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Abstract: The discriminating powers of biometric patterns derive from their entropy, just as the hardness of cryptographic keys
derive from their entropy. The larger the number of independent bits, or the more independent they are, the less chance of collision.
We measured the mutual information entailed by radial correlations within each of 632,500 different iris patterns from persons of
152 nationalities. For each iris, we measured how well the sequence of bits in any ring of the IrisCode predicts the sequence
of bits in the other rings. Information density is quite non-uniformly distributed across iris patterns radially. Our measurements of
mutual information address how much radial resolution is productive to use when encoding an iris, and we show that a non-uniform
allocation of encoding resolution radially leads to significant performance improvements by reducing redundancy.

1 Introduction

Iris patterns generally display a radial structure, but this informal
impression has not been investigated quantitatively except for an
analysis of correlations among pixels by Hu et al. [1]. Correlations
within random patterns reduce their entropy, which is unfortunate
for purposes of discrimination and identification. The main purpose
of this paper is to apply the tools of Information Theory to measure
that effect, and to document its radial extent both across adjacent
and non-adjacent annuli in the iris. We show how these quantitative
findings can be exploited in iris encoding to improve recognition
performance. When such radial structure is detected and quantified
it can also play a useful rôle in iris localisation and confirmation of
segmentation, because it is such a distinctive feature in facial images.
This paper documents the statistics of radial correlation structure in
a large database of iris patterns from persons spanning 152 nation-
alities, compared with the same metrics in a database of IrisCodes
computed from synthetic iris images in which pixels are indepen-
dent of each other. We investigate correlations not among pixels but
among bits within iris templates, and their impact on performance.

Fig. 1: Illustration of radial structure and textural correlations
typical of iris patterns, in this case imaged in the visible band.

2 Related literature

Texture analysis has long been an important part of computer vision
and image understanding, beginning with terrain classification in
aerial or satellite imagery since the early 1970s. Among its many
applications are: region segmentation; object or scene classification;
inferring 3D surface shape, slant, depth, and material composition;
biomedical assessments involving radiological scans or histology;
and biometric personal identification in the case of iris recogni-
tion. Methods of texture analysis divide broadly into structural
approaches (best suited for artificial textures with repeated regu-
lar patterns), and statistical approaches (better suited for natural
textures with inexact structure). Statistical metrics and operators
include autocorrelation, power spectra and other texture energy mea-
sures [2], second moments, entropy, and co-occurrence matrices.
Perhaps most well-known is the foundational work of Haralick et al.
[3] defining textural features by measuring how frequently a given
pair of pixel values co-occur in a particular spatial relationship. From
these co-occurrence matrices other texture features can be defined
including energy, entropy, homogeneity, and correlation [4].

Because texture inherently contains quasi-repetitive or correlated
structure for defined scale(s) and direction(s) of propagation, it is
natural to characterise texture using directional correlation metrics
[5]. In the case of iris patterns, as illustrated in Fig. 1, the dominant
structure is invariably radial; indeed the organ and its function are
essentially polar. Classical operators for texture analysis are defined
in cartesian coordinates, but with the common “unwrapping" of iris
patterns into a rectangular picture, polar coordinates are transformed
basically into cartesian ones. This coordinate transformation requires
a spurious cut to be made for the unwrapping, which fundamentally
changes topology and introduces complications that have no bene-
fit, so we avoid doing it. Nonetheless, the only detailed quantitative
study yet of iris textural correlations [1] used steering kernels in
“unwrapped" coordinates to measure pixel covariance within local
neighbourhoods of iris images. They confirmed that the strongest
correlations in pixel values were invariably in, or near, the radial
direction.

