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Abstract

The ability to identify the source camera for an image has ap-
plication in the areas of digital forensics and multimedia data
mining. The majority of previous research in this area has fo-
cused on primary function imaging devices (i.e. digital cam-
eras). In this work we use the pattern noise of an imaging
sensor to classify digital photographs according to the source
smartphone from which they originated. This is timely work
as new smartphone models large imaging sensors, affording
significant improvements in classification rates using pattern
noise. Our approach is to extract wavelet based features which
are then classified using a support vector machine. We show
that this method generalises well when the number of source
cameras is increased.

1 Introduction

Often the pictures are considered a piece of truth as being real
events captured by electronic devices (cameras). However,
with the development of technology have emerged powerful
and sophisticated tools that facilitate in an impressive manner
the alteration of digital images, even for those without technical
knowledge or expertise in the area [11].

Due increasing storage capacity, usability, portability and
affordability, camera enabled mobile phones have become
ubiquitous consumer electronic devices. The extensive use
of smartphone cameras makes enforcing legal restrictions on
the capture and sharing of digital photographs very difficult.
Restrictions on the use of cameras include locations such as
schools, government offices and businesses. Consequently,
tools which permit the identification of source devices have
significant utility various areas of law enforcement [2] such as
child protection and digital rights management.

2 Source Camera Identification Techniques

Research in this field typically determines make and model by
identifying characteristic artefacts within an image. The suc-
cess of these techniques depend on the assumption that all the
images acquired by the same device have intrinsic characteris-
tics of the device [22]. The main problem with this approach is
that different models of digital camera are often built using the
same core components that originate from a small number of
manufacturers. As a consequence it is difficult or impossible to
differentiate between models using such methods.

During the image generation process the lens system can
introduce some aberrations. In [8] the lens radial distortion is
proposed as the best technique for source identification. Radial
distortion causes straight lines appear as curves in images. The
degree of radial distortion for each image can be measured by a
process consisting of three steps: edge detection, distorted seg-
ment extraction, and distortion error measurement. They ex-
perimented with three different cameras and obtained 91.28%
source camera identification accuracy.

In [3] an algorithm for identifying and classifying color in-
terpolation operations is presented. This method is based on
two methods to perform the classification process: first using
an algorithm to analyse the correlation of each pixel value with
values of its neighbouring pixels, and secondly an analysis of
the differences between pixels independently. The source cam-
era identification results with images from four to five different
models resulted an accuracy of 88% and 84.8% respectively.

Between pixel correlations for source identification were
also used in [15], obtaining a coefficient matrix for each color
channel while defining a pixel quadratic correlation model. A
neural network classifier was used, achieving a success rate of
98.6%. This approach is not efficient for differentiating be-
tween different models from the same manufacturer.

In [4] a set of binary similarity measures is used as met-
rics to estimate the similarity between image bit planes. The
fundamental assumption of this work is that Color Filter Array



(CFA) interpolation algorithms from each make leaves corre-
lations along image bit planes and can be represented by a set
of 108 binary similarity measures for classification. The suc-
cess rate of their experiment was between 81% and 98% when
attempting to classify three cameras which decreased to 62%
when nine cameras were considered.

In [18] the authors extend the source identification to differ-
ent devices such as mobiles phones, digital cameras and scan-
ners. Color interpolation coefficients and noise characteristics
are used to classify. Their experimentsshowed an overall result
of 93.75% accuracy. When identifying the make and model of
five mobile phone models, a 97.7% accuracy was obtained.

In [19] a method based on bi-coherence statistics phases
and magnitudes along with the wavelet coefficients is used.
This method captures the unique nonlinear distortions in the
wavelet domain produced by the cameras when performing
processing operations over images. As a result an accuracy
of 97% in the identification was obtained in distinguishing dif-
ferent models from the same manufacturer.

In [23] a method for identifying the source camera through
wavelet features statistics is presented. The standout wavelet
domain features are extracted to integrate a statistical model of
image including 216 first-order wavelet features and 135 co-
occurrence second order characteristics. In this study wavelet
domain characteristics are considered the most representative
and are preferred over the spatial characteristics (color of the
image and Image Quality Metrics (IQM)) and CFA. Under the
same conditions as in the experiments performed in [19] fail
to distinguish between different models of the same maker, the
average accuracy rate was 98%.

A technique to differentiate images using the wavelet fam-
ily transforms is explained in [20] . Ridgelets and contourlets
subband statistical models are proposed to extract the repre-
sentative features from images. Experiments were conducted
to identify three different cameras obtaining accuracies of:
93.3% with wavelet-based approach, 96.7% using ridgelets,
and 99.7% with contourlets.

