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Abstract

Verifying an identity claim by fingerprint recognition is a common-
place experience for millions of people in their daily life, e.g. for un-
locking a tablet computer or smartphone. The first processing step after
fingerprint image acquisition is segmentation, i.e. dividing a fingerprint
image into a foreground region which contains the relevant features for
the comparison algorithm, and a background region. We propose a novel
segmentation method by global three-part decomposition (G3PD). Based
on global variational analysis, the G3PD method decomposes a finger-
print image into cartoon, texture and noise parts. After decomposition,
the foreground region is obtained from the non-zero coefficients in the
texture image using morphological processing. The segmentation perfor-
mance of the G3PD method is compared to five state-of-the-art methods
on a benchmark which comprises manually marked ground truth segmen-
tation for 10560 images. Performance evaluations show that the G3PD
method consistently outperforms existing methods in terms of segmenta-
tion accuracy.

1 Introduction

Fingerprint verification is a widely used authentication method in commercial
applications and most fingerprint verification systems rely on minutiae for com-
paring two fingerprints. Typical steps of fingerprint image processing [1] include
segmentation, orientation field estimation [2], image enhancement by contextual
filtering [3, 4] and minutiae extraction. Additionally, many systems include
nowadays a software-based liveness detection module which can e.g. be based
on histograms of invariant gradients [5] as a countermeasure against so-called
spoof attacks. In this paper, we focus on the fingerprint image segmentation step
and we propose a global three-part decomposition (G3PD) method to achieve
an accurate extraction of the foreground region.
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1.1 Global three-part decomposition (G3PD) method

Our proposed method is based on the paradigm that a fingerprint image can be
considered as a composition of three components: texture, homogeneous parts
and small scale objects. The G3PD method aims to decompose a fingerprint
image into the corresponding three parts:

• Texture image: By texture we refer to the fact that fingerprint images
are highly determined by their oriented patterns which have frequencies
only in a specific band in the Fourier spectrum, see [6].

• Cartoon image: The homogeneous regions correspond to the lower fre-
quency response.

• Noise image: Small scale objects staying in the higher frequency band
are considered as noise, e.g. black dots with random position and intensity.

For the purpose of fingerprint segmentation, we are only interested in the tex-
ture image as a feature for segmentation. After the decomposition, the cartoon
and noise images are ignored. Therefore, the decomposition can be considered
as a feature extraction step which has the goal to estimate the best possible
texture image for a given input image. Subsequently, the region of interest
(ROI) is obtained by morphological operations on the non-zero coefficients in
the extracted texture image, see Figure 1. In order to achieve these goals, we
propose a model for three-part decomposition with variational based methods
as described below. The G3PD method follows the same philosophy of texture
image extraction as the Fourier based FDB method [6], but regards the problem
from a different point of view and solves it by a variational approach.

Proposed variational model for G3PD Decomposition techniques are at
the core of variational methods. Decomposition is performed by finding the
solution of a convex minimisation problem. Inspired by this idea, we propose
a novel model for global three-part decomposition which has five ingredients:
(1) Cartoon: Piecewise constant regions are measured by the anisotropic total
variation (TV) norm [7]. (2) Texture: The sparsity of the texture pattern is
measured by the `1 norm which is well-known to enhance the sparseness of the
solution. (3) Texture: The smoothness of the texture image is enforced by
the `1 norm of the curvelet coefficients. (4) Noise: Noise is measured by the
supremum norm of its curvelet coefficients. (5) Reconstruction constraint:
Finally, the constraint f = u+v+ε ensures that the sum of the three component
images reconstructs the original image f . Empirically, we have found that
the curvelets capture the geometry of fingerprint patterns better than classical
wavelets, see Section 2.1.4.

The combination of the decomposition and morphology in our proposed
G3PD method yields segmentation performance superior to existing segmen-
tation methods.
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Figure 1: Overview over the segmentation by the G3PD method: Firstly, the original
image f is decomposed into cartoon image u, texture image v and noise image ε. Sec-
ondly, the texture image v is binarized by separating zero from non-zero coefficients
and the foreground regoin is obtained by morphological operations. In order to evalu-
ate the segmentation performance, the estimated ROI (second row, second column) is
compared to manually marked ground truth segmentation (second row, first column).
Note that the cartoon image u and noise image ε contain also texture parts but this
choice of parameters leads to a better segmentation performance as demonstrated in
evaluations on a benchmark with 10560 images, see Section 3.

Performance Evaluation and Comparison to Existing Methods We
conduct a systematic performance comparison of our proposed G3PD method
with five state-of-the-art fingerprint segmentation methods. The segmenta-
tion accuracy of all methods is measured on a manually marked ground truth
database containing 10560 images [6]. A detailed description of the evaluation
benchmark, training and test protocols, and experimental results is given in
Section 3. The five methods in the comparison are: a method based on mean
and variance of grey level intensities and the coherence of gradients as features
and a neural network as a classifier [8], a method using Gabor filter bank re-
sponses [9], a Harris corner response based method [10], an approach using local
Fourier analysis [11] and the factorized directional bandpass method [6].

1.2 Related Work

With more than hundred methods, we refer the reader to [6] for an overview
over the literature of fingerprint segmentation methods. For image segmentation
in general, there is a plethora of approaches to solve this problem. These are
based e.g. on the intensity of pixels [12], [13], [14], or the evolution of curves for
piecewise smooth regions in images [15], [16], [17], [18]. Texture segmentation,

3



however, is still an open problem, because intensity values are inadequate, e.g.
for segmenting fingerprint patterns. Methods based on texture descriptors [19],
[20] or finding other meaningful features in an observed image for classification
have been suggested.