Classical literature in the field of Information Theory [6, 7] pro-
vides tools to analyse the randomness and complexity of random
variables, their inter-dependencies, their capacity to convey informa-
tion, and their discriminability. It is therefore surprising that, with
rare exceptions [8], Information Theory has not played a rôle in
the study of biometric signals and systems other than for encryp-
tion. Comprehensive treatment of the concept of mutual information
between random variables, and of the various entropy metrics to
which it is related and on which it is based, can be found in [7].
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3 Methods and databases

In this paper we investigate iris textural correlations not among raw
pixel values, but rather among radially distributed bits of IrisCodes
computed from iris images. We use a database of 632,500 IrisCodes,
all arising from different eyes, from persons spanning 152 national-
ities who applied for work visas in the United Arab Emirates since
2002 (the “UAE database"). We study these effects in the frame-
work of mutual information and analyse its effects on discrimination
power. In order to study how these findings can be exploited for
performance benefits, we also use a database containing multiple
different images of eyes (the “NIST ICE database" [9]) so that ROC
analysis permits trade-offs to be measured between False Match and
False non-Match Rates (FMR and FnMR). For these two databases,
iris images were acquired in the near-infrared band of illumination
(NIR: 700nm – 900nm) and captured at distances of 10cm – 25cm,
producing greyscale images such as illustrated in Fig. 2.

Fig. 2: Example iris image captured in the NIR (700nm–900nm)
band for UAE and NIST ICE databases. Overlaid dotted graphics
show segmentation output.

The algorithms underlying the computation of IrisCodes have
been presented before [10] and will not be rehearsed here. But a
crucial point is that IrisCodes are created using 2D wavelets that
have bandpass Fourier characteristics (i.e. both highpass and low-
pass properties in the direction of wavelet modulation), and these
properties introduce their own correlations into IrisCode bit streams
regardless of the existence of such correlations in an input iris image.
The attenuation of higher frequencies causes neighbouring bits to
tend to remain the same, while the attenuation of lower frequen-
cies causes bit strings to oscillate, retaining phase coherence across
distances reciprocal to the wavelet bandwidth, creating [8] a net
“sticky oscillator" effect. Because of these inherent IrisCode proper-
ties which must be distinguished from intrinsic iris image properties,
throughout this paper all results using human iris patterns are pre-
sented with baseline comparisons against results using synthetic
“white noise" iris images in which all pixels are independent of each
other. A gallery of 500 synthetic iris images was generated by replac-
ing all pixels in an iris with samples drawn from a Gaussian source
withN(µ, σ) = N(128, 30). An illustration of such a “white noise"
iris image is shown in Fig. 3. The standard IrisCode software was
run on all these images to generate their IrisCodes and enroll them
into a third database, which we term “IrisCoded noise". Through-
out this paper, results using actual human iris patterns are presented
graphically in blue, while those using the synthetic noise database
for comparison are presented in red.

The quasi-annular zone between the pupil boundary and the outer
(“limbus") boundary of an iris receives 64 samples along any ray,
and these 64 samples are combined into eight quasi-concentric rings.
(One consequence of the studies presented here is to show that this

Fig. 3: Example of a synthetic “white noise" image in which all iris
pixels are replaced by independent samples from a Gaussian process,
in order to distinguish correlation effects within real iris images from
those introduced by the IrisCode bandpass wavelet encoding itself.

default grouping is not optimal, and that another is better.) For both
the human IrisCodes and the IrisCoded noise, our basic analysis
of radial correlation structure was to compute Hamming distances
among all possible pairings of the eight rings in an IrisCode. The
radial extent of such correlations across “skipped" rings, rather than
just between adjacent rings, provides an estimate of radial correla-
tion distance, and it can also reveal how this varies across the iris
from the pupil to the limbus. Finally, the distribution of these scores
can reveal the variability in these effects across a human population,
given the 152 nationalities present in the UAE database.

4 Results

We measured annular correlations between all possible ring pairings
among the eight rings (8× 7/2 = 28 pairings) in every IrisCode.
The six panels in Fig. 4 show Hamming distances between adjacent
ring pairings, starting from the pupil as Ring 1, using the 632,500
human IrisCodes (blue distributions), and for comparison IrisCodes
for the synthetic noise iris patterns (red distributions). A Hamming
distance around 0.5 would be expected in the absence of correlations
between annuli, as bits that are independent and equiprobable are
equally like to agree or to disagree. Values smaller than 0.5 would be
observed if such correlations exist. It is clear that strong radial corre-
lations exist between adjacent annuli in the human IrisCodes and that
these correlations are larger farther from the pupil, creating greater
separation between the iris (blue) and the IrisCoded noise (red) dis-
tributions which remain centred around 0.5 and stable. The widths
(standard deviations) of all distributions reflect the presence of cor-
relations among nearby bits within each ring, due to the bandpass
nature of the encoding wavelets, as discussed earlier.