In [14] a method using the marginal density of Discrete
Cosine Transform (DCT) coefficients in low-frequency coor-
dinates and neighbouring joint density features on both intra-
block and inter-block from the DCT domain is proposed. In
experiments with images of different scale factors from five
smartphone models of four manufacturers, an accuracy be-
tween 86.36% and 99.91% was obtained.

The techniques based on sensor noise are rely on studying
the traces left by sensor defects in images. There are broadly
two different approaches: pixel defects and sensor pattern noise
Sensor Pattern Noise (SPN). Pixel defects include hot pixels,
dead pixels, the row or column defects and group defects. The
SPN method estimates a device ’fingerprint’ by averaging mul-
tiple residual noise images computed by the application of a de-
noising filter. The presence of the pattern is determined using
a correlation method or machine classification Support Vector
Machine (SVM).

In [10], pixel defects of Charge Coupled Device (CCD)
sensors are studied, focusing on different image features and
identify their source. The source considered were CCD sen-

sor defects, the file format, image noise and watermarking in-
troduced by manufacturer. CCD sensor defects included hot
spots, dead pixels, group defects, and row/column defects. Re-
sults indicated that each camera has a different defect pattern.
Nevertheless, it is also noted that the number of pixel defects
for images from the same camera is different and varies greatly
depending in the image content. Similarly, it was shown that
the number of defects varies with temperature. The study con-
cluded that high quality CCD cameras produce images with
fewer defects than other sensor types. When considering only
defective CCD sensors, this study is not applicable to the anal-
ysis of images generated by mobile devices.

In [16] the authors use SPN to create fingerprints which
were used to uniquely identify cameras of different make and
model. To identify the camera from a given image, the refer-
ence pattern is considered as a watermark in the image and its
presence is established by a correlation detector. It was found
that this method is affected by processing algorithms such as
image JPEG compression and gamma correction. The results
for pictures with different sizes were unsatisfactory [22].

In [9] an approach to source camera identification using
an ‘open set’ scenario is proposed for which, unlike previous
work, the access to the source camera is not required to per-
form the analysis. This approach, in contrast to others, consid-
ers 9 different Region Of Interests (ROIs) located in the corners
and the center of the images (not only the central region of the
image). Using these ROIs it is possible to work with differ-
ent resolution images without requiring zero padding or color
interpolation. The SPN is computed for each color channel
generating a total of 36 representative features for each image.
Then, the image features are labelled as positive class (created
from particular camera) or negative class (originating from an-
other camera). After the SVM training phase, the separating
hyperplane is moved by a given amount either inward (for pos-
itive classes) or out (for negative classes) for to accommodate
the open set scenario. The results of their experiments had an
accuracy of 94.49%, 96.77% and 98.10%.

The basic SPN method described in [16] is developed fur-
ther by [12]. They propose that the stronger is a component of
the sensor noise is less reliable and therefore it should be at-
tenuated. They performed experiments with six different cam-
eras.For images of 1536x2048 pixels, they obtained an accu-
racy of 38.5 % with the implementation without the improve-
ment and 80.8% with the proposed improvement. For images
of 512x512 pixels they obtained an accuracy of 21.8% without
improvement and 78.7% with the proposed improvement.

A detailed comparison of different source identification
techniques is presented in [21].

3 Source Identification Algorithm

Previous work has shown sensor pattern noise [10] [12] [16]
and wavelet transform [19] [20] to be an effective method for
source camera identification. However, almost all studies have
focused only traditional cameras excluding mobile cameras.
This makes it an area of study that requires attention. Using
a biometric analogy, we consider each noise pattern to be a fin-



gerprint of its source camera’s sensor.

In our study, sensor pattern noise is used to classify im-
ages captured by, camera enabled, smartphones. Our approach
characterises the fingerprints using wavelet based feature vec-
tors. The scheme presented in Figure 1 shows the functional
diagram of our proposal.
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Figure 1. Scheme functional.

Noise images were obtained using the method previously
described by [16] also summarised by Algorithm 1 as follows.

Algorithm 1: Extracting PRNU
Input: Image
Variance estimation: adaptive or non-adaptive
Result: Sensor fingerprint /05

(@ procedure EXTRACTPRNU(J)

©) Apply a wavelet decomposition in 4 levels to I;
® foreach wavelet decomposition level do

@ foreach component ¢ € {H,V, D} do

% Compute the local variance;

6

if adaptive variance then
@ Compute 4 variances with windows

of size: 3, 5, 7 and 9 respectively;
® Select the minimum variance;

else
Compute the variance with a window
of size 3;

Compute noiseless wavelet components
applying the Wiener filter to the variance;

QE

Obtain /.4, by applying the inverse wavelet
transform with clean components calculated;

Obtain the sensor noise with
Inoise=I—Icican;

Apply zero-meaning to I, ;se;

Increase the green channel weight with
Loise= 0.3 Inoiseg+0.6:Inoise; +0.1-Inoisep s

(15 end procedure

@E
@
®)

sition of each color channel is calculated using the Daubechies,
8-tap, Separable Quadrate Mirror Filters (QMF). The number
of decomposition levels can be increased to improve accuracy
or reduced to reduce processing time.