Based on the classical Rudin-Osher-Fatemi (ROF) model [21], researchers
have proposed numerous approaches in which the regularisation and fidelity
terms are considered under different functional spaces, such as Besov, Hilbert
and Banach spaces [22], [23], [24], [25], [26], [27]. Further image denoising
approaches use higher-order derivatives instead of total variation for minimi-
sation [28], [29], mean curvature [30], Euler’s elastica [31], and total variation
of the first and second order derivatives [32], and higher-order PDEs for diffu-
sion solved by directional operator splitting schemes [33]. In particular, many
signals have sparse or nearly-sparse representations in some transform domain
corresponding to `0 or its regularisation `1 [34], [35], [36], [37], [38]. Aujol and
Chambolle [39] introduced a model for three-part decomposition which yields
a texture image v using the G-norm. An improvement of the G3PD model in
comparison to their work is especially the texture image extraction by enforcing
smoothness and sparsity on the texture image v. To solve the constrained min-
imisation problems, various techniques have been suggested such as Chambolle’s
projection [40], splitting Bregman method [7], iterative shrinkage/thresholding
(IST) algorithms [41], [42], [43]. Wu et al. [44] has proved the equivalence
between augmented Lagrangian method (ALM), dual methods, and split Breg-
man iteration. We have adopted ALM into our approach to solve the proposed
constrained minimisation problem. [45], [46] and [47] show that the shrinkage
operator of multiresolution analysis is the solution of a variational problem when
considering signals in Besov space, i.e. Bαp,q, relating to wavelet coefficients. In
this paper, we focus on the curvelet transform [48], [49], [50], [51] which is very
suitable for fingerprint patterns with oriented and curved lines. However, one
can easily adopt our approach for the shearlet transform [52], the contourlet
transform [53], or the steerable wavelet transform [54].

There are many difficulties relating to the choices of the parameters for
decomposition and minimisation steps in all aforementioned approaches which
ensure the convergence of the algorithm and extract enough texture for segmen-
tation under the various situations, such as different illumination, noise, and
ghost fingerprints (see Figure 2 for an illustration). To solve these problems is
still a challenge in practice.

1.3 Setup of the paper

The organisation of the paper is as follows. In Section 2, we give a detailed de-
scription of the G3PD method in two main steps: first, texture image extraction
is treated in Section 2.1, followed by morphological operations in Section 2.2,
see Figure 1. To this end, we introduce the G3PD model in Section 2.1.1 which
defines the objective function as a constrained minimisation problem for the
decomposition of an image into three parts: cartoon, texture and noise images.
Next, in Section 2.1.2 we apply the augmented Langrangian method to refor-
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(a) (b) (c)

Figure 2: Typical difficulties for segmentation encountered in fingerprint anal-
ysis. (a) Small scale objects and noise on the sensor. (b) Ghost fingerprint. (c)
Image with illumination differences.

mulate the constrained minimisation into an unconstraint one. Subsequently,
this unconstrained minimisation problem is solved by the alternating direction
method of multipliers (ADMM) in Section 2.1.3. The smoothness and sparsity
of the obtained texture image as a feature for segmentation is discussed in Sec-
tion 2.1.4. In Section 2.2, we specify how to obtain the ROI from the texture
image by morphological operations. In Section 3 we describe the evaluation
benchmark, the training and test protocols, and experimental results. Finally,
in Section 4 we discuss the results of the evaluation and we give conclusions.
Additional figures and detailed calculations can be found in [55].

2 The G3PD Method for Fingerprint Segmen-
tation

This section describes the G3PD method which consists of two main parts: in
the following Section 2.1, we introduce a model for three-part decomposition
into cartoon, texture and noise images. Next, we formalize the constrained
minimisation problem and we discuss the ALM for solving it. In Section 2.2, we
utilize the obtained texture image as our feature to perform the segmentation
by morphological operations.

2.1 Fingerprint Texture Extraction

2.1.1 The G3PD Model

As argued before, the fingerprint f is considered as a composition of a homoge-
neous region u, repeated patterns v staying in a frequency range in the Fourier
domain and corrupted by certain random noise ε. Fundamental for our analysis
is that we assume that the fingerprint pattern is sparse in the Fourier domain as
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the ridge lines form an oscillating signal at essentially one frequency, locally. A
two-dimensional image f : Ω→ R+ is specified on the lattice with size N1×N2:

Ω =
{
k = (k1, k2) ∈

{
0, N1 − 1

}
×
{

0, N2 − 1
}
⊂ N2

}
,

We assume that

f [k] = u[k] + v[k] + ε[k], ∀k ∈ Ω,

where f ,u,v and ε are in matrix form, i.e. f =
[
f [k]

]
k∈Ω

.

The space B1
1,1 relating to the `1 norm of the wavelet coefficients (cf. [46]),

i.e. ‖v‖B1
1,1

=
∥∥W{v}∥∥

`1
, is very suitable to measure the smoothness of the

oscillation signals. However, due to a set of highly curved lines in the fingerprint
patterns, the `1 norm of curvelet coefficients is considered instead to capture
their curvature in texture v. Let C{v} =

[
Ci,l{v}[k]

]
(i,l,k)∈I denote the discrete

curvelet transform of v in i different scales and l orientations at positions k
contained in the index set I. The `1 norm of its curvelet coefficients is

∥∥C{v}∥∥
`1
.

In order to get the sparse texture v in the spatial domain, the `1 norm is
adopted. In conclusion, the norms {

∥∥C{v}∥∥
`1

+‖v‖`1} are considered to extract
the fingerprint patterns. Then, the bounded variation space with the discrete
TV-norm, i.e. J(u) =‖∇du‖`1 (cf. [39] for the definition of the discrete gradient
operator ∇d), is well-known to measure the roughness of a piecewise constant
image u [21]. Finally, the residual ε is measured by the supremum norm of its
curvelet coefficients , i.e.∥∥C{ε}∥∥

`∞
= sup
i,l,k∈I

∣∣Ci,l{ε}[k]
∣∣ .

Thus, the constraint of the minimisation is defined via the supremum norm
of the curvelet coefficients of the residual, i.e.

∥∥C{f − u− v}∥∥
`∞

, being less than
a threshold δ. In summary, the variational solution we advocate for separating
a fingerprint into texture, cartoon and noise in the Euclidean space X whose
dimension is given by the size of the lattice Ω, i.e. X = R|Ω|, is defined as

(ū, v̄) = argmin
(u,v)∈X2

{
‖∇du‖`1+µ1

∥∥C{v}∥∥
`1

+µ2‖v‖`1 s.t. sup
i,l,k∈I

∣∣Ci,l{f − u− v}[k]
∣∣︸ ︷︷ ︸

= ‖C{f−u−v}‖
`∞

≤ δ
}
.

