412 4.63 (.040)

Trim –2.916 removed 0.673** 0.440* 0.012 TP 0.450 5.08 (.017)

*P ≤ 0.05; **P ≤ 0.01.

Higher CM model, full

Effects: Total Direct Indirect Spurious

CPÆTC 0.259 0.032 0.201 0.026

CTÆTC 0.319 0.189 0.015 0.115

CTMÆTC –0.096 –0.041 0.000 –0.055

CPÆTP 0.508 0.064 0.438 0.007

CTÆTP 0.609 0.362 0.007 0.240

CTMÆTP 0.335 0.142 –0.018 0.210

TCÆTP 0.185 0.001 0.000 0.184

Higher CM model, trimmed

Effects: Total Direct Indirect Spurious

CTÆTC 0.319 0.215 0.015 0.090

CTMÆTC –0.096 –0.042 0.000 –0.054

CTÆTP 0.609 0.410 0.007 0.192

CTMÆTP 0.335 0.147 –0.018 0.205

TCÆTP 0.185 0.002 0.000 0.183

sized relationship in H3, the characteristics of the project provide no significant contribu-
tion to existing levels of team conflict (or to performance). Figure 5 summarizes the findings
graphically by representing a composite of the moderated path analysis.

THE ROLES OF THE ANTECEDENTS IN CONFLICT

The characteristics of the project have no significant contribution to either existing levels of
conflict or team performance. This finding suggests that the volatility of requirements and the
lack of resources may not have as quantifiable and deleterious effect to software develop-
ment team performance as is often argued (i.e. Curtis et al., 1988).

The characteristics of the team members provide some unexpected predictive value. Data
show that team member characteristics have no direct effect on existing levels of conflict.

170 S Sawyer

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

Figure 3. Low conflict management path model.

Figure 4. High conflict management path model.

Conflict in packaged software development 171

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

However, team member characteristics have an unhypothesized and direct effect on perfor-
mance. Based on this analysis, the value of teamwork among software developers is slightly
more important a predictor of performance than are individual contributions. This challenges
the notion that good people will find a way to work together. The implicit message in Boehm’s
(1981) COCOMO estimators (which assesses solely the individual capabilities of a team) is
that a team is equal to the sum of its parts. Data from this analysis suggest that is not so, the
team can be greater than its parts.

The characteristics of the team are a significant predictor of both the level of existing con-
flict and team performance. This antecedent has both significant direct and indirect effects on
team performance. This provides some additional evidence to support the contention that
teamwork is critical to software development (Guinan et al., 1998; Sawyer & Guinan, 1998).
Furthermore, it also provides some additional, albeit indirect, support for the premises of this
paper. That is, managing conflict, not its presence or absence, is important to software devel-
opment performance.

IMPLICATIONS FOR MANAGING SOFTWARE DEVELOPMENT TEAMS

Given the limitations of this study and acknowledging that this is exploratory work in the sense
that the relationships between conflict and software development team performance need
more attention, beyond this study, results suggest that improving intra-team conflict manage-
ment can improve software development team performance. Furthermore, the evidence pre-
sented suggests that the ability to improve conflict management can stand independent of the
existing levels of conflict.

As we have focused on packaged software development, these findings may be a result of
domain differences. That is, the role of conflict may be different in the packaged environment
than in the more often-studied custom IS arena (Carmel & Sawyer, 1998; Zachary, 1998;
Sawyer, 2000). Conversely, it may be that the roles of conflict and its management transcend

Figure 5. Revised conflict management model.

the domain differences of the artefacts being constructed. Certainly the possibility of domain
differences demands additional research attention.

The findings of this study suggest two keys to improving packaged software development
team performance. The first key is to more explicitly focus on training software developers to
better manage the conflict endemic to working together. By this we mean that software devel-
opers should see conflict as both inevitable and potentially positive (e.g. Walz et al., 1993).
And, packaged developers should also be trained to deal with their intra-team conflict. To avoid
dealing with conflict will adversely affect software development team performance.

