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Abstract 

Detecting and recognizing people is important in surveillance. 

Many detection approaches use local information, such as 

pattern and colour, which can lead to constraints on 

application such as changes in illumination, low resolution, 

and camera view point. In this paper we propose a novel 

method for estimating the 3D head region based on analysing 

the gait motion derived from the video provided by a single 

camera. Generally, when a person walks there is known head 

movement in the vertical direction, regardless of the walking 

direction.  Using this characteristic the gait period is detected 

using wavelet decomposition and the heel strike position is 

calculated in 3D space. Then, a 3D gait trajectory model is 

constructed by non-linear optimization. We evaluate our new 

approach using the CAVIAR database and show that we can 

indeed determine the head region to good effect. The 

contributions of this research include the first use of detecting 

a face region by using human gait and which has fewer 

application constraints than many previous approaches. 

1 Introduction 
 

Determining the position of the head is basic step in 

automatic face recognition and can also be used in privacy 

aware surveillance (to mask the head region) or to improve 

person location in tracking and behaviour analysis 

applications. In visual surveillance there are many constraints 

on the ability to detect and recognize people. Depending on 

which CCTV technology is used, the illumination conditions, 

the frame rate, and the resolution can differ. Besides that, if 

the Region Of Interest (ROI) is considerably smaller than the 

captured image, conventional approaches could fail. Even 

though Viola‟s method [1] is well known for its ability to 

detect faces, the above constraints could lead to possible 

failure when detecting people in a visual surveillance 

environment. An alternative is to use gait, and this is 

immediately beneficial since the body is a larger ROI than the 

human face.  

 There are many approaches to detect a human in visual 

surveillance. Face region detection can be one of sub-

categories of a human detection. Previous human detection 

methods can be classified into two main approaches. The first 

is a 3D assisted approach which uses view geometry and a 3D 

human shape model. Mohedano et al. [2] built a multi-camera 

geometry-based 3D tracker which uses multi-dimensional 

background subtraction and human template correlation. This 

method detected people even when they were occluded by 

static foreground objects.  Li and Leung [3] defined Human 

Perspective Context according to the camera tilt angle. Then, 

using Model Estimation–Data Tuning the human shape and 

head/foot position were detected. Saboune and Laganiere [4] 

generated a human upper body 3D model and a likelihood 

function. Then, Explorative Particle Filtering was applied to 

detect people and for 3D tracking. In another approach, Jean 

et al. [5] used the 2D trajectories of both feet and the head 

extracted by using the silhouettes. After that, the fronto-

parallel normalized view trajectory was generated from a 

homography transformation based on the 3D walking plane.  

 An alternative approach is a local feature based approach 

which uses an object‟s information such as the pattern of a 

face and skin colour. Li et al. [6] estimated the number of 

people in surveillance scenes using a Mosaic Image 

Difference based foreground segmentation and Histograms of 

Oriented Gradients for head-shoulder detection. Yang et al. 

[7] detected basic human actions such as placing objects and 

pointing using a set of motion edge history images and tree-

structured boosting classifiers. Leykin and Hammound [8] 

tracked a subject‟s body and estimated the visual attention 

field from head pose estimation by combining a skin colour 

detector with the direction of motion. Chen and Chen [9] 

proposed a novel cascaded structure called meta-state to boost 

the performance of AdaBoost detection algorithm [1]. 

 Our approach has a different starting point. We focus on 

detecting the head region based on the characteristics of 

human walking. In other words, we propose a gait-based face 

region detection method. First, we calculate the potential head 

trajectory between frames by using a homogeneous 

relationship. Wavelet decomposition is used to detect the 

component which contains a specific frequency of human 

walking. By analysing this component the gait cycle can be 

calculated. Based on the gait period and the known camera 

projection matrix, the heel strike position and walking 

direction in 3D are calculated by using our previous research 

[19]. After that, we define an objective function which can be 

used to fit the 3D gait trajectory model with the actual data by 

comparing a 2D potential gait trajectory with a projected 3D 

gait trajectory which minimizes the error of objective function. 

In this way, we can estimate the region of the head in 3D 

space.      