(1)
Note that the form of (1) is analogous to the statistical multiresolution estimator
in [56] where the nonlinear transformation is the absolute value of the curvelet
coefficients, i.e. Λ(·) =

∣∣C{·}∣∣, the length of subsets |S| = 1 and the weight-
function ωS = 1. The main difference is that our model has two variables
(u ,v). With the residual ε = f − u − v, the constrained minimisation (1) is
rewritten as

(ū, v̄, ε̄) = argmin
(u,v,ε)∈X3

{
‖∇du‖`1 + µ1

∥∥C{v}∥∥
`1

+ µ2‖v‖`1 s.t.
∥∥C{ε}∥∥

`∞
≤ δ ,f = u+ v + ε

}
.

(2)
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Given δ > 0, denote G∗
(
ε
δ

)
as the indicator function on the feasible convex set

S(δ) of (2), i.e.

S(δ) =

{
ε ∈ X |

∥∥C{ε}∥∥
`∞
≤ δ
}

and G∗
(
ε

δ

)
=

{
0, ε ∈ S(δ)

+∞, ε ∈ X\S(δ).

By changing the inequality constraint into the indicator function G∗
(
ε
δ

)
, (2) is

rewritten as a convex minimisation of four convex functions and one equality
constraint:

(ū, v̄, ε̄) = argmin
(u,v,ε)∈X3

{
‖∇du‖`1 + µ1

∥∥C{v}∥∥
`1

+ µ2‖v‖`1 +G∗
(
ε

δ

)
s.t. f = u+ v + ε

}
.

(3)
The original image f is therefore decomposed into the piecewise constant image
u, the texture v and the small scale objects modeling as noise ε by minimizing
the objective function (3).

2.1.2 Augmented Lagrangian Method to Reformulate the Constrained
Minimisation Problem in Equation (3)

There are different kinds of norms in (3). In order to simplify the calculation,
we introduce new variablesp = ∇du =

[
p1 ,p2

]T
w =

[
wi,l

]
(i,l)∈I = C{v}.

Then, (3) becomes a constrained minimisation and we apply the ALM. Given
space Y = X × X, the augmented Lagrangian function of (3) with the three
Lagrange multipliers (λ1 ,λ2 ,λ3) is defined as

(u∗ ,v∗ , ε∗ ,w∗ ,p∗) = argmin
u,v,ε,w,p∈X3×R|I|×Y

L(u ,v , ε ,w ,p;λ1 ,λ2 ,λ3) ,

(4)
where

L(u,v, ε,w,p;λ1,λ2,λ3) = ‖p‖`1 + µ1‖w‖`1 + µ2‖v‖`1 +G∗
(
ε

δ

)
+
β1

2

∥∥∥∥p−∇du+
λ1

β1

∥∥∥∥2

`2

+
β2

2

∥∥∥∥w − C{v}+
λ2

β2

∥∥∥∥2

`2

+
β3

2

∥∥∥∥f − u− v − ε+
λ3

β3

∥∥∥∥2

`2

.

The minimizer of (4) is numerically computed through iterations n = 1 , 2 , . . .(
u(n) ,v(n) , ε(n) ,w(n) ,p(n)

)
= argmin

u,v,ε,w,p∈X3×R|I|×Y
L(u ,v , ε ,w ,p;λ

(n−1)
1 ,λ

(n−1)
2 ,λ

(n−1)
3 )

(5)

7



and the Lagrange multipliers are updated after every step n with a rate γ and

the initial values λ
(0)
1 = λ

(0)
2 = λ

(0)
3 = 0:

λ
(n)
1 = λ

(n−1)
1 + γβ1(p(n) −∇du

(n))

λ
(n)
2 = λ

(n−1)
2 + γβ2(w(n) − C{v(n)})

λ
(n)
3 = λ

(n−1)
3 + γβ3(f − u(n) − v(n) − ε(n))

.

As the number of iterations n goes to infinity, we obtain the true solution of (5).
However, to reduce the computational time in practice, we stop after a small
number of iterations. Hence, we gain an approximated solution (cf. Algorithm
1).

Algorithm 1 Augmented Lagrangian method (ALM) for the approximated
solution of (4)

Initialisation: u(0) = v(0) = ε(0) = p(0) = w(0) = λ
(0)
1 = λ

(0)
2 = λ

(0)
3 = 0

for n = 1 to N do
1. Compute the approximated solution

(
u(n),v(n), ε(n),w(n),p(n)

)
:(

u(n),v(n), ε(n),w(n),p(n)
)

= argmin
u,v,ε,w,p

L(u,v, ε,w,p;λ
(n−1)
1 ,λ

(n−1)
2 ,λ

(n−1)
3 )

(6)

2. Update Lagrange multipliers
(
λ

(n)
1 ,λ

(n)
2 ,λ

(n)
3

)
:

λ
(n)
1 = λ

(n−1)
1 + γβ1(p(n) −∇du

(n))

λ
(n)
2 = λ

(n−1)
2 + γβ2(w(n) − C{v(n)})

λ
(n)
3 = λ

(n−1)
3 + γβ3(f − u(n) − v(n) − ε(n))

(7)

end for

In the following part, we describe the algorithm to solve the minimisation
problem (6) by the alternating direction method of multipliers (ADMM).

2.1.3 Alternating direction method of multipliers and numerical im-
plementation

Similarly to [31], [29], [44], [57], [28], [30], this section describes the procedure
how to solve the minimisation (6) and the method to discretize the solution.