One means to achieve this conflict management learning is to tie such learning in with
ongoing programs. For instance, training software developers on the means to manage con-
flict, often embedded in total quality management (TQM) programs (Zultner, 1993), can also
be explicitly linked to the social processes of software development. In part, TQM programs
provide a forum for discussion and encourage people to focus on the issues, to listen and to
work together. A second potential vehicle to improve software developers’ abilities to manage
conflict is to rely more on existing technologies such as electronic meeting systems to either
serve as a mediator between developers (i.e. Sawyer et al., 1997) and/or to provide chaper-
oned facilitation (i.e. Douglas et al., 1998). A third approach would be to rely on either infor-
mal training or self-education programmes. Currently, this is the primary means for helping to
improve software developers’ abilities in managing intra-team conflict, but it may not be the
best way.

The second key to improving packaged software development team performance is to better
account for how people deal with conflict in the methods used to produce software. For
example, software development methods should explicitly provide for periods of differentia-
tion and consensus building (Curtis, 1989; Walz et al., 1993). The importance of paying atten-
tion to the broader social milieu is evident in the methods such as socio-technical (Bostrom
& Heinen, 1978a,b), soft-systems (Checkland & Scholes, 1990), Multiview (Avison et al., 1998)
and ETHIC (Mumford, 1983). However, these approaches typically focus on the user–devel-
oper relationship and not the developer–developer relationship. Developer interaction-focused
models of software production were first suggested about 10 years ago (Stefik et al., 1987;
Curtis, 1989) and only recently has there been any discussion of such approaches. For
example, Vessey & Sravanapudi (1995) argue that CASE tools can be used collaboratively.
And Douglas et al. (1998) suggest the use of EMS for collaborative software development.

IMPLICATIONS FOR RESEARCH ON CONFLICT IN SOFTWARE

DEVELOPMENT TEAMS

At least three insights for research arise from comparing the results of the full and split-sample
analyses (see Figure 5). The first insight is that a model focused on the issues with conflict
among software developers can account for a substantial portion of the variance between the
best and worst performing teams in this sample. The second insight is that conflict manage-
ment moderates the link between existing levels of conflict and performance. The third insight

172 S Sawyer

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

is the structural differences between teams with higher and lower levels of conflict manage-
ment. For instance, the path models for the teams with lower levels of conflict management
account for less variation. And, there is only a minimal direct link between existing conflict and
team performance. These path models also highlight that there are large indirect effects asso-
ciated with both team member and team characteristics.

The link between existing levels of conflict and team performance is trivial in the path model
of teams with higher levels of conflict management. However, this model accounts for slightly
more of the variance in team performance and the other major difference from the other split
sample is the direct effect of team characteristics on team performance. This suggests that
teams with higher levels of conflict management may rely on other aspects of their team’s
social processes to mitigate conflict. Team members’ conflict management and characteris-
tics may not be separated by existing levels of team conflict. This relationship demands addi-
tional exploration to better understand the causal linkage between conflict management and
teams that have developed effective co-ordination mechanisms.

There are also several methodological constraints as data in this study data are collected
using surveys. Both the questions and the way they are posed are critical determinants
(Dillman, 1978; Pedhazur & Schmelkin, 1991). To maximize their value, the surveys drew on
scales used in previous research (Green & Taber, 1980; Henderson & Lee, 1992). Still, the
immature status of the scales is reflected in the minimally acceptable reliabilities for many of
the factors. This is one reason why a relatively small percentage of the variance in software
development team performance is explained. This suggests a need for more refined methods
to explore the effects of conflict among software developers. For example, both Elam et al.
(1991) and Robey (1994) suggest that only process models will provide the level of insight
needed. The process-oriented work by Walz et al. (1993) and Dube (1998) support this asser-
tion. As Newman & Robey (1992) discuss, process and factor models are complementary as
they can each inform the other. The findings of this study suggest that a companion process-
oriented study would be invaluable.

The use of perceptual data as the basis for performance may also be a concern. However,
perceptually based performance data are often the best source as they are based on the per-
ceptions of people who rely on the software for their work (Curtis, 1989; Henderson & Lee,
1992). Furthermore, the use of separate surveys to gather data from the developers and the
stakeholders reduces the method bias due to having all factors on one survey (Pedhazur &
Schmelkin, 1991; Dillman, 1978).

