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Abstract

Background subtraction (BS) is a very important task for var-
ious computer vision applications. Higher-Order Robust Prin-
cipal Component Analysis (HORPCA) based robust tensor re-
covery or decomposition provides a very nice potential for
BS. The BG sequence is then modeled by underlying low-
dimensional subspace called low-rank while the sparse tensor
constitutes the foreground (FG) mask. However, traditional
tensor based decomposition methods are sensitive to outliers
and due to the batch optimization methods, high dimensional
data should be processed. As a result, huge memory usage
and computational issues arise in earlier approaches which are
not desirable for real-time systems. In order to tackle these
challenges, we apply the idea of stochastic optimization on
tensor for robust low-rank and sparse error separation. Only
one sample per time instance is processed from each unfolding
matrices of tensor in our scheme to separate the low-rank and
sparse component and update the low dimensional basis when
a new sample is revealed. This iterative multi-dimensional ten-
sor data optimization scheme for decomposition is independent
of the number of samples and hence it reduces the memory and
computational complexities. Experimental evaluations on both
synthetic and real-world datasets demonstrate the robustness
and comparative performance of our approach as compared to
its batch counterpart without scarificing the online processing.

1 Introduction

Background Subtraction (BS) is a very important task in video
analysis. This low level task consists of accurate and efficient
isolation of moving objects called “Foreground” (FG) from the
static information called “Background” (BG) scene. The neat
and clean BG model is then further used for high level com-
puter vision and image processing tasks such as video com-
pression, privacy, inpainting, augmented reality, computational
photography, etc. [1] [10]. However, the task becomes more

complex when the data size grows since the real-world scenario
requires larger data to be processed in a more efficient way.

Many algorithms have been proposed for BG/FG segmen-
tation and several implementations are available in the BGS1

library. Among them subspace learning model such as Higher-
Order Robust Principal Component Analysis (HORPCA) based
tensor decomposition provides a very nice framework for
moving object detection. Tensor based decomposition meth-
ods [7] [19] also known as HORPCA have been recently pro-
posed for exact low-rank recovery which exploits information
using multidimensional N-arrays and provides an equivalent
and more efficient framework than traditional RPCA-based ap-
proach [5]. LRS2 library provides the implementation of many
tensor based decomposition methods for FG detection. The BG
sequence is considered using the underlying multi-dimensional
subspace called low-rank tensor and sparse error constitutes
the moving FG objects. Fig. 1 shows an example of BS us-
ing tensor decomposition, whereas Fig. 2 indicates only frontal
slice of tensor of original sequences taken from CDnet [18] and
iLIDS [3] dataset for better visualisation.

However, HORPCA based decomposition methods into
low-rank and sparse component currently face some prominent
challenges: First, the state of the art HORPCA [7] based ap-
proaches are based on batch optimization processing. In order
to perform decomposition, a number of training frames are re-
quired to store in a memory before processing any data. There-
fore, due to the high memory storage, they are not applicable
to real-time processing. Second, HORPCA based algorithms
are sensitive to outliers, i.e., low-rank tensor recovery is not
always robust, especially for BG/FG separation where outliers
always appear and hence it is not applicable for practical vi-
sual surveillance systems. For example, the last row in Fig. 2
depicts an example of outlier appearances in frontal slice of
the tensor. Third, earlier HORPCA approaches need to access
every frame for Higher Order Singular Value Decomposition
(HOSVD) as a result the computational problems prevent them
from efficient processing of big data.

1https://github.com/andrewssobral/bgslibrary
2https://github.com/andrewssobral/lrslibrary



(a) (b) (c) (d)
Figure 1. An example of input tensor decomposition: (a) input,
(b) low-rank, (c) sparse tensor, and (d) foreground mask.

In order to address these major difficulties for BG/FG seg-
mentation. This paper presents a robust recovery of low-rank
tensor model for accurate FG segmentation. We briefly explain
our methodology here. Traditional approaches are required to
access each sample for HOSVD computation and therefore its
nuclear norm tightly couples all the samples before processing.
In this work, the stochastic (a.k.a online or iterative) optimiza-
tion scheme where nuclear norm is re-formulated, recently pro-
posed by Feng and Xu [6], is applied on each mode of the ten-
sor. Our main technical contribution is an equivalent formula-
tion of online RPCA [6] applied on tensor therefore we named
it as, Online Tensor Decomposition (OTD) into low-rank and
sparse component. OTD processes one sample per time in-
stance from each vectorized tensor mode via online manners
and hence reduces the memory usage and computational time.
The low-rank tensor is then modeled by explicit product of ba-
sis and its coefficients, whereas the FG detection is obtained by
thresholding the frontal slice of sparse tensor.