2 Gait period estimation 

The gait period is the key information to generate heel strike 

position and 3D trajectory correction. When people walk 

there is conspicuous sinusoidal head movement in the vertical 

plane. The highest point in a gait cycle is when both feet cross 

(stance) and the lowest point is when the gait stride is the 

largest (heel strike). Therefore, the vertical position is a cue 

for gait cycle detection. First, the homogeneous relationship 

between the adjacent images is calculated using Scale 

Invariant Feature Transform (SIFT) feature matching [10]. 

Then, the potential trajectory such as the movement of head is 

extracted. By wavelet decomposition different frequency 

signals can be analysed. These contain a signal with the same 

gait period as the original signal. 

2.1 Homogeneous matrix calculation 

Essentially, to extract the potential trajectory, a point is 

determined in the first frame and its position in successive 

frames is estimated. In this paper, we calculate the 

homogeneous relationship based on analysing corresponding 

points detected by SIFT [10]. The main reason for adapting 

this method is that using all features from a human body is 

likely to be more robust than using local region features such 

as the head and legs in terms of whole movement tracking.  

      As a pre-processing step, the subject‟s silhouette image is 

calculated from the intensity and the colour difference 

(between the background image and foreground image) at 

each pixel [11]. Then, SIFT points are extracted from every 

image. From the randomly sampled eight points, each 2D 

homography matrix can be calculated. The 2D homography 

matrix describes the projective transformation between two 

images. The homography matrix (H) satisfies the following 

relationship [12].  

                                     'i iHx x                                   (1) 

      where i i'x x describes the corresponding points 

between two images 

      The Direct Linear Transformation (DLT) [12] is used to 

solve the 2D homography from the corresponding points. If 

there are many SIFT matching points between two images 

several homography matrixes could be generated. To find the 

optimized homography matrix RANdom SAmple Consensus 

(RANSAC) [13] is applied to choose the homography matrix 

which has the largest number of inliers. Figure 1 shows the 

result of corresponding points between two images where the 

green and blue points represent inliers and outliers from SIFT 

matching, respectively. Note that, most of the SIFT points 

from the upper body region are selected as inliers and those of 

the lower part are selected as outliers. In our experience, most 

of inliers are detected in the upper body because we assume 

that the person is walking continuously. Therefore, the lower 

body part such as legs and feet has more movement than the 

upper body. Due to this point, the homography matrix which 

has consistent movement between frames can be selected by 

RANSAC. Therefore, the homogeneous matrix can express 

the trajectory of the upper body.  

 Using the calculated homogenous matrix between frames  

 

   

(a) 98th frame (b) 105th frame (c) trajectory of head 

Fig. 1. A sample gait trajectory 
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Fig. 2. Wavelet decomposition; s is the potential trajectory (original signal), 

a1 is the scaling coefficient, and d1-d4 are wavelet coefficients  

the trajectory of a point can be extracted at each frame if the 

starting point is given at the first frame. The starting point 

could be any point on the upper body. To initiate the 

procedure the centre of the head is labelled manually. Figure 

1(c) shows the results of the vertical trajectory. In this figure, 

the vertical gait trajectory has a consistent trend. The gait 

trajectory can be divided into two parts: a periodic factor and 

a scaling factor. The periodic factor is proportional to walking 

position; the scaling factor when a person walks toward 

camera. In [14], we demonstrated this looming effect when a 

person walks towards camera. However, given the camera 

projection matrix this looming effect can be removed by 3D 

analysis.  

 

2.2 Wavelet decomposition 

The Fast Fourier Transform (FFT) analysis can analyze the 

main frequencies within a signal. However, it cannot be 

localized in time but only in frequency. Autocorrelation is 

usually used to find repeating patterns, such as a periodic 

signal corrupted by noise. This method is also not suitable 

here because the gait trajectory contains a non-linear scaling 

factor. Given a model, 



   

 
 

  
(a) Silhouette image (b) Accumulator map (c) Filtering result           (d) ROI (e) Gradient analysis (f) 3D position 

 
Fig. 3. Process of heel strike detection 

 

the frequency can be found using curve fitting. However, this 

method needs an accurate model in advance. Wavelet 

decomposition can be localized in both time and frequency so 

we use this method to detect the gait period. Because the 

walking period changes with speed of walking, a more 

specific method is needed for generalized analysis. Ladetto et 

al. [15] reconstructed the gait walking signal using wavelet 

decomposition to refine the signal. Unlike [15]‟s purpose, this 

method is utilized to detect the gait period. 