As the field continues to develop richer theories of intragroup conflict, the findings from this
study suggest that one fruitful next step would be to test a broader sample of software devel-
opers and assess the industry/organization-level issues. In this study, the 40 team sample is
not random, not large and comes from one site. These software development teams also build
commercial, or packaged, software and this effort is markedly different from traditional inter-
nal or custom efforts (Carmel & Sawyer, 1998). Selecting a single site, however, was carried
out explicitly to reduce potential confounds. A second goal was to gather data from actual soft-
ware developers working in real teams on real projects. The potential loss of generalizability
is the trade-off (Pedhazur & Schmelkin, 1991).

Conflict in packaged software development 173

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

174 S Sawyer

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

Avison, D., Wood-Harper, A., Vidgen, R. & Wood, J. (1998)

A further exploration into information systems develop-

ment: the evolution of Multiview 2. Information Technol-

ogy & People, 11, 140–151.

Barki, H. & Hartwick, J. (1994) User participation, conflict,

and conflict resolution: The mediating role of influence.

Information Systems Research, 4, 422–438.

Bayer, J. & Melone, N. (1989) A critique of diffusion theory

as a managerial framework for understanding adoption

of software engineering innovations. Journal of System

Software, 9, 161–166.

Boehm, B. (1981) Software Engineering Economics. Pren-

tice Hall, New York.

Bostrom, R. & Heinen, S. (1978a) MIS problems and

failures: a socio-technical perspective. Part 1: The

causes. MIS Quarterly, 1, 17–32.

Bostrom, R. & Heinen, S. (1978b) MIS problems and fail-

ures: a socio-technical perspective. Part II: The applica-

tion of socio-technical theory. MIS Quarterly, 1, 11–27.

Brooks, F. (1974) The mythical man-month. Datamation, 7,

44–52.

Campbell, D. & Stanley, J. (1966) Experimental and Quasi-

Experimental Designs for Research. Rand-McNally,

Chicago.

Carmel, E. (1997) American hegemony in packaged soft-

ware trade and the ‘culture of software’. Information

Society, 13, 125–142.

Carmel, E. & Sawyer, S. (1998) Packaged software devel-

opment teams: what makes them different? Information

Technology & People, 11, 7–19.

Checkland, P. & Scholes, J. (1990) Soft Systems Method-

ology in Action. John Wiley & Sons, New York.

Chronbach, L. (1951) Coefficient alpha and the internal

structure of tests. Psychometrika, 16, 297–334.

Cohen, J. & Cohen, P. (1983) Applied Multiple Regression

/ Correlation for the Behavioral Sciences. Lawrence

Erlbaum Associated, Hillsdale, NJ.

Crowston, K. & Kammerer, E. (1998) Collective mind

in software requirements development. IBM Systems

Journal, 36, 1–24.

Curtis, W. (1989) Three problems overcome with behav-

ioral models of the software development process. In:

Proceedings of the 11th International Conference on

Software Engineering, pp. 398–399. ACM Press, New

York.

Curtis, W., Krasner, H. & Iscoe, N. (1988) A field study of

the software design process for large systems. Com-

munications of the ACM, 31, 1268–1287.

Given these concerns, the results of this study suggest that, for software development
teams, how people work together is a stronger predictor of performance than the individual
skills and abilities of the team’s members. Because software development is carried out in an
environment characterized by ambiguity, contradictory information and time pressures, effec-
tively confronting conflict and thrive in a potentially contentious environment demands addi-
tional attention (Zachary, 1998). The data from this study shows that focusing on ways to
effectively manage the endemic conflict between software development team members can
account for nearly one-half of the variance between the most successful and least success-
ful software development teams.

ACKNOWLEDGEMENTS

Partial funding for the study reported on in this paper was provided by IBM contract STL 92-
543 and by a research grant from Syracuse University’s Vice President for Research and Com-
puting. The manuscript was substantially improved as a result of comments from Kevin
Crowston, Bob Heckman, Ping Zhang, the associate editor and two anonymous reviewers.
Particular thanks to Chuck Jiang for his work on earlier drafts of the paper.