The solution of (6) is determined by alternatively minimizing the objective
function with respect to u while fixing v, ε,p,w, and vice versa. Thus, we need
to solve five subproblems denoted as ”w-subproblem”, ”p-subproblem”, ”v-
subproblem”, ”ε-subproblem”, ”u-subproblem” as in Algorithm 2. The iterative
scheme is as follows
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Algorithm 2 Alternating direction method of multipliers (ADMM) for (6)

Fix Lagrange multipliers λ1 = λ
(n−1)
1 ,λ2 = λ

(n−1)
2 and λ3 = λ

(n−1)
3 , then

alternatively solve the following sub-problems:

• ”u-problem”: u(n) = argmin
u∈X

L(u,v(n−1), ε(n−1),p(n−1),w(n−1); λ1,λ2,λ3)

• ”v-problem”: v(n) = argmin
v∈X

L(u(n),v, ε(n−1),p(n−1),w(n−1); λ1,λ2,λ3)

• ”ε-problem”: ε(n) = argmin
ε∈X

L(u(n),v(n), ε,p(n−1),w(n−1); λ1,λ2,λ3)

• ”p-problem”: p(n) = argmin
p∈Y

L(u(n),v(n), ε(n),p,w(n−1); λ1,λ2,λ3)

• ”w-problem”: w(n) = argmin
w∈R|I|

L(u(n),v(n), ε(n),p(n),w; λ1,λ2,λ3)

“p-subproblem”: Fix u,v, ε,w and

min
p∈Y

{
‖p‖`1 +

β1

2

∥∥∥∥p−∇du+
λ1

β1

∥∥∥∥2

`2

}
(8)

Let ∇d = [∂+
1 , ∂

+
2 ] be the forward gradient operator [39]. The anisotropic

version of (8) is solved by

p̃1 = Shrink

(
∂+

1 u−
λ1,1

β1
,

1

β1

)
and p̃2 = Shrink

(
∂+

2 u−
λ1,2

β1
,

1

β1

)
,

(9)

where the shrinkage operator is defined as

Shrink
(
x , α

)
:=

x

|x|
·max

(
|x| − α , 0

)
.

“w-subproblem”: Fix u,v, ε,p and

min
w∈R|I|

{
µ1‖w‖`1 +

β2

2

∥∥∥∥w − C{v}+
λ2

β2

∥∥∥∥2

`2

}
(10)

The solution of (10) at the scale i and the orientation l is

w̃i,l = Shrink

(
C{v} − λ2,i,l

β2
,
µ1

β2

)
, i, l ∈ I. (11)

“v-problem”: Fix u, ε,p,w and

min
v∈X

{
µ2‖v‖`1 +

β2

2

∥∥∥∥w − C{v}+
λ2

β2

∥∥∥∥2

`2

+
β3

2

∥∥∥∥f − u− v − ε+
λ3

β3

∥∥∥∥2

`2

}
(12)
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This (12) is solved by

ṽ = Shrink

(
A,

µ2

β2 + β3

)
, (13)

with

A =
C∗
{
β2w + λ2

}
+ β3(f − u− ε+ λ3

β3
)

β2 + β3
. (14)

“ε-problem”: Fix u,v,p,w and

min
ε∈X

G∗
(
ε

δ

)
+
β3

2

∥∥∥∥∥ε−
(
f − u− v +

λ3

β3

)∥∥∥∥∥
2

`2

 (15)

This (15) is solved by (the proof is similar to [39])

ε̃ =

(
f − u− v +

λ3

β3

)
− CST

(
f − u− v +

λ3

β3
, δ

)
, (16)

with the curvelet soft-thresholding: CST(x , α) := C∗
{

Shrink(C{x} , α)
}
.

“u-problem”: Fix v,p, ε,w and

min
u∈X

{
β1

2

∥∥∥∥p−∇du+
λ1

β1

∥∥∥∥2

`2

+
β3

2

∥∥∥∥f − u− v − ε+
λ3

β3

∥∥∥∥2

`2

}
(17)

Given the discrete finite frequency coordinates ω = [ω1 , ω2] ∈ [−π , π]2 and
let F

(
ejω
)
, V
(
ejω
)
, E

(
ejω
)
,Λ3

(
ejω
)
, P1

(
ejω
)
, P2

(
ejω
)

and Λ1

(
ejω
)

be the
discrete Fourier transform of f [k] , v[k] , ε[k] , λ3[k] , p1[k] , p2[k] and λ1[k], re-
spectively. This (17) is solved by

ũ = Re
[
F−1

{ D
(
ejω
)

β3 + 4β1

[
sin2(ω1

2 ) + sin2(ω2

2 )
]}],

with

D
(
ejω
)

= β3

[
F
(
ejω
)
− V

(
ejω
)
− E

(
ejω
)

+
Λ3

(
ejω
)

β3

]
− β1

[(
1− e−jω1

)(
P1

(
ejω
)

+
Λ1,1

(
ejω
)

β1

)
+
(
1− e−jω2

)(
P2

(
ejω
)

+
Λ1,2

(
ejω
)

β1

)]
.

The updated Lagrange multiplier λ
(n)
1 , λ

(n)
2 and λ

(n)
3 in (7) are

λ
(n)
1,1 = λ

(n−1)
1,1 + γβ1

(
p̃

(n)
1 − ∂+

1 ũ
(n)
)
,

λ
(n)
1,2 = λ

(n−1)
1,2 + γβ1

(
p̃

(n)
2 − ∂+

2 ũ
(n)
)
,

λ
(n)
2,i,l = λ

(n−1)
2,i,l + γβ2

(
w̃

(n)
i,l − Ci,l{ṽ

(n)}
)
,

λ
(n)
3 = λ

(n−1)
3 + γβ3

(
f − ũ(n) − ṽ(n) − ε̃(n)

)
.
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For a given γ in Algorithm 1, the solution of (3) is obtained by applying
alternatively the above formulas in the subproblems. This is a convex program
with the alternating minimisation procedure. However, the choice of parameters
(µ1, µ2, δ) and (β1, β2, β3) affects on the solution. Since the texture information
is an essential feature for the segmentation process, the parameter µ1 and µ2 are
important, especially µ2 controls the sparsity of the fingerprint texture. In this
context, µ2 is adaptively designed to cancel (β2 + β3) in the shrinkage operator
(13), it depends only on the maximum of A and the constant C, as follows

µ2 = C(β2 + β3) ·max
k∈Ω

(A[k]), (18)

where A[k] is defined in (14). Since the fingerprint images are captured by
various kinds of sensors, their properties and qualities differ. Therefore, C is
obtained empirically from training sets for each type of sensor.