The rest of this paper is organized as follows. In Section 2,
the related work is reviewed. Section 3 describes the proposed
stochastic tensor decomposition for BS. Experimental results
are discussed in Section 4, and finally Section 5 concludes our
work.

2 Previous Work

In the literature, several algorithms have been proposed to cope
with low-rank and sparse decomposition problem in computer
vision. For example, Candes et al. [5] designed a very interest-
ing framework called RPCA via Principal Component Pursuit
(PCP) to decompose the given observation matrix into low-
rank and sparse component. Excellent survey on BS using
RPCA can be found in [2]. But these RPCA [5] matrix based
decomposition methods used for BS [2] work only on single
dimension and consider image as a vector and hence multidi-
mensional data for efficient analysis can not be considered. In
addition, the local spatial information sometimes lost and erro-
neous FG regions are obtained.

Therefore, tensor based algorithm called TSA (Tensor sub-
space learning) is developed by He et al. [8]. TSA is a very
robust method for learning a subspace basis using multidi-
mensional data but does not provide the convergence analy-
sis. Wang et al. [17] proposed a convergent solution for tensor
based low-rank learning. In addition, WTA (Window-based
Tensor), STA (Streaming Tensor Analysis) and DTA (Dynamic
Tensor Analysis) have been proposed by Sun et. al. [15].
In [11], RSTD (Robust Subspace Tensor Decomposition) is de-
veloped for automatic robust subspace recovery using Block

(a) (b) (c) (d)
Figure 2. Frontal slice of tensor: (a) input, (b) low-rank, (c)
sparse component, and (d) foreground mask.

Coordinate Descent (BCD) approach on unconstrained prob-
lem via variable splitting strategy, a number of computer vision
applications such as image restoration, BS and face recognition
are addressed in [11]. But parameters tuning and complexity of
optimization method are the main drawbacks in RSTD. Donald
and Qin [7] developed an extended Alternating Direction Aug-
mented Lagrangian (ADAL) and HORPCA methods for robust
tensor recovery. Convergence guarantee and proofs of each
method are presented in [7]. Recently, Zhao et al. [19] pro-
posed a Robust Bayesian Tensor Factorization (BRTF) scheme
for incomplete tensor completion data. BRTF provides a very
fast multi-way data convergence but tunning of annoying pa-
rameters and batch processing are the major difficulties in this
approach.

All these matrix or tensor based decomposition methods
discussed above are based on batch optimization mode. There-
fore, a real time processing is loss due to the major challenges
presented above. In order to tackle these problems, this paper
presents a robust BS algorithm based on stochastic decomposi-
tion of low-rank and sparse component. We apply the idea of
online optimization of RPCA [6] on tensor and update the indi-
vidual basis iteratively followed by the processing of one frame
per time instance using each unfolding matrices of tensor.

3 Proposed Methodology

In this section, stochastic tensor decomposition for robust
BG/FG separation is presented. First, we describe some tensor
basics and notations, then the proposed algorithm is presented
in detail.

3.1 Tensor Basics and Notation

Tensor is considered as a multi-dimensional numerical array.
The notations used in this paper are similar as used in [9]. The
order of a tensor is the number of its dimensions (a.k.a modes
or ways). The bold face calligraphic letters represent higher
order tensors, (order ≥ 2) e.g., X . Scalars are represented by
lowercase letter e.g., x, whereas vectors and matrices are de-
noted by boldface lowercase and capital letters e.g., x, and X,



respectively.
Let say an Nth order tensor X ∈ RI1×I2×...×IN , then its

elements are denoted by symbolic name with indexes. For ex-
ample, the element (i,j,k) of third-order tensor X is represented
by xi,j,k. The analogue of matrix rows and columns for the ten-
sors are called fibers, which is obtained by fixing all indexes
but one (a.k.a vector-values subtensor). A tensor X has col-
umn, row and tube fibers represented by x:jk, xi:k, and xij:.
Similarly, slices of a tensor are two dimensional sub-array that
can be obtained by fixing all indexes but two. A tensor X has
horizontal, lateral and frontal slices indicated by xi::, xj::, and
xk::. Reshaping is always required for manipulation of tensors,
a common operation is called matrix unfolding or matriciza-
tion for reformatting tensors into matrix. For Nth order tensor,
its unfolding matrices are denoted by X 1,X 2,...,XN . Vector-
ization of tensor into vector is denoted by vec(X ). The squared
Frobenius norm of a tensor is ||X ||2F=< X ,X >. More details
on tesor operations can be found in [9].

