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Abstract—Most gender classifications methods from NIR im-
ages have used iris information. Recent work has explored the
use of the whole periocular iris region which has surprisingly
achieve better results. This suggests the most relevant information
for gender classification is not located in the iris as expected. In
this work, we analyze and demonstrate the location of the most
relevant features that describe gender in periocular NIR images
and evaluate its influence its classification. Experiments show
that the periocular region contains more gender information
than the iris region. We extracted several features (intensity,
texture, and shape) and classified them according to its relevance
using the XgBoost algorithm. Support Vector Machine and nine
ensemble classifiers were used for testing gender accuracy when
using the most relevant features. The best classification results
were obtained when 4,000 features located on the periocular
region were used (89.22%). Additional experiments with the
full periocular iris images versus the iris-Occluded images were
performed. The gender classification rates obtained were 84.35%
and 85.75% respectively. We also contribute to the state of the art
with a new database (UNAB-Gender). From results, we suggest
focussing only on the surrounding area of the iris. This allows us
to realize a faster classification of gender from NIR periocular
images.

I. INTRODUCTION

Periocular biometrics have recently attracted much attention
since it allows improvement of the robustness of face or
iris biometric recognition. The periocular region is the area
surrounding the eye, and it is generally considered one of the
most discriminative regions of the face [1]]. It has been shown
that the periocular region itself can be used for recognition
[2]. Tt can also help with iris recognition when the inherent
biometric content within the source images of poor quality.
This suggests that periocular features could have a potential
for soft biometric classification.

Recently, Soft-biometrics studies have proposed the use
of iris information for estimating demographic information

such as gender, ethnicity, age, and emotions. [3], [, [4],
51, 161, [70, 181, 191, [10], [11], [12]. Gender information, in
particular, can improve biometric recognition administration
systems, since it allows reduced search time [13]. This is
especially important in countries such as India, China and others
which have large populations [[14]], [[15[], [16]. For instance,
if gender is determined then the average search time may be
halved.

Gender information may also be useful when people are
not recognized but is attempting to gain entry to a restricted
zone. Another possible use of the gender information arises
in social settings, where it may be useful to screen entry to
an area based on the gender of a person, while not recording
identity [17]. Gender classification is also crucial for banking
transactions from cellular phones applications, demographic
information collection, marketing research, and real-time digital
marketing [[18]], [19], [8]. Therefore, this information is essential
to manage iris recognition systems better.

Most gender classification methods reported in the literature
use the entire face as Region of Interest (ROI) [1]]. However,
the performance of these methods suffers greatly when portions
of the face are occluded. Recent studies have narrowed the
principal region for biometric identification to the surrounding
eye area. This area is known as the periocular region [20]].

Most periocular algorithms work in a holistic fashion. They
usually define the rectangle that contains the whole eye
area as an ROI. The full rectangular area is then used for
feature extraction. Such a holistic approach implies that some
components that are not relevant for identity recognition, like
hair or glasses, may erroneously bias the recognition process.
Furthermore, features may not be equally discriminative in all
parts of the periocular regions.

Periocular biometrics techniques have mainly focused on
texture features. These features are calculated from a single



periocular image. Therefore, can not efficiently handle varia-
tions introduced by movements of the eyeball and eyelid. The
performance further suffers if we add variations in pose and
illumination.

Hollingsworth et al. [21] identified some of the ocular
elements that are found most useful for periocular recognition.
The relevance of those elements depends on the technology
used for capturing the image. For Near-Infra-Red (NIR) images
the most influential elements are the tear duct and lower lash.
The skin and cheek are the least relevant. When using Visual
Spectrum (VIS) images, on the contrary, skin texture is shown
to be more important as well as the blood vessels and the
brown region. Those results agree with assumptions made in
the literature indicating NIR illumination is more suitable for
iris texture recognition [22]] while VIS illumination performs
better for analyzing the periocular region. Several studies have
been carried out using automatic algorithms with similar results.

We have previously demonstrated that gender classification
based on iris information (NIR images) achieves similar results
as classical method using facial biometric features [17], [23].

In this paper, we analyze the relevance of the different areas
around the eye. Using the same periocular NIR images used
in iris-identification systems, we investigated the relevance of
the iris on classifying gender in an effort to identify the best
feature extraction techniques to increase gender classification
rates. We also question whether the fusion of iris and periocular
information is complementary. Further we contribute two new
gender labeled databases, which we captured for this study.