The parameter δ is used to remove the small scale objects (noise). In order
to reduce these kinds of noise in v such that v contains mainly fingerprint
pattern as good as possible (cf. Figure 1), we simply approximate these noise as
Gaussian. See [58] for a combination of multiple noise models, e.g. considering
Gaussian, Poisson and impulse noise, simultaneously. According to the extreme
value behavior of the curvelet coefficients (cf. [59]), the threshold δ is chosen
with the quantile α = 0.7 from the asymptotic distribution as

δ = σ
√

2 log|I|+ σ
2z − log log|I| − log π

2
√

2 log|I|
and z = − log log

( 1

1− α
)
, (19)

where |I| is total number of curvelet coefficients and σ is commonly calcu-
lated from the first level of the Cohen-Daubechies-Feauveau 9/7 wavelet high-
frequency diagonal coefficient (HH1) (cf. [60]):

σ =
median( |HH1| )

0.6745
.

Note that this approximation depends on the normality assumption of the noise,
which may not always be true in practice. This can be adapted to different noise
models as in general the threshold can always be obtained via simulation.

2.1.4 Smoothness and Sparsity of the Extracted Texture

The oscillation signal corresponding to fingerprint patterns is considered as a
sparse and smooth texture which is decomposed by the G3PD model of the
original fingerprint image f into three parts satisfying the constraint f = u +
v + ε (cf. Figure 3), including: the piecewise-constant image u, the texture v,
and noise ε.

In this section, we will analyze how the norms
∥∥C{v}∥∥

`1
and ‖v‖`1 in (3)

affect on the smoothness and sparsity of the extracted texture which is our
main goal for the feature extraction. In order to do that, a closed form of v is
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(a) f (b) F (ejω) (c) u (d) v

(e) ε (f) U(ejω) (g) V (ejω) (h) E(ejω)

Figure 3: A fingerprint image and its Fourier spectrum are shown in (a) and (b),
respectively. Image (a) is decomposed by G3PD with µ1 = 1, iteration = 20, level
= 5, β1 = 0.06 , β2 = β3 = γ = 10−3 into cartoon (c), texture (d) and noise (e)
images. Their respective Fourier spectra are visualized in (f-h). We observe that the
Fourier spectra of the component images resemble responses after lowpass, bandpass
and highpass filtering. Please note that especially (d) and (g) show that the fingerprint
pattern is mostly concentrated in a specific range of frequencies [6].

found by putting (11) and (14) into (13), letting θ = β2

β2+β3
and the thresholds

T1 = µ1

β2
and T2 = µ2

β2+β3
:

ṽ = Shrink

(
θ C∗

{
Shrink

(
C{v} − λ2

β2
, T1

)
+
λ2

β2

}
︸ ︷︷ ︸

:= vsmooth ≈ CST
(
v , T1

)
+ (1−θ)

(
f − u− ε+

λ3

β3

)
︸ ︷︷ ︸

:= vupdate

, T2

)
.

(20)
We see that the estimated texture ṽ contains two shrinkage operators: respec-
tively, the inside and the outside correspond to the smoothness and sparseness
terms resulting from ‖Cv‖`1 and ‖v‖`1 in (3). (cf. Figure 4 for the effects of the
smoothness and sparseness of v after different numbers of iterations). These
effects can be observed in the binarised texture (Figure 4 (f)). The parameter
θ ∈ (0 , 1) in (20) serves as a regularisation parameter to balance between the
smoothing term vsmooth and the updated term vupdate.

Figure 5 compares the effect of the curvelet smoothness term
∥∥C{v}∥∥

`1
in (1)

with a wavelet smoothness term
∥∥W{v}∥∥

`1
and without smoothness measure-

ment. The texture v estimated using
∥∥W{v}∥∥

`1
in (1) is not as good regarding
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(a) (b) k = 3 (c) k = 6 (d) k = 8 (e) k = 20

(f) (g) (h) (i) (j)

Figure 4: Image (a) depicts the original image where the yellow line indicates the
boundary of the ROI estimated by the G3PD method after 20 iterations. The ROI
is obtained using morphological operations on the binarized image (f). Images (b-e)
show vsmooth in (20), the smoothing term of v and (g-j) visualize the corresponding
vupdate in (20) after k iterations.

smoothness and sparseness as the texture obtained by the curvelet smoothness
term. In order to evaluate the convergence rate of the algorithm, we denote the
relative error between successive iterations as

Err(n)
v =

∥∥∥v(n) − v(n−1)
∥∥∥
`2∥∥v(n−1)

∥∥
`2

. (21)

In Figure 5, one can see that without smoothness measurement, the convergence
rate is slow (cf. 3rd row) and the algorithm tends to eliminate texture (cf.
column 3 and 4). Note that for the smoothness measurement

∥∥C{v}∥∥
`1

, the
proposed method achieves a stable estimated texture v after circa 20 iterations.
Hence, the estimated v and its binarisation are almost the same after 20 or 50
iterations (see Figure 4 (f) and 1st column of Figure 5).

2.2 Morphological Operations

Firstly, the smooth and sparse texture v is extracted by the combination of the
`1 norm of its curvelet coefficients and its `1 norms, simultaneously. Secondly,
post-processing as described in [6] is applied to obtain the ROI. More specifically,
the morphological operations act only on the non-zero coefficients of the texture
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image v. In other words, this corresponds to a projection of the thresholding
value to the parameter µ2 which has been designed to adapt to the intensity of
each image by Eq. (18).

3 Evaluation: Benchmark, Protocol and Exper-
imental Results

3.1 Benchmark and Evaluation Metric

The publicly available fingerprint images of the FVC competitions from 2000,
2002 and 2004 are used as benchmark for evaluating segmentation performance.
Each competition consists of four databases: three databases are acquired from
real fingers and the fourth database of each competition is synthetically gener-
ated.