3.2 Stochastic Tensor Decomposition

Let say that Y is an input Nth order observation tensor, which
is corrupted by outliers, say E , then Y can be reconstructed by
separating it into low-rank tensor X (corresponds to BG), and
sparse error E (corresponds to FG objects), i.e., Y=X+E , under
the convex optimization framework developed in [7] as

X ,E
min 1

2

N∑
i=1
||Yi −Xi − Ei||2F+λ1||Xi||∗+λ2||Ei||1, (1)

where ||Xi||∗ and ||Ei||1 denote the nuclear and l1 norm of
each mode-i unfolding matrices of X and E , respectively.
Effcient methods such as CANDECOMP/PARAFAC (CP)-
decomposition and Tucker decompostion [9] (a.k.a HOSVD)
are used for low-rank decomposition of tensor. In addition,
APG, HORPCA-s based on ADAL and HORPCA-M based on
I-ADAL are also developed in [7] to solve Eq.1. However, as
mentioned above, these methods are based on batch optimiza-
tion and not suitable for scalable data.

In this work, online optimization is considered to solve
Eq.1. The major challenge is the computation of HOSVD be-
cause nuclear norm keeps all the samples tightly and therefore
all samples are accessed during optimization at each iteration.
Therefore, it suffers from high computational complexities. In
constrast, an equivalent nuclear norm is used in this work for
each mode-i unfolding matrices of X , whose rank is upper
bounded as shown in [13] as

||Xi||∗= inf
L∈Rp×r,R∈Rn×r

{
1
2(||Li||2F+||Ri||2F )

s.t. Xi = LiRi
T
}
, (2)

where p denotes the dimension of each sample e.g., width ×
height, n is the number of samples and r is a rank. Eq. 2 shows
that mode-i unfolding matrices of low-rank tensor X can be an
explicit product of each low-dimensional subspace basis L ∈

Rp×r and its coefficients R ∈ Rn×r and this re-formulated
nuclear norm is shown in recent works [4], [13] [14]. Hence,
Eq. 1 is re-formulated by substituting Eq.2 as

(3)
min

X1,...,XN ,L ∈Rp×r,R∈Rn×r,E

1
2

N∑
i =1
||Yi −Xi − Ei||2F +

λ1

2 (||Li||2F + ||Ri||2F ) + λ2||E||1, s.t. Xi = LiRi
T .

For objective function minimization, avoiding the con-
straints in Eq.3 and put Xi = LiRi

T as

min
X1,...,XN ,L∈Rp×r,R∈Rn×r,E

1
2

N∑
i=1
||Yi − LiRT

i − Ei||2F+ (4)

λ1

2 (||Li||2F+||Ri||2F ) + λ2||E||1, (5)

where λ1 and λ2 are regularization parameters for low-rank
and sparsity patterns. E.q 5 is the main equation for stochas-
tic tensor decomposition which is not completely convex with
respect to L and R. However, E.q. 3 is the global optimal so-
lutions to the original optimization problem in E.q. 2 as proved
in [6]. The following cost function is required to optimize for
solving E.q 3 as

fn(L) = 1
n

N∑
i=1

n∑
t=1

l(Yti ,Li) + λ1

2n ||Li||
2
F , (6)

where Yti denotes ith mode of a tensor Y at a time t instance
given by

l(Yti ,L) = min
r,e
||vec(Yti )−Lr−e||22+λ1

2 ||r||
2
2+λ2||e||1. (7)

Finally, the objective function lt(L) for updating the mode-
i basis Li matrix of multidimensional subspace tensor X at a
time t instance is given by

lt(Li) = 1
n

n∑
t=1

{
1
2 ||vec(Y

t
i )− Ltirt − et||22+λ1

2 ||r
t||22

+λ2||et||1
}

+ λ1

2t ||L
t
i||2F , (8)

where rt and et are vectors of coefficient and noise at a time
t for matrix Ri, respectively, and mode-i matrix of sparse
tensor E . The main goal is to minimize the cost function
E.q. 6 through stochastic optimization method as shown in Al-
gorithm 1.