Fig. 5 summarises such distributions of Hamming distance scores
between adjacent rings as boxplots. The extent of boxes corresponds
to the inter-quartile interval, with median values marked; and the
whiskers correspond to 1.5 times the inter-quartile interval above
and below the two quartiles. Non-overlap of boxes of the two colours
suggests a significant difference. We see that meaningful effects are
observed for all six of the adjacent ring comparisons.

The boxplots in Fig. 6 reveal the annular correlations when jump-
ing across rings separated by 1, 2 or 3 skipped rings, thereby
providing an estimate of its radial extent. It should be noted that
human eyelid occlusion at large radius values should not play a rôle
here because IrisCode bits affected by such occlusion are masked.
As we saw in Figs. 4 and 5, again here the Hamming distance scores
remain centred around 0.5 for the IrisCoded noise (red distributions).
But for human IrisCodes (blue distributions), radial correlations exist
even between some non-adjacent rings, especially Rings 5 and 7.
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Fig. 4: Distributions of Hamming distance scores when adjacent
annuli are compared, both for human IrisCodes (blue) and for
IrisCoded noise (red). The ⊕ (Exclusive-OR) operator detects the
amount of disagreement. For all adjacent ring comparisons, human
IrisCodes are significantly correlated, as shown by their shift from
the IrisCoded noise.
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Radial Correlation Structure:  Real Iris Patterns versus Noise

Fig. 5: Inter-quartile boxplots for the distributions in Fig. 4.
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Radial Correlation Structure:  Real Iris Patterns versus Noise

Fig. 6: Inter-quartile boxplots for Hamming distance distributions
between annular rings when skipping over 1, 2, or 3 rings.

The complete set of inter-ring comparisons for all the human
IrisCodes is plotted in Fig. 7 as a heatmap of their median Hamming
distance values. It shows that strong correlations exist between adja-
cent rings, and even between some nearby but non-adjacent rings,
and that these effects are stronger at greater distances from the pupil
(the upper-right corner in the heatmap). This confirms that the infor-
mation density in human iris patterns is greatest near the pupil, and
suggests it may be profitable to reduce ring-widths near the pupil, as
successive rings there are more different from each other and contain
information that is less redundant. We document the performance
benefits of doing so in Section 6, while also checking for any cost.
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Fig. 7: Heatmap of Hamming distances between all possible pair-
ings of the eight rings in an IrisCode. Median scores across the
database of 632,500 human IrisCodes are shown, together with
interpolated contour lines for HD values of 0.18, 0.38, and 0.45.
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5 Information Theoretic analysis

The discriminating powers of biometric patterns derive from their
entropy, just as the “hardness" of cryptographic keys derive from
their entropy (which equates directly to key length in bits if the
bits are independent). In a biometric template such as an IrisCode,
the larger its number of independent bits (or the more indepen-
dent its bits are from each other), the lower the probability of a
collision (False Match) and therefore the higher the tolerance for
non-matching bits from the same source can be. Thus both FMR and
FnMR can benefit from greater biometric entropy. Correlations, or
mutual information, within a particular biometric pattern reduce its
entropy and thus its discriminating power. We wish to quantify this
negative effect of iris radial correlations; and from this analysis, to
reduce their impact.

H(X) H(Y)

H(X|Y)
I(X;Y)

H(Y|X)

H(X,Y)

Fig. 8: Classic Venn diagram of mutual information and entropies

Information Theory provides tools for analysing relationships
between random variables that are not independent. One such metric
is mutual information I(X;Y ), which measures how much uncer-
tainty about random variable X is removed by knowing random
variable Y . These concepts are typically portrayed by a Venn dia-
gram such as Fig. 8 in which the ovals represent the entropiesH(X)
and H(Y ) of the two random variables X and Y , and their union is
their joint entropyH(X,Y ). Their intersection is their mutual infor-
mation I(X;Y ) showing how much either random variable reveals
about the other, while the excluded crescent-shaped regions are the
conditional entropies H(X|Y ) and H(Y |X) reflecting how much
uncertainty remains about X or Y despite knowledge of the other
random variable.