     In wavelet decomposition the signal could be expressed as 

        
0 0

0

, ,( ) ( ) ( ) ( ) ( )j j k j j k

k j j k

f x a k x d k x 
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

                  (2) 

       where ( ), ( )x x  are the scaling and the mother wavelet 

function. ( ), ( )a k d k are the scaling and the wavelet 

coefficient, respectively. 

     The „meyer‟ type of the mother wavelet is used [16]. The 

parameters a1, d1-d4 are the results of decomposition of the 

original signal (signal s). As shown in figure 2, the level 4 

coefficient (d4) has the same period as the original signal. 

Generally, average adult walking velocity on level surfaces is 

approximately 80 m/min. For men, it is about 82 m/min, and 

for women, about 79 m/min. Therefore, the walking signal 

has a fixed range of frequency so that the signal including the 

walking frequency can be extracted by wavelet 

decomposition. In this research, the frame number is chosen 

as a key frame when the highest and lowest of the gait 

trajectory occurs. Moreover, the gait period can be detected 

by finding the peak position of level 4 wavelet coefficient, d4. 

3 Heel strike detection 

Heel strike detection is an important cue for human gait 

recognition and detection in visual surveillance since the heel 

strike position can be used to derive the gait periodicity, stride 

and step length. In our previous research [19], we outlined a 

method of heel strike detection based on 2D gait trajectory 

model which assumes that the walking speed is constant. Here, 

we extend the approach to be invariant to walking speed. 

Figure 3 shows the overall structure of the heel detection. The 

wavelet decomposition shows the periodicity of walking so 

the silhouette image and the frame number in which heel 

strike takes place are saved. This is the process of key frame 

extraction. Another step is a building accumulator map of 

silhouette pixels from the whole image sequence (fig. 3(b)). 

The silhouette image which was saved at the key frame is 

used to filter the accumulator map (fig. 3(c)). Then, ROI (fig. 

3(d)) which is the low part of filtered accumulator map is 

extracted. Then, Gradient Descent is applied to obtain the 

maximum point which is considered as a heel strike 

candidates (fig. 3(e)). Finally, using the given camera 

projection matrix and the candidates which are calculated 

from other frames the final heel strike positions in 3D space 

are reconstructed.  

3.1 Key frame calculation 

The highest point is the moment when feet cross and the 

lowest point is the moment when the gait stride is largest. In 

one gait cycle the highest point and lowest point can be 

calculated by detecting the maximum and minimum point 

from the components of Wavelet decomposition. In this way, 

the frame of the highest position is chosen as a key frame and 

the silhouette images at the key frames are saved. 

3.2 Heel strike candidate extraction 

This section shows the process of detecting heel strike 

position using the pre-calculated key frame information. An 

accumulator map (which is derived by adding samples of the 

walking subject‟s silhouette from all of image sequence) is 

used to determine which parts of the body remained longest at 

same position. Generally, during the strike phase, the foot of 

the striking leg stays at the same position for half a gait cycle, 

whilst the rest of the human body moves forward. The 

accumulator map of a silhouette is the number of silhouette 

pixels. Low pass filtering is deployed to smooth the 

accumulator surface in fig. 3(b).  Figure 3(b), (c) shows an 

accumulator map and filtering result of a key frame silhouette 

image. The colour in the figure indicates the number of 

silhouette pixels from blue (few) to red (many). As shown in 

fig. 3(b), (c) the heel strike region can clearly be distinguished 

from the other body parts. 

 The filtered accumulator map in fig. 3(c) shows the 

distribution of the number of silhouette pixels. It reveals that 

the position of heel strike has a relatively higher distribution 

than other regions. Using the characteristic, a Region of 

Interest (ROI), which is one eighth of person‟s silhouette 

height from the bottom of silhouette, is extracted (fig. 3(d)). 

We presume that the ROI contains the approximate heel strike 

region. Accordingly, the heel strike position can be extracted  



   
(a) The candidates (b) Filtering using 

other candidates  
(c) Filtering using 3D 
position 

Fig. 4. The candidate filtering 

 

by Gradient Descent. Figure 3(e) shows the three dimensional 

view of the extracted ROI. Figure 3(e) shows the result of 

analysing fig. 3(d) using the Gradient Descent. The small 

arrow in the figure is the point where the orientation has 

changed. Figure 3(e) shows the trace convergence to the local 

maximum.  