In case of BG modeling, one video frame at a time t is pro-
cessed in an online manners. The coefficient r, sparse matrix
e and basis L are optimized in an iterative way. First, the coef-
ficient r and noise e matrices are estimated with fixed random
basis L by projecting one sample using Eq. 11. This subpro-
plem in step. 6 requires to solve a following small-scale convex
optimization problem at a time instance t as



rt = (LTL + λ1I)−1LT
{
vec(Yti )− et−1} , (9)

et =


Mt(k)− λ2, if Mt(k) > λ2,

Mt(k) + λ2, if Mt(k) < λ2,

0, otherwise,
(10)

where M = vec(Yti ) − Lrt and Mt(k) is the kth element in
M at a time t. Second, the basis Lt is estimated using the
E.q. 14 through minimizing the previously computed coeffi-
cients r and e. These basis Lt for low-dimensional subspace
learning is then updated using Algorithm 2 by the results of r
and e. If the rank r is given and basis L are estimated as above
which is a fully rank, then L converges to the optimal solution
asymptotically as compared to its batch counterpart as shown
in [6].

Finally each ith mode low-dimensional subspace tensor X
is estimated by a multiple of basis L and coefficients R. The
BG sequence is then modeled by low-rank tensor X which
changes at a time instance t, whereas the resulting sparse ten-
sor E is obtained by the matricization of e entries. Finally, a
hard thresholding scheme is applied on a sparse component to
get the binary FG mask for BG/FG separation.

4 Experimental Evaluations

In this section, we present our experimental results in detail.
We first evaluate the proposed algorithm performance on syn-
thetic data then the qualitative and quantitative analysis using
Change Detection (CDnet) [18] and Background Models Chal-
lenge (BMC) [16] dataset for real time BG/FG segmentation is
presented in detail.

4.1 Evaluation on Synthetic Data

The proposed method is first quantitatively tested on syn-
thetic data. For data evaluation, a true low-rank tensor
X of size 30 × 30 × 30 is generated by rank-3 factor
matrices e.g., Zn ∈ R30×3 where n = 1, 2, 3. Each
factor matrix Zn consists of three components such as
[sin( 2πnin

30 ), cos( 2πnin
30 ), sgn(sin(0.5πin))]. The first two

components are different and third one is common in all modes.
A random entries of this low-rank tensorX is corrupted by out-
liers from uniform distribution U(−|H|, |H|) and small noise
N(0, 0.01) is also considered. We use a well known measure
for evaluation called “Root Relative Square Error” (RRSE)

given by ||X̂−X||2||X ||2 , where X̂ is a reconstructed low-rank ten-
sor. We compare our RRSE performance with earlier methods
based on batch optimization processing such as BRTF [19],
CP-ARD [12], CP-ALS [9], HORPCA [7], and HOSVD [7],
respectively. Fig. 3 shows the value of RRSE with results of re-
constructed tensor Ŷ . We consider two cases for robust tensor
recovery for true data generation in Fig. 3. First, the magnitude
is considered within a range of true data as shown in Fig. 3 (a).
However, Fig. 3 (b) shows that the magnitude is taken larger

Algorithm 1 Stochastic Optimization Method
Input: Y ∈ RI1×I2×...×IN .
Initialize: X = E = 0,L ∈ Rp×r(initial basis), r, A ∈ Rr×r,

B ∈ Rp×r, r ∈ Rr, R ∈ Rn×r,e ∈ Rp, Unitary Matrix I,
λ1 = 0.25λ2, and λ2 = 1√

max(size(Y)
.

1: for t = 1 to n do {Access each sample}
2: for i = 1 to N do {each tensor mode}
3: Acess each frame from ith mode of tensor Y by Yti←

unfold(Y)
4: Compute the coefficients r and noise e by projecting

the new sample as

{
rt, st

}
= argmin

1
2 ||Y

t
i − Lt−1r− s||22

+ λ1

2 ||r||
2
2+λ2||s||1. (11)

5: R(:, t) ← rt. Compute the accumulation matrices
At and Bt for each ith mode

At ← At−1 + rrT , (12)

Bt ← Bt−1 + (Yti − st)rT . (13)

6: Compute Lt with previous iteration Lt−1 and update
the basis using Algorithm. 2