REFERENCES

Conflict in packaged software development 175

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

Delone, W. & McLean, E. (1992) Information systems

success: the quest for the dependent variable. Informa-

tion Systems Research, 3, 60–95.

Deutsch, M. (1969) Conflicts: productive and destructive.

Journal of Social Issues, 25, 7–41.

Dillman, D. (1978) Mail and Telephone Surveys: the Total

Design Method. John Wiley and Sons, New York.

Douglas, D., Lee, J., Pendergast, M., Hickey, A. &

Nunamaker, J. (1998) Enabling the effective involvement

of multiple users: methods and tools for collaborative

software. Journal of MIS, 14, 179–222.

Dube, L. (1998) Teams in packaged software development:

the software corp. experience. Information Technology &

People, 11, 36–61.

Duncan, O. (1966) Path analysis: sociological examples.

American Journal of Sociology, 72, 1–16.

Elam, J., Walz, D., Curtis, B. & Krasner, H. (1991)

Measuring group process in software design teams.

In: Information Systems Research: Contemporary

Approaches and Emergent Traditions, Nissen, H., Klein,

H. & Hirschheim, R. (eds), pp. 51–61. North Holland,

Amsterdam.

Green, S. & Taber, T. (1980) The effects of three social

decision schemes in decision group performance. Orga-

nizational Behavior and Human Performance, 25,

97–106.

Guinan, P., Cooprider, J. & Sawyer, S. (1997) The Effective

Use of Automated Application Development Tools. IBM

Systems Journal, 36, 124–139.

Guinan, P.J., Cooprider, J. & Faraj, S. (1998) Enabling soft-

ware development team performance during require-

ments gathering: a behavioral versus technical

approach. Information Systems Research, 9, 101–125.

Henderson, J. & Lee, S. (1992) Managing I/S Design

Teams: a Control Theories Perspective. Management

Science, 38, 757–777.

Howell, D. (1987) Statistical Methods for Psychology, 2nd

edn. Duxbury Press, Boston.

James, L. (1982) Aggregation bias in estimates of per-

ceptual agreement. Journal of Applied Psychology, 67,

219–229.

Janis, I. (1982) Groupthink: Psychological Studies of

Policy Decisions and Fiascos. Houghton Mifflin, Boston.

Jones, A. & James, L. (1979) Psychological climate:

dimensions and relationships of individual and aggre-

gated work environment perception. Organizational

Behavior and Human Behavior, 23, 201–250.

Keil, M. & Carmel, E. (1995) Customer-developer links in

software development. Communications of the ACM, 38,

33–44.

Kemerer, C. (1989) An agenda for research in the man-

agerial evaluation of computer-aided software engi-

neering (CASE) tool impacts. Proceedings of the 22nd

Annual Hawaii International Conference on System Sci-

ences. Hawaii, pp. 219–228.

Kiesler, S., Douglas, W., & Carley, K. M. (1994) Coordi-

nation as linkage: the case of software development

teams. In: Organizational Linkages: Understanding the

Productivity Paradox, Douglas. H. H. (ed.), pp. 214–239.

National Academy Press, Washington, D.C.

Klein, K., Danserou, F. & Hall, R. (1994) Levels issues in

theory development, data collection, and analysis.

Academy of Management Review, 19, 195–229.

Kumar, K. & Van Dissel, H. (1996) Sustainable collabora-

tion: managing conflict and cooperation in interorgani-

zational systems. MIS Quarterly, 20, 279–300.

Lee, S., Goldstein, D. & Guinan, P. (1991) Informant bias

in information systems design team research. In: Infor-

mation Systems Research: Contemporary Approaches

and Emergent Traditions, Nissen, H., Klein, H. &

Hirschheim, R. (eds), pp. 635–656. North Holland,

Amsterdam.

Markus, M. & Robey, D. (1988) Information Technology

and Organizational Change: Conceptions of Causality

in Theory and Research. Management Science, 34,

583–598.

McCarthy, J. (1995) Dynamics of Software Development.

Microsoft Press, Redmond, WA.