It has recently been shown that real and synthetic fingerprints can be dis-
criminated with very high accuracy using minutiae histograms (MHs) [61]. More
specifically, by computing the MH for a minutiae template and then computing
the earth mover’s distance (EMD) [62] between the MH of the template and the
mean MHs for a set of real and synthetic fingerprints. Classification is simply
performed by choosing the class with the smaller EMD.

In total, there are 12 databases and each database contains 880 images (80
for training and 800 for testing). The ground truth segmentation has been
manually marked for these 10560 images as described in [6].

Let N1 and N2 be the width and height of image f in pixels. Let Mf

be number of pixels which are marked as foreground by human experts and
estimated as background by an algorithm (missed/misclassified foreground).
Let Mb be number of pixels which are marked as background by human experts
and estimated as foreground by an algorithm (missed/misclassified background).
The average total error per image is defined as

Err =
Mf +Mb

N1 ×N2
. (22)

3.2 Parameter Selection

Parameters for all methods considered in the comparison are selected on the
training set of 80 images for each database. More specifically, those parame-
ters are chosen which minimize the segmentation error defined in (22) for the
respective training set. Choosing the parameters for each database is appropri-
ate, because the nine databases consisting of real fingerprints have been acquired
using nine different sensors and the images of each database have sensor-specific
properties. The parameter selection for the FDB [6], GFB [9], HCR [10], MVC
[8] and STFT [11] methods are discussed in [6].

For the proposed G3PD method, the involved parameters are summarized
in Table 1 and the values of the learned parameters are reported in Table 2. In
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Parameters Description
N the number of iterations in the Algorithm 1.
µ1 the regularised parameter for `1 norm of curvelet coefficients C{v}

in Eq. (2).
C the adaptive constant in Eq. (18) for the regularised parameter µ2

in `1 norm of v in Eq. (2).
β1 , β2 , β3 the parameters in the augmented Lagrangian function (4).

γ the rate of the updated Lagrange multipliers in Eq. (4).
s the window size of the block in the postprocessing step in [6, Eq. (8)].
t a constant for selecting the morphology threshold T in [6, Eq. (8)].
b the number of the neighbouring blocks in [6, Eq. (8)].
p the mirror boundary condition to avoid the boundary effect.

Table 1: Overview over all parameters for the global three-part decomposition
(G3PD) method for fingerprint segmentation. Values are reported in Table 2.

FVC DB C β2

2000 1 0.045 0.0005
2 0.045 0.0100
3 0.055 0.0010
4 0.025 0.0010

2002 1 0.020 0.0010
2 0.035 0.0005
3 0.070 0.0010
4 0.020 0.0500

2004 1 0.015 0.1000
2 0.025 0.0010
3 0.035 0.0010
4 0.035 0.0005

Table 2: Overview over the parameters learned on the training set. The other
eight parameters are µ1 = 1, β1 = β3 = γ = 10−3, s = 9, t = 5, b = 6 and
p = 15 for all databases.
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a reasonable amount of time, a number of conceivable parameter combinations
were tried on the training set.

For different numbers of iterations, we have applied the following training
scheme:

• Firstly, C, an adaptive constant for µ2 in (18) to define a threshold for
the sparseness of v, is trained while fixing the other parameters.

• Secondly, with the obtained C, we train the other parameters one by one
while fixing the rest.

The two parameters which have the biggest impact on the segmentation
performance are the number of iterations N and the constant C in Eq. (18).
Therefore, these two parameters have been trained first. In our experiments, the
minimum error on the training set averaged over all 12 databases is obtained
for N = 4 iterations. In these practical applications of our proposed model,
stopping before convergence leads to better segmentation results which are also
influenced by the combination with the morphological operations. For further
details and a discussion, see [55].

Note that the solution of (u ,v , ε) depends severely on the choices of (µ1 , µ2 , δ),
as well as the parameters of the optimisation step (β1 , β2 , β3 , γ). To achieve a
good decomposition in which cartoon, texture and noise are separated is difficult
in practice, because there are no models of noise and texture. Fortunately, this
paper focuses on the segmentation of fingerprint images for which the texture
v is important. After the decomposition, there can still be pattern contents in
the cartoon image u and the noise image ε (see Figure 1), but the important
aspect is that the texture image v is adequate for segmentation.

The choice of aforementioned parameters balances the amount of pattern in
the texture image with the smoothness of the cartoon image. Selecting param-
eters which increase the smoothness of the cartoon image u, also tend to cause
the halo effect in the texture image v. We observe that especially β1 influences
this trade-off: if u contains only homogeneous regions (cf. Figure 3 (c)), it
tends to generate the halo effect on the boundary of fingerprint pattern in v (cf.
Figure 3 (d)). Particularly, the halo effect results from the blurred homogeneous
region u. In order to reduce this effect in v, the parameters are chosen such that
the algorithm assigns “enough” texture to v. Hence, u and ε can contain some
partial textures, but this yields better a segmentation performance, cf. [55].

Let us consider the comparison of the proposed model with the standard
ROF TV−L2 model [21] and the TV−L1 model [63] for feature decomposition
(see Figure 7). For simplicity, let λTVL2

and λTVL1
be the regularisation pa-

rameters for TV−L2 and TV−L1, respectively. The ROF TV−L2 model has
been introduced by [21] for the purpose of image denoising. The ROF model
has been designed to obtain a smooth cartoon image u. For fingerprint image
segmentation we are interested in a texture image which is as useful as possible
in terms of a feature for segmentation. However, the ROF model or the TV−L1

model cannot produce a sparse and smooth texture image from a noisy finger-
print image f no matter how the corresponding parameter is selected. On the
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FVC DB GFB [9] HCR [10] MVC [8] STFT [11] FDB [6] G3PD
2000 1 13.26 11.15 10.01 16.70 5.51 5.69

2 10.27 6.25 12.31 8.88 3.55 4.10
3 10.63 7.80 7.45 6.44 2.86 2.68
4 5.17 3.23 9.74 7.19 2.31 2.06