Horizonal H, vertical V' and diagonal D high-frequency
images are obtained for each level of decomposition. For each
detail image, the local scene variance in a W x W window
is estimated. Four estimates are obtained with window sizes
corresponding to W € {3,5,7,9}. Finally, we choose the esti-
mate which maximises the a-posteriori probability (MAP).

62(i,j)=max | 0

Y, Eg)—og | Gpesr (D)
(4,J)EN

Where, c(i,7) is the high-frequency component and ¢ €
{H,V, D}, o controls the degree of noise suppression.

The minimum of four variances is chosen as the best esti-
mate:

&2 (i,5)=min (03 (i,5),02 (1,4),0% (1,4),05(i,5)), (L)€ (2)
An alternative, and less accurate method, is to simply use
W = 3 as the estimated local variance.
The denoised wavelet coefficients are defined by the
Wiener filter as follows:

- - 6%(i, )
Celean (Zaj) C(Z’])&Q (Z,j) + 0_8 (3)
Finally, the noise residual is obtained by calculating the in-
verse transform and subtracting the denoised image from the
original image. JPEG and demosaicing artefacts, present in
the noise image, are suppressed by subtracting the mean col-
umn and row values [7]. Greater weight is given to the green
channel since due to the configuration of the color matrix this
channel contains more information about the image [5, 17, 1].
The next step is to obtain features that characterise the sen-
sor fingerprint for the purpose of classification. A total of
81 features (3 channels x3 wavelet components x9 central mo-

ments) is extracted using the Algorithm 2 as follows:

Algorithm 2: Extracting features

Input: Sensor fingerprint 1,5
Result: 81 features

(@ procedure EXTRACTFEATURES(/)

©) Separate R, G and B color channels of I,,;s¢;
® foreach color channel do

@ Apply a wavelet decomposition in 1 level;

G) foreach component c € {H,V, D} do
Compute £ central moments with

n
i=1

@ end procedure

To extract its noise pattern, an image is decomposed into its
color channels (R, G, B). Then, a four-level wavelet decompo-

Classification was performed using a SVM of the RBF
kernel. We used the LibSVM package in which the SVM



is extended to multiple classes yielding class probability es-
timates [6]. The kernel parameter v = 23 and cost parameter
C = 32768 were used for the SVM. We used a grid search in
order to obtain the best kernel parameters (v and C'). The clas-
sifier was trained and tested with feature vectors extracted from
randomly selected images.

4 Experiments and Results

To assess the effectiveness of the proposed algorithms, two ex-
periments were conducted considering the central 1024x1024
pixel image block, as is widely recommended in [13]. Table
1 summarises the experimental conditions used in our algo-
rithms.

Table 1. Parameters used in the proposed algorithms

Parameter Value
Dimensions 1024 x1024
Number of training photos by camera 100
Number of testing photos by camera 100
Variance estimation Non-adaptive

The mobile device digital cameras used and their configu-
rations are showed in Table 2.

Table 2. Configurations used in mobile device digital cameras

Brand Model Resolution Taking Conditions
iPhone3G (A1) 2 MP (1600x1200) Scene type: Any
Apple iPhone4S (A2) 8 MP (3264x2448) Orientation: Vertical
iPhone3 (A3) 2 MP (1600x1200) Flash: Disabled
iPhone5 (A4) 8 MP (3264x2448) Light: Natural
Black Berry 8520 (B1) 2 MP (1600x1200) White balance: Auto
. UST25a (SE1) 5 MP (2592x1944) Digital zoom ratio: 0
Sony Ericsson .
USI (SE2) 8 MP (3264x2448) Exposure time: 0 seg
GT-19100 (S1) 8 MP (3264x2448) ISO speed: Automatic
Samsung GT-S5830 (S2) 5 MP (2592x1944)
GT-S5830M (S2) 5 MP (2592x1944)
LG E400 (L1) 3.2 MP (2048x1536)
HTC DesireHD (H1) 8 MP (3264x2448)
Nokia E61I (N1) 2 MP (1600x1200)

4.1 Experiment 1

In this experiment, a group of 8 mobile device digital cam-
eras from 4 different manufacturers was tested. From Apple,
the models iPhone3G (A1), iPhone4S (A2), and iPhone3 (A3)
were considered; from BlackBerry the 8520 (B1); from Sony
Ericsson the UST25a (SE1) and the USI (SE2); and from Sam-
sung the GTI9100 (S1) and the GTS5830 (S2) models.