Mumford, E. (1983) Designing Human Systems for New

Technology: the ETHICS Method. Manchester Business

School, Manchester.

Newman, M. & Robey, D. (1992) A social process model

of user-analyst relationships. MIS Quarterly, 16, 249–

266.

Pedhazur, E. & Schmelkin, L. (1991) Measurement, Design

and Analysis. Lawrence Erlbaum Associates, Hillsdale,

NJ.

Pondy, L. (1967) Organizational conflict: concepts and

models. Administrative Science Quarterly, 12, 296–

320.

Robey, D. (1984) Conflict models for implementation

research. In: Applications of Management Science,

R., Schultz & Ginzberg, M. (eds), pp. 89–105. JAI Press,

Greenwich, CT.

Robey, D. (1994) Modeling interpersonal processes during

system development: further thoughts and suggestions.

Information Systems Research, 5, 439–445.

Robey, D. & Farrow, D. (1989) User involvement in infor-

mation system development: a conflict model and em-

pirical Test. Management Science, 28, 73–85.

176 S Sawyer

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

Robey, D., Farrow, D. & Franz, C. (1989) Group process

and conflict in systems development. Management

Science, 35, 1172–1191.

Robey, D., Smith, L. & Vijayasarthy, L. (1993) Perceptions

of conflict and success in information systems devel-

opment projects. Journal of Management Information

Systems, 10, 125–139.

Sambarmurthy, V. & Poole, M. (1992) The effects of vari-

ations in capabilities of GDSS designs on management

of cognitive conflict in groups. Information Systems

Research, 3, 224–251.

Sawyer, S. (2000) Packaged software: implications of the

differences from custom approaches to software devel-

opment. European Journal of Information Systems, 9,

47–58.

Sawyer, S. & Guinan, P. (1998) Software development:

processes and performance. IBM Systems Journal, 37,

120–144.

Sawyer, S., Farber, J. & Spillers, R. (1997) Supporting

the social processes of software development teams.

Information Technology & People, 10, 46–62.

Seidler, J. (1974) On using informants: a technique for

collecting quantitative data and controlling for meas-

urement error in organizational analysis. American Soci-

ological Review, 39, 816–831.

Simmel. (1955) Conflict and the Web of Group Affiliations.

The Free Press, New York.

Spaeth, J. (1975) Path analysis. In: Introductory Multi-

variate Analysis, Amick, D. & Walberg, H. (eds), pp.

162–179. MrCutchan, Berkeley.

Spector, P. (1977) What to do with significant multivariate

effects in multivariate analysis of variance. Journal of

Applied Psychology, 62, 158–163.

Stefik, M., Foster, G., Bobrow, D., Kahn, K., Lanning, S. &

Suchman, L. (1987) Beyond the chalk-board: computer

support for collaboration and problem solving in meet-

ings. Communications of the ACM, 30, 32–47.

Thomas, K. (1975) Conflict and conflict management. In:

Handbook of Industrial Psychology, Dunnette, W. (ed.),

pp. 111–132. Rand McNally, Chicago.

Venkatraman, N. (1989) The concept of fit in strategy

research: toward verbal and statistical correspon-

dence. Academy of Management Review, 14, 423–

444.

Vessey, I. & Sravanapudi, P. (1995) CASE tools as collab-

orative support technologies. Communications of the

ACM, 38, 83–95.

Volkema, R. & Bergmann, T. (1989) Interpersonal conflict

at work: an analysis of behavioral responses. Human

Relations, 42, 757–770.

Wall, D. (1987) Small group conflict: a look at equity,

satisfaction, and styles of conflict management. Small

Group Behavior, 18, 188–211.

Walz, D., Elam. J. & Curtis, B. (1993) The dual role of con-

flict in group software requirements and design activi-

ties. Communications of the ACM, 36, 63–76.

Zachary, G. (1994). Showstopper: the Breakneck Race

to Create Windows-NT and the Next Generation at

Microsoft. The Free Press, New York.

Zachary, G. (1998) Armed truce: software in the age of

teams. Information Technology & People, 11, 64–69.