2002 1 5.07 3.71 4.59 5.49 2.39 1.72
2 7.76 5.72 4.32 6.27 2.91 2.83
3 9.60 4.71 5.29 5.13 3.35 3.27
4 7.67 6.85 6.12 7.70 4.49 3.63

2004 1 5.00 2.26 2.22 2.65 1.40 0.88
2 11.18 7.54 8.06 9.89 4.90 4.62
3 8.37 4.96 3.42 9.35 3.14 2.77
4 5.96 5.15 4.58 5.18 2.79 2.53

Avg. 8.33 5.78 6.51 7.57 3.30 3.06

Table 3: Error rates (average percentage of misclassified pixels averaged over
800 test images per database) computed using the manually marked ground
truth segmentation and the estimated segmentation by these methods: a Gabor
filter bank (GFB) response based method by Shen et al. [9], a Harris corner
response (HCR) based approach by Wu et al. [10], a method by Bazen and Gerez
using local grey-level mean, variance and gradient coherence (MVC) as features
[8], a method applying short time Fourier transforms (STFT) by Chikkerur et
al. [11], the factorized directional bandpass (FDB) [6] and the proposed method
based on the G3PD model.

one hand, if the ROF model decomposes f into a very smooth cartoon image
u, than v contains both noise and texture. On the other hand, for a differ-
ent choice of λTVL2

or λTVL1
, v contains mostly noise and u includes texture

and large scale objects. In neither of the two situations, u or v is useful as a
feature for fingerprint segmentation. A comparison of the G3PD method with
TV−L1 and TV−L2 two-part decomposition is shown in Figure 7. Zhang et al.
[64] have tried to solve this problem by proposing a locally adaptive two-part
decomposition which also takes the orientation of the pattern into account.

In summary, the proposed G3PD method yields a satisfactory performance
judged by visual inspection (see Figure 6 for one example from each database)
and it outperforms the other methods on ten of twelve databases, see Table 3.
This demonstrates the robustness of the G3PD method for fingerprint segmen-
tation.

4 Conclusions

We have presented a global framework for the fingerprint segmentation problem
which is to separate the foreground from background based on texture analysis.
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We have proposed the G3PD method for three-part decomposition of fingerprint
images. The texture pattern is analyzed under the variational approach consid-
ering sparsity and smoothness at the same time: with the `1-norm for sparsity
and `1-norm of curvelet coefficients for smoothness. The resulting texture image
is binarised and postprocessed by morphology to obtain the region of interest.

We have proposed a model for three-part decomposition which takes the na-
ture of the texture occurring in real fingerprint images into account. Fingerprint
images are characterized by a smooth, curved and oriented pattern which has a
sparse representation in certain transform domains.

The G3PD method is somewhat similar in spirit to the FDB method [6]
which also takes into account the specific properties of fingerprint patterns.
Frequencies occurring in real fingerprints are mostly located in a specific range
in the Fourier domain and the corresponding texture is extracted by an elaborate
bandpass filtering process involving forward prediction, proximity operator and
backward projection. Similarly, the three-part decomposition can be regarded
as lowpass, bandpass and highpass filtering of signals corresponding to u, v and
ε, respectively (see images (f-h) in Figure 3). This illustrates the connection
between classical bandpass filtering in the Fourier domain and the variational
approach.

In conclusion, we have performed an extensive comparison of the G3PD
method with five state-of-the-art fingerprint segmentation algorithms on a large
benchmark with a variety of different challenges and have found that the G3PD
method outperforms its competitors on ten out of twelve database in terms of
segmentation accuracy.

We believe that this work paves the way for further research in areas such as
latent fingerprint segmentation in which we deal additionally with other kinds of
noise like large scale structure noise, or to better deal with the few low-quality
examples which still pose problems to the method. We believe that further
improvements can be achieved by combining the G3PD method with additional
features, e.g. the texture image obtained by the FDB method.

Data Availability Statement

Matlab Implementation of the G3PD Method for Fingerprint Segmentation
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Benchmark for Fingerprint Segmentation Performance Evaluation
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Matlab Implementation of the FDB Method for Fingerprint Segmentation
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[2] C. Gottschlich, P. Mihăilescu, and A. Munk. Robust orientation field esti-
mation and extrapolation using semilocal line sensors. IEEE Transactions
on Information Forensics and Security, 4(4):802–811, December 2009.

[3] C. Gottschlich. Curved-region-based ridge frequency estimation and curved
Gabor filters for fingerprint image enhancement. IEEE Transactions on
Image Processing, 21(4):2220–2227, April 2012.

[4] C. Gottschlich and C.-B. Schönlieb. Oriented diffusion filtering for enhanc-
ing low-quality fingerprint images. IET Biometrics, 1(2):105–113, June
2012.

[5] C. Gottschlich, E. Marasco, A.Y. Yang, and B. Cukic. Fingerprint liveness
detection based on histograms of invariant gradients. In Proc. IJCB, pages
1–7, Clearwater, FL, USA, September 2014.

[6] D.H. Thai, S. Huckemann, and C. Gottschlich. Filter design and perfor-
mance evaluation for fingerprint image segmentation. arXiv:1501.02113
[cs.CV], January 2015.

[7] T. Goldstein and S. Osher. The split Bregman method for L1-regularized
problems. SIAM Journal on Imaging Sciences, 2(2):323–343, April 2009.

[8] A.M. Bazen and S.H. Gerez. Segmentation of fingerprint images. In Proc.
ProRISC, pages 276–280, Veldhoven, The Netherlands, November 2001.

[9] L.L. Shen, A. Kot, and W.M. Koo. Quality measures of fingerprint images.
In Proc. AVBPA, pages 266–271, Halmstad, Sweden, June 2001.

[10] C. Wu, S. Tulyakov, and V. Govindaraju. Robust point-based feature
fingerprint segmentation algorithm. In Proc. ICB 2007, pages 1095–1103,
Seoul, Korea, August 2007.

19

http://bias.csr.unibo.it/fvc2004/


[11] S. Chikkerur, A. Cartwright, and V. Govindaraju. Fingerprint image en-
hancement using STFT analysis. Pattern Recognition, 40(1):198–211, 2007.