3.3 Heel strike detection in 3D space 

The key frame process also marks the frames where the feet 

are expected to be in the heel strike position. These estimation 

need to be refined to remove erroneous candidates. To reduce 

the invalid candidates, the key frame is calculated when the 

position of y is the lowest in one gait cycle (fig. 2) and the 

same procedure is executed in Section 3.2 to find other heel 

strike candidates. The apparent height is the lowest when the 

stride is maximum and both feet are in contact with the floor.   

     The distance between these two groups of candidates (at 

the highest and the lowest y coordinate) is calculated. Then, 

the candidates in the fixed distance (here, 5 pixels) are 

selected from the group of candidates of lowest values for y. 

As shown in fig. 4(b), after this filtering process the invalid 

candidates from another foot are removed. The accumulator 

map depends on the camera view and once the camera is 

calibrated the invalid candidates could be removed using back 

projection from a 2D image plane into a 3D world space. 

Using 3D projection the candidates which are the closest to 

the camera are selected. Since a single camera is used in our 

approach, we assume that a ground floor is known, i.e. z=0 

(the z axis is vertical position). This enables calculation of the 

intersecting points between the projection ray from 2D image 

points and the ground floor. The closest heel strike to the 

floor is considered as the final heel strike position, thereby 

filtering the invalid positions. Figure 4 shows a result of the 

filtering process and the invalid points in fig. 4(a) are 

removed to give the final result in fig. 4(c). 

4 Trajectory calculation in 3D space 

The gait trajectory in 2D space contains a non-linear factor;  

the looming effect [14] which can affect the accuracy of the  

gait trajectory. Therefore, the domain is changed from the 2D 

image plane into 3D space using the camera projection matrix 

because in 3D space there are many advantages such that the 

height of walking person is constant and the looming effect 

can be ignored. Besides that, it can provide not only the 

walking direction but also the walking speed. Therefore, in 

this section, a 3D gait trajectory model is built based on pre- 

  
(a) Position of head and heel strike (b) Head trajectory 

Fig. 5. 3D head position 
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Fig. 6. Head position and walking direction change 

calculated 3D heel strike position and gait period. Then, using 

the Levenberg-Marquadt optimization method, this model is 

fitted to actual data to estimate the 3D position of head.  

4.1 Head position while changing walking direction 

Before defining the 3D gait trajectory, we need to investigate 

the relationship between walking direction and head position 

because the walking trajectory is not always the same as the 

trajectory of head. For instance, if a person changes the 

walking direction a half gait cycle gap takes place between 

walking trajectory and head trajectory.  

     Generally, the head position is located directly above the 

heel strike position at the moment of crossing feet. Figure 

5(a) shows the sample of this relationship. In this figure, the 

lower white dot is the detected heel strike position and the 

higher white dot represents a potential center position of head. 

As shown in fig. 5(a), the angle between the ground floor and 

the line of the two points are perpendicular. Figure 5(b) 

presents the head trajectory from all frames. This is one of 

results in next section where a 3D gait trajectory model is 

constructed and the 3D gait trajectory is projected into 2D 

space. If the height of object is constant the movement of 

head shows the sinusoidal wave. Moreover, it can show that 

when feet cross the position of head is the highest and when 

the gait stride is the largest the position is the lowest. 

     Another factor to be considered is when a person changes 

his/ her walking direction. Figure 6 shows the moment of 

changing a walking direction. As shown in this figure, first, a 

person looks at the direction of walking. Then, a half gait 

cycle later the direction of feet changes. In other words, the 

moment that a head turns is when the gait stride is the largest. 

Therefore, the middle position of the 3D heel strike is used 

(assuming the middle position of heel strike is when a gait 

stride is the largest).  Figure 7 presents a sample of the heel 

strike and middle position. The blue asterisk point represents 

3D head position. The red asterisk and green triangle point 



 
Fig. 7. Heel strike position and the middle position 

are 3D heel strike position and the middle of heel strike, 

respectively.  From the above assumptions the 3D gait 

trajectory model will be explained in next section. 

4.2 3D gait trajectory model  

Given the gait periods and 3D heel strike positions, the gait 

trajectory can be modelled by the series of simple sinusoidal 

waves which have the same magnitude and height. The 

potential 2D trajectory could be inaccurate. Error could be 

derived from the homogeneous matrix and camera projection 

matrix. Therefore, the gait trajectory can be corrected and the 

model parameter is calculated by model fitting using non-

linear optimization method.  