Shannon’s [6] starting point was to define the information content
of an event as the logarithm of its probability p. Thus an observation
that was certain anyway (p = 1) conveys no information; the lower
its probability, the more informative it is; and most importantly,
the information gained from independent events (joint probability
being multiplicative), is additive: log(p1p2) = log(p1) + log(p2).
The entropy H of a random variable X whose states are {xi} is a
sum of such terms, each one weighted by the probability p(xi) of
the state, leading to Shannon’s foundational formula:

H(X) = −
∑
i

p(xi) log2 p(xi) (1)

A pair of random variables X and Y have joint entropy H(X,Y )
and conditional entropies H(X|Y ) and H(Y |X), defined simply
by substituting p(xi) in (1) with p(xi, yj) or p(xi|yj) or p(yj |xi)
where {yj} are the states of Y . Conditionalising over all states of Y
requires weighting also by their probabilities p(yj), leading to the
definition of conditional entropy H(X|Y ):

H(X|Y ) = −
∑
j

p(yj)

[∑
i

p(xi|yj) log2 p(xi|yj)

]
(2)

5.1 Radial correlations as mutual information

There are three equivalent ways to define the mutual information
I(X;Y ) using the entropies mentioned. The simplest one for our
purposes where we regard X as the string of bits in one ring of an
IrisCode, and Y as the string of bits in another of its rings, is:

I(X;Y ) = H(X)−H(X|Y ) (3)

where the quantities H(X), H(X|Y ), and I(X;Y ) are computed
in a bitwise manner (measured in bits “per bit of the IrisCode").

The two states {xi} of a bit are equiprobable because the encod-
ing wavelets have zero mean, so projection coefficients are equally
likely to be positive or negative; hence p(xi) = 1

2 . It follows that
H(X) = 1

2 + 1
2 = 1 bit of entropy per bit of the IrisCode, in the

absence of any other information. For calculating the conditional
entropy H(X|Y ) in (2), the conditional probabilities p(xi|yj) are
captured by Hamming distances HD between rings, because HD
measures the relative frequency with which corresponding bits agree
or disagree. Thus mutual information (3) evaluates simply to:

I(X;Y ) = 1 + (HD) log2(HD) + (1−HD) log2(1−HD) (4)

The U-shaped graph in Fig. 9 plots this relationship, with the
dependencies between Rings 6 and 7 illustrated both for the human
and for the white noise iris patterns (blue and red respectively). The
bounded coloured portions correspond to the inter-quartile ranges
observed. The mutual information between Rings 6 and 7 of human
IrisCodes (having median Hamming distance 0.184) is a substan-
tial 0.311 bits per bit pair, but it is 0.0 bits per bit pair between
rings of the noise IrisCodes, as expected. A score of I(X;Y ) = 0
corresponds to a null intersection in the Venn diagram of Fig. 8,
signifying independence of the random variables. Note that if bits
always disagreed (HD = 1), their mutual information would be as
high (maximal I(X;Y ) = 1) as if they never disagreed (HD = 0).

Mutual Information between Adjacent Rings of IrisCodes
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Fig. 9: Plot of (4) mapping Hamming distances between bit strings
into their mutual information, highlighting two boxplots from Fig. 5.

The heatmap of Fig. 10 shows the mutual information between
every possible pairing of the eight rings, given as the median such
I(X;Y ) score across all the 632,500 human IrisCodes. Needless
to say, every ring has mutual information I(X;Y ) = 1 with itself,
falling off to 0 with distance from this i = j diagonal. It remains
significant even across nearby but non-adjacent rings, especially at
the larger radius values farther away from the pupil, as indicated by
the broadening out towards the upper-right corner of Fig. 10.
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Fig. 10: Heatmap of mutual information between all pairings of the
eight rings in IrisCodes, across the database of 632,500 IrisCodes.
Interpolated contour lines are shown for 0.3, 0.03, and 0.003 bits per
bit. The extent of iris radial correlations is revealed.