The performance of the classifier was tested 10 times, us-
ing a 10 different random samples of 100 images, and the av-
erage classification rate recorded. The performance changed
only slightly in each run which indicates stability over differ-
ent training and testing image sets.

The PRNU extraction algorithm and feature extraction al-
gorithm are implemented in Python 2.7 with an Intel Core i5,
2.5-GHz processor and 8 GB of RAM. It takes approximately
40s to extract the PRNU and compute the features for a single
image. Training the SVM classifier and testing is realized in a
2s and fraction of a second respectively. A random sample of
100 images was used for testing a different random sample of
100 images was used for testing.

Sample confusion tables from eight camera groups are
given below. The best, middle, worst case tables are show in
Tables 3, 4 and 5 respectively. The average accuracy for cor-
rectly identifying camera make and model was 93.2%.

Table 3. Confusion matrix of best result (93.87%)

Camera Al A2 A3 B1 SE1 SE2 S1 S2
Al 96 1 0 0 0 0 0 3
A2 0 97 0 0 0 0 3 0
A3 0 0 98 0 0 0 2 0
B1 0 0 0 94 0 4 0 2

SE1 11 1 0 0 88 0 0 0

SE2 3 0 0 1 0 93 1 2
S1 4 8 0 0 0 3 85 0
S2 0 0 0 0 0 0 0 100

Table 4. Confusion matrix of middle result (93.25%)

Camera Al A2 A3 B1 SE1 SE2 S1 S2
Al 94 1 0 0 0 1 0 4
A2 0 96 0 1 0 3 0
A3 0 0 97 0 0 0 2 1
B1 0 0 0 94 0 2 0 4
SE1 10 1 0 0 89 0 0 0
SE2 2 0 0 1 0 94 1 2
S1 5 6 0 0 0 6 83 0
S2 0 0 0 0 0 1 0 99

Table 5. Confusion matrix of worst result (92.62%)

Camera Al A2 A3 B1 SE1 SE2 S1 S2
Al 92 1 0 0 0 0 0 7
A2 0 96 0 1 0 3 0
A3 0 1 929 0 0 0 0 0
B1 0 0 3 91 0 4 0 2
SE1 7 2 0 0 91 0 0 0
SE2 2 0 0 1 0 94 1 2
S1 4 10 0 0 0 7 79 0
S2 0 0 0 0 0 1 0 99

4.2 Experiment 2

In order to evaluate the scalability of the method to a larger
number of classes, a group of 14 mobile device digital cameras
from 7 different manufacturers was used.



Table 6. Confusion matrix of experiment 2
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From Apple the models iPhone3G (Al), iPhone4S (A2),
iPhone3 (A3) and iPhone5 (A4) were considered; from Black-
Berry the 8520 (B1); from Sony Ericsson the UST25a (SE1)
and the USI (SE2); from Samsung the GTI9100 (S1), the
GTS5830 (S2) and the GT-S5830M (S3); from Lg the E400
(L1); from HTC the DesireHD (H1) and the Desire (H2); fi-
nally from Nokia the E611 (N1) model.

The average classification rate dropped to 87.214% as
shown in the confusion matrix of Table 6 indicating a small
loss in performance when the number of classes (cameras) is
increased.

5 Conclusion

According to the structure and operation of mobile device digi-
tal cameras the most appropriate techniques for forensic analy-
sis are the those based on sensor noise and wavelet transforms.
In the foregoing it was proposed an algorithm for identifying
the mobile source combining techniques based on sensor fin-
gerprint and the wavelet transforms. The algorithm is mainly
composed of two phases, the first is dedicated to extract the
sensor fingerprint, and the second to extract features from this
fingerprint which will serve as input to the SVM used as clas-
sification method.

The effectiveness of a method for source camera identifi-
cation, based wavelet features of image noise residuals, was
tested on photographs acquired from a range of smartphones.
In the first experiment 8 models from 4 manufacturers were
considered resulting in an overall accuracy of 93.2%. In order
to evaluate the scalability of the approach, we repeated the ex-
periment using 14 models from 7 manufactures and achieved
an average success rate of 87.214%. Our results, tentatively,
suggest that the method is applicable to data sets containing
images from a large number of different cameras and therefore
the method promises potential utility for digital forensics and
data mining applications.
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