[12] N. Otsu. A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man and Cybernetics, 9(1):62–66, January 1979.

[13] P. Sahoo, C. Wilkins, and J. Yeager. Threshold selection using Renyi’s
entropy. Pattern Recognition, 30(1):71–84, January 1997.

[14] M.P. de Albuquerque, I.A. Esquef, and A.R.G. Mello. Image thresholding
using Tsallis entropy. Pattern Recognition Letters, 25(9):1059–1065, July
2004.

[15] T.F. Chan and L.A. Vese. Active contours without edges. IEEE Transac-
tions on Image Processing, 10(2):266–277, February 2001.

[16] X. Bresson, S. Esedoglu, P. Vandergheynst, J.P. Thiran, and S. Osher.
Fast global minimization of the active contour/snake model. Journal of
Mathematical Imaging and Vision, 28(2):151–167, June 2007.

[17] T.F. Chan, S. Esedoglu, and M. Nikolova. Algorithms for finding global
minimizers of image segmentation and denoising models. SIAM J. Appl.
Math., 66(5):1632–1648, February 2012.

[18] J. Lie, M. Lysaker, and X.C. Tai. A binary level set model and some
applications to Mumford-Shah image segmentation. IEEE Transactions on
Image Processing, 15(5):1171–1181, May 2006.

[19] C. Sagiv, N.A. Sochen, and Y.Y. Zeevi. Integrated active contours for tex-
ture segmentation. IEEE Transactions on Image Processing, 15(6):1633–
1646, June 2006.

[20] N. Houhou, J.P. Thiran, and X. Bresson. Fast texture segmentation based
on semi-local region descriptor and active contour. Numer. Math. Theor.
Meth. Appl., 2(4):445–468, November 2009.

[21] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D, 60(1-4):259–268, November 1992.

[22] J.F. Aujol, G. Gilboa, T. Chan, and S. Osher. Structure-texture image de-
composition - modeling, algorithms, and parameter selection. International
Journal of Computer Vision, 67(1):111–136, April 2006.

[23] J.F. Aujol, G. Aubert, L.B. Feraud, and A. Chambolle. Image decompo-
sition into a bounded variation component and an oscillating component.
Journal of Mathematical Imaging and Vision, 22(1):71–88, January 2005.

[24] J.F. Aujol and G. Gilboa. Constrained and SNR-based solutions for TV-
Hilbert space image denoising. Journal of Mathematical Imaging and Vi-
sion, 26(1-2):217–237, November 2006.

20



[25] A. Buades, T.M. Le, J.-M. Morel, and L.A. Vese. Fast cartoon + texture
image filters. IEEE Transactions on Image Processing, 19(8):1978–1986,
August 2010.

[26] L.A. Vese and S. Osher. Modeling textures with total variation minimiza-
tion and oscillatory patterns in image processing. Journal of Scientific
Computing, 19(1-3):553–572, December 2003.

[27] G. Aubert and L. Vese. A variational method in image recovery. SIAM J.
Numer. Anal, 34(5):1948–1979, October 1997.

[28] T. Chan, A. Marquina, and P. Mulet. High-order total variation-based
image restoration. SIAM Journal on Scientific Computing, 22(2):503–516,
July 2000.

[29] M. Lysaker, A. Lundervold, and X.C. Tai. Noise removal using fourth-
order partial differential equation with applications to medical magnetic
resonance images in space and time. IEEE Transactions on Image Process-
ing, 12(12):1579–1590, December 2003.

[30] W.Zhu and T. Chan. Image denoising using mean curvature of image
surface. SIAM Journal on Imaging Sciences, 5(1):1–32, January 2012.

[31] X.C. Tai, J. Hahn, and G.J. Chung. A fast algorithm for Euler’s elastica
model using augmented Lagrangian method. SIAM Journal on Imaging
Sciences, 4(1):313–344, February 2011.

[32] K. Papafitsoros and C.B. Schönlieb. A combined first and second order
variational approach for image reconstruction. J. Math. Imaging Vis.,
48(2):308–338, 2014.
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Figure 5: The following comparison illustrates the effect of the smoothness term for v
in (1). The first column depicts the `1 norm of curvelet coefficients, i.e.

∥∥C{v}∥∥
`1

and

the second column the `1 norm of wavelet coefficients, i.e.
∥∥W{v}∥∥

`1
after 50 iterations.

Columns 3 and 4 visualize v obtained without smoothness term (no
∥∥C{v}∥∥

`1
in (1))

after 20 and 50 iterations, respectively. The first row shows the texture images v,
the second row their binarized versions and the third row their plots of convergence
rates. The comparison shows that the curvelet based smoothness term leads to a better
texture image than the wavelet based one and that convergence without smoothness
term is slow and texture tends to be destroyed.

24



Figure 6: Segmented fingerprint images and the corresponding texture images
by the variational method for FVC2000 (first and second row), FVC2002 (third
and fourth row) and FVC2004 (fifth and sixth row). Columns f.l.t.r correspond
to DB1 to DB4.
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(a) (b) G3PD: β1 =
0.005

(c) (d)

(e) λTVL2
= 0.1 (f) (g) λTVL1

= 1 (h)

(i) λTVL2
= 0.02 (j) (k) λTVL1

= 0.6 (l)

(m) λTVL2 =
0.005
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Figure 7: A comparison of G3PD with TV − L2 and TV − L1: First row: images
f.l.t.r are the original image f and the three-part decomposition by G3PD with N =
50 , β1 = 0.005 (see Table 2 for the other parameters): the cartoon image u, texture
image v and noise image ε. The first and second column of rows two to four show
images u and v, respectively, for TV−L2 two-part decomposition with different values
of λTVL2 . The third and fourth column show the corresponding images u and v for
TV −L1 two-part decomposition. The number of iterations for TV−L2 and TV−L1

is N = 350. Note that for no choice of λTVL2 or λTVL1 , TV−L2 or TV−L1 produce a
good feature image for segmentation of this noisy fingerprint, while the G3PD model
provides a useful texture image v for the segmentation procedure.
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