      The gait trajectory model in 3D space can be defined by 

following relationship. 

Define a walking direction vector, 
ki  

     
1 1( ) /k k k k k   i H H H H                                           (3) 

Then, position at ground plane and at vertical position 
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The objective function is  

      

1 2

2 3
,

arg min ( ) * ( )D D
C C

t tT P T                    (9)                      

First, we define a 3D gait trajectory model per each period 

(G3D,k) which consists of x, y position (Pk(t)) and z position 

(zk(t)) based on the gait period (fk) and the middle heel strike 

position (Hk). Then, whole gait trajectory model (T3D) is 

constructed by adding each model. Equation 3-8 is the details 

of this procedure where pn is a period of each gait cycle and 

Rk is a simple rectangular function. The objective function is 

the equation 9 where T2D(t) is the potential trajectory in 2D  

 

 
(b) x position fitting 

 
(a) 3D gait trajectory model (b) y position fitting 

Fig. 8. 3D gait trajectory model fitting 

image plane (chapter 2.1), T3D(t) is the 3D gait trajectory 

model, and P is camera projection matrix. The purpose of  Eq. 

9 is to calculate the magnitude (C1) and height (C2) which 

minimize the value of objective function. The objective 

function is an error function between 2D potential trajectory 

and the projected trajectory from the 3D gait trajectory model. 

To calculate Eq. 9 Levenberg-Marquadt algorithm is applied.  
     Figure 8 displays the fitting result using the 3D gait 

trajectory model. Figure 8(a) shows the reconstructed 3D gait 

trajectory. The blue line is the trajectory of the head and the 

red line is the direction of head moving. Figure 8(b) and 8(c) 

show 2D image plane fitting after optimization procedure. 

The blue line is a potential trajectory of head and the red line 

is a fitting results.  

5 Experimental results 

To evaluate the proposed 3D head region estimation method 

we analysed the samples from CAVIAR dataset [17]. The 

dataset consists of 24 samples (18 males, 6 female, with 

around 100 images in each sequence) and are resized to 

640  480 pixels. Each sample has a random walking 

direction and speed. This database is recorded at a shopping 

centre viewing a corridor. To calculate the camera projection 

matrix we estimate (perspective) corresponding points based 

on provided ground truth position (15 pairs of corresponding 

points are used). 

     Figure 9 shows the detection results with different 

environments; the biometric tunnel [18] and a shopping centre 

from the CAVIAR dataset [17]. The yellow region in the 

figure is a 2D projected face region from the 3D estimated 

face region. The white cross is the result of back projection 

from the 3D heel strike position and the white arrow 

represents the walking direction. As shown in fig. 9 the 

proposed method can estimate the head region regardless of 

the walking direction and speed since the method uses the 

basic characteristic of gait: heel strike position. Table I shows 

the errors between the potential 2D gait trajectory and the 

projected gait trajectory from 3D trajectory extracted by 3D 

gait trajectory model for 24 samples. We use Root Mean 

Square Deviation to evaluate the performance. The average  
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(a) The sample of biometric tunnel database 

      

      

(b) The samples of CAVIAR database 

Fig. 9. Detection result with different walking direction 
 

error in x, y axis is under 4 pixels and 2 pixels, respectively. 

Compared to image size, this value is under 1%, suggesting 

good accuracy.  
TABLE I  

FITTING ERRORS 

x pos. error y pos. error x err./ image width y err. /image height 

3.57 pixels 1.52 pixels 0.55 % 0.32% 

6 Conclusions 

This paper describes new techniques for head region 

estimation in 3D space, which are less constrained than 

previous approaches and can handle any direction of walk, 

even away from the camera. The approach to head region 

estimation combines 3D geometry information with human 

walking characteristics. In other words, from the movement 

of the head we can estimate the heel strike, the walking 

direction, and the 3D head region. The new approaches have 

been demonstrated with the samples from the CAVIAR 

database. The results show the head region estimation method 

is accurate even with changes in walking direction and speed. 

As such gait analysis can be used to derive the head region 

invariant to the view of camera, leading to a more versatile 

method of finding the human head in surveillance 

applications.      
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