Zultner, R. (1993) TQM for technical teams. Communica-

tions of the ACM, 36, 79–91.

Bibliography

Steve Sawyer is an associate professor on the faculty of

the School of Information Sciences at the Pennsylvania

State University. His research interests encompass social

and organizational informatics and, in particular, the social

processes of software development, systems implementa-

tion and related organizational changes. Steve earned his

doctorate at Boston University and has also served on the

faculty of Syracuse University’s School of Information

Studies. He has published papers, or has them forthcom-

ing, in journals such as Communications of the ACM,

Computer Personnel, IBM Systems Journal, International

Journal of Information Management and Information Tech-

nology & People. With co-authors, Rob Kling, Holly Craw-

ford, Howard Rosenbaum and Suzie Weisband, his first

book, Information Technologies in Human Contexts:

Learning form Social and Organizational Informatics, is

due out in 2001.

Appendix A: Indicators used in this study

This appendix presents the indicators used in the study. They are organized by factor and the
source is listed in the brackets. All indicators are drawn from previously developed scales. The
indicators were randomly ordered in the survey. The developer survey contained the indica-
tors for characteristics of the project, the team, team conflict and conflict management. A
second survey, for stakeholders, contained the software development team indicators. Both
surveys used a seven point scale where one represents low/poor/worst whereas seven rep-
resents high/excellent/best. Reverse coded means that the response to this indicator was
reversed to match the directionality of the others.

CP: characteristics of the project (Guinan et al., 1997)
Our development team gets all the information we need to plan our work (reverse coded).
When our development team encounters a difficult operational problem, it is hard to get the
technical assistance we need.
To what extent do requirements/design change requests occur in your work?
To what extent do multiple views exist of how the final system should be developed?

CT: characteristics of the team (Guinan et al., 1997)
Team members have developed effective plans and procedures to co-ordinate work.
This team establishes clear expectations about how team members should act.
Everyone in our teams cares about the group.
Members of this team clearly view themselves as a team of people who work closely together.
Team members care a great deal about this team.

CTM: characteristics of the team member (Guinan et al., 1997)
I believe this team will really inspire the very best in me in the way of job performance.
Team members are highly dedicated to this project.
Team members have a comprehensive understanding of the user’s business processes.
Team members know a lot about the business function area in which this system will be used.

TC: team conflict (Green & Taber, 1980)
During the systems development process, do you find that there is more than one satisfac-
tory solution for problems faced?
The people in this team get on my nerves (reverse coded).
There is a lot of unpleasantness among the people in our team (reverse coded).
Dealing with the members of this team often leaves me feeling irritated and frustrated (reverse
coded).

CM: conflict management (Green & Taber, 1980)
This team resolves the differences that exist among team members in a timely fashion.
This team finds ways to minimize tension between team members.
Team members do a good job of co-ordinating their activities.

Conflict in packaged software development 177

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

TP: stakeholder-rated software development team performance (Henderson & Lee, 1992)
Efficiency of project team operations.
Quality of the system produced by the project team.
Adherence to schedules during the project.
Amount of work the project team produced.
Ability of the project team to meet the goals/commitments of the project.
Extent to which the system adds value to our firm.
The extent to which the system adheres to organizational standards.
Extent to which the users’ business needs are reflected in the system.
Number of defects in the system.
The contribution of the system to the performance of the firm.

Appendix B: tolerance

Tolerance refers to the portion any given variable does not share with all other indepen-
dent variables. Tolerance values range from 0.0 to 1.0 and 1.0 means total dependence
(Pedhazur & Schmelkin, 1991, p. 436).

Full model
Characteristics of the project 0.648
Characteristics of the team 0.544
Characteristics of the team members 0.709
Existing level of conflict 0.457

Low levels of conflict model
Characteristics of the project 0.472
Characteristics of the team 0.552
Characteristics of the team members 0.554
Existing level of conflict 0.467

High levels of conflict model
Characteristics of the project 0.583
Characteristics of the team 0.552
Characteristics of the team members 0.754
Existing level of conflict 0.669

178 S Sawyer

© 2001 Blackwell Science Ltd, Information Systems Journal 11, 155–178