Lt = argmin
1
2Tr[L

T (At + λ1I)L]− Tr(LTBt).
(14)

7: Lti ← LRT (low-dimensional subspace for each un-
fold ith mode)

8: vec(Eti )← et (sparse error)
9: end for

10: end for

Output: X = 1
N

N∑
i=1
Xi, E =

N∑
i=1
Ei.

for corrupting some entries in true low-rank . In each case, the
proposed method outperforms with previous HORPCA meth-
ods. However, it shows a comparative performance to its batch
counter-part such as BRTF. The proposed scheme processes
one frame per time instance and achieve almost a real-time pro-
cessing, whereas BRTF is based on batch optimization strategy
and hence it is not applicable for processing high dimensional
data.

4.2 Evaluation on CDnet and BMC Dataset for BS

We have also evaluated our method for robust BS using syn-
thetic and real videos of BMC and CDnet dataset. Due to the
space limitations, we only present 5 selected synthetic videos
of BMC dataset for qualitative analysis. The image size of
each video sequence is 640 × 480 and half of the resolution is
used. Both grayscale and color videos are evaluated. The size
of grayscale input tensor Y is 320×240×200 with 200 frames



(a) (b)

Figure 3. Performance of reconstructed low-rank tensor,
(a) O=max(vec(X )), and (b) O=10.std(vec(X )).

Algorithm 2 Basis Update
Input: L = [l1, ..., lr] ∈ Rp×r, A = [a1, ...,ar] ∈ Rr×r,

B = [m1, ...,mr] ∈ Rp×r, Ã← A + λ1I.
1: for j = 1 to r do {access each column of L}
2: Update each column of basis matrix L

(15)lj ←
1

Ãj,j

(bj − Lãj) + lj

3: end for
4: return L (Updated basis for ith mode)

and color video frame tensor as 320× 240× 3. Stochastic ten-
sor decomposition is applied on each video frame to separate
X and E component. The value of rank r = 10 in Eq. 5 above.
Additionally, median filtering is applied as a post-processing
step to filter binary mask for morphological smoothing. Fig. 4
(i)-(m) shows the visual results of synthetic sequences from
Street and Rotary category of BMC dataset [16].

From CDnet dataset [18], 8 real videos from category Base-
line and Thermal are tested to validate the proposed scheme.
The resolution of each sequence is 320 × 240 × 3 and only
color videos are tested. So the size of input tensor Y is
320×240×3×n, where n is the number of input video frames
and it varies from 500 to 4, 000 according to the sequences pre-
sented in CDnet dataset. The Thermal category contains real
videos under increasing percentage of practical camera noise.
Fig. 4 (a)-(h) depicts the visual results on 8 real videos selected
from Baseline and Thermal category.

The proposed scheme is also evaluated for quantitative
analysis. A well known F − measure metric is computed
as F = 2×Recall×Precision

Recall+Precision by comparing our results with
available corresponding ground truth images. Table 1 shows
that our proposed method is the top performer as compared to
earlier batch optimization based algorithms. The “-” line in
table 1 means that these methods are not applicable to large
scale videos (n > 500) due to the batch optimization methods.
Computational complexity is also observed during our experi-
ments. Time is recorded in CPU time as [hh : mm : ss] and
table 2 shows the computational time of each method for first
100 frames with varying image resolution. All the experiments
are conducted in Matlab R2013a with 3.40 GHz Intel core i5
processor with 4 GB RAM. These all robust experimental eval-
uations are the consequences of our proposed scheme.

Method HORPCA CP-ALS BRTF OTD
160× 120 00:01:35 00:00:40 00:00:22 00:00:04
320× 240 00:04:56 00:02:09 00:03:50 00:00:12

Table 2. Computational time according to different image res-
olutions.

5 Conclusion

In this paper, we proposed stochastic tensor decomposition for
robust BS application. Experimental results show that we have
achieved almost a real time processing since one frame is pro-
cessed according to online optimization scheme. The coeffi-
cients and noise matrix are obtained using randomized basis
then the basis is updated which is very robust against gross out-
liers. However, we have not integrated any robust features nei-
ther we applied this idea on highly dynamic BG scenes. There-
fore, we will extend this work by fusing robust features such
as disparity and texture information for more robust FG detec-
tion. Moreover, this idea can be used for other computer vision
tasks such as online tracking using low-rank sparse tensor as a
tracker.
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