6 Exploiting mutual information to improve
discrimination performance

Discovering the structure of redundant information in iris patterns
can be exploited for performance benefit by appropriately allocat-
ing the encoding resolution. The boxplots in Fig. 5 (as well as the
heatmaps of Figs. 7 and 10) show that radial correlations between
neighbouring rings are progressively greater with farther distance
from the pupil, so the encoding budget can be sacrificed at large
radii in favour of the inner regions. Varying the annular widths of
the sampling rings as a function of radius, in accordance with our
observations about mutual information, has the effect of extracting
more information, net, from an iris pattern.

We investigated this prediction empirically using the NIST ICE
database [9] of about 3,000 images, which include several images of
each iris so that it is possible to measure False non-Match Rates
(FnMR) and perform an ROC analysis. We compared the stan-
dard uniform sequence of ring widths for encoding iris patterns to
a sequence of progressively wider sampling annuli that emulates
the measured mutual information as a function of radius. Table 1
presents the results for these two ring sequences. (The ring width
sequences are in units of 64ths of the normalised radial distance
between pupil and limbus; thus both sequences sum to 64 in total.)
For same-eye images, there was almost no degradation in HD scores
as a result of changing the ring width allocations: the mean HD
worsened from 0.114 to 0.118 only. But the improvement in dis-
criminatory power was notable. We measured FnMR at three FMR
points, namely 10−4, 10−5, and 10−6, and we observed bene-
fits in all cases. The performance benefit in FnMR is greater at
more demanding FMR. We see that if operating at FMR=10−6, the
FnMR is reduced by almost 30% in relative terms by adopting the
non-uniform ring width sequence shown.

Table 1 ROC analysis: measured False non-Match Rates at various FMR

Width Sequence @ FMR=10−4 @ FMR=10−5 @ FMR=10−6

8 8 8 8 8 8 8 8 0.0055 0.0079 0.0113

4 5 7 9 9 10 10 10 0.0047 0.0066 0.0080

7 Conclusions

We measured radial correlation structure in a large and diverse iris
database. Our main result is to have shown how radial correlations
within iris patterns create a non-uniform radial distribution of infor-
mation. There is greater redundancy between adjacent rings at larger
radii, and therefore less contribution to discriminating power than
nearer the pupil, where the information density is greatest.

One possibly useful application of detecting and measuring radial
structure relates to iris detection and localisation, because radial cor-
relations are a striking feature of human iris patterns. Occasionally,
catastrophic segmentation errors can result in some round non-iris
object in an image being “detected" as an iris. The boxplots pre-
sented in Fig. 5 suggest that Hamming distances larger than (say)
0.45 among most pairs of adjacent rings could be a flag for failed,
non-iris, localisation.

The chief findings address the question of how high the radial
resolution should be when constructing IrisCodes. The standard
algorithm has eight concentric rings, mainly because this efficiently
exploits basic computer architecture. Each byte of IrisCode data is
one radial traversal of the iris along a particular ray, with the eight
bits corresponding to wavelet projections in the eight rings. This
facilitates stacking bytes into 16-, 32-, or 64-bit words, and simi-
larly for their corresponding mask bits which indicate occlusion or
noisy iris data deemed unreliable, so that the match process executes
highly efficiently, on all bits simultaneously within the word length.
But some academic research papers in the literature partition the iris
into a larger number of concentric rings, often twenty. The mea-
surements presented here of mutual information between rings show
that even with only eight rings, there is considerable redundancy. We
showed how it can be exploited in the encoding.

Iris recognition has legendary resistance to False Matches. Using
databases large enough to make 1.2 trillion different iris compar-
isons, the National Institute of Standards and Technology confirmed
[9] that even if 28% of bits disagree (HD = 0.28) in an accepted
match, the FMR is 1 in 40 billion. This is as was predicted from
theoretical entropy analysis several years earlier [10], before such
mega-databases existed. These results speak eloquently about the
importance of biometric entropy. But the present paper has shown
that further optimisation can be achieved by considering the mutual
information within iris patterns.
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