This paper is organized as follows. In Section 2, we review
the state of the art in gender classification. In Section 3, we
describe the proposed method and present the feature extraction
techniques used. In section 4, we provide details about the
datasets used in our experiments. In Section 5, we describe the
experiments and results, and in Sections 6 and 7, we present
the discussion and conclusions, respectively.

II. STATE OF THE ART

Gender classification initially used a variety of features
extracted from facial areas. [19], [8] reported the use of a
feature-selection method based on mutual information and
feature fusion to improve the gender classification of facial
images.

Castrillon-Santana et al. [30] proposed a gender-classification
system that works with periocular images. This area is extracted
after normalizing the face in terms of scale and rotation.
Given the rough eye-location, the normalized facial image
is obtained automatically after rotating, scaling, and cropping
the original images. The best result was obtained using five
different feature-extraction methods. Also, some studies have
made use of annotated data, for the detection and segmentation
of the periocular region of the eye [2l]. This technique has
become a research target itself.

Alonso-Fernandez et al. [2] report a survey with the most
commonly used techniques based on periocular images and
databases. They provide a comprehensive framework covering
different perspectives, from existing databases to algorithms
for the detection of the periocular region and features for

recognition. Databases that were utilized include face and iris
images (since the periocular area appears in such data), as well
as newer databases that specifically capture the periocular area
[2].

Kumari et al. [33]] propose a novel approach of extracting
global features from the periocular region of poor-quality
grayscale images for gender classification. In their approach,
global gender features are extracted using independent compo-
nent analysis and evaluated using conventional neural-network
techniques. The authors compare the performance, and all the
best results are coming from periocular region cropped from
the FERET face database [34].

Studies based on NIR normalized or encoded images of the
iris have explored the possibility of automatically deducing
the gender of an individual [26], [25], [24], [13]], [28]], [17].
Previous research on this topic has extracted and used the iris
region, while most operational iris biometric systems typically
acquire the periocular region for processing. Very few databases
have been designed specifically for gender-classification from
NIR periocular research.

Bobeldyk et al. [28]] explored the correct gender-classification
rate associated with four different regions from NIR iris images:
the periocular region, the iris-excluded ocular region, the iris-
only region, and the normalized iris-only region. They used a
binarized statistical image feature (BSIF) texture operator to
extract features from the regions that were previously defined.
The ocular region reached a correct classification rate of 85.7%,
while the normalized or unwrapped images exhibited the worst
correct classification rate at only 65%. This suggests that the
normalization process may filter out useful information.

Kuehlkamp et al. [32], Very recently, analyses the influence
of the feature extracted from normalized and periocular images
to classify gender in a larger database. The authors used
different probabilistic occlusion masking to gain insight into
the problem. Results also suggest the discriminative power of
the iris texture for gender is weaker than previously thought,
and that the gender-related information is primarily in the
periocular region. Regardless of the classifier (SVM or CNN),
there is a clear and significant difference between predicting
gender from periocular images and normalized iris images. A
summary of the most relevant work in this area is presented
in Table [

III. METHODS

Traditional iris-identification systems have five stages: ac-
quisition, segmentation, normalization, encoding, comparison,
and decision making. Periocular NIR images can be obtained
from the first stage of acquisition. See Figure [T}

n this work, we directly used the acquired image from
a conventional NIR sensor for extracting the features used
in gender-classification. Despite other methods that require
pre-processing stages such as Segmentation, Normalization,
Encoding and Comparison (See Figure [I).

Intensity, shape, and texture information from periocular
images were used to evaluate the gender classification perfor-
mance. There is no need for additional steps to achieve the
soft-biometrics information.



TABLE I
SUMMARY OF GENDER CLASSIFICATION USING EYES: I = IRIS IMAGES, P = PERIOCULAR IMAGES, L = LEFT AND R = RIGHT, FEM = FEATURE

EXTRACTION METHOD, CCR= CORRECT CLASSIFICATION RATE.

Paper 1/P/F Source N° of Images N° of Subjects Type FEM CCR (%)
Thomas et al. [24] 1 Iris 16,469 N/A NIR Gabor Filter 75.00
Lagree et al.[25] 1 Iris 600 300 NIR vGabor Filter 62.17
Bansal et al. [26] 1 Iris 400 200 NIR Discrete wavelet transform 83.60
Tapia et al. [13] 1 Iris 1,500 1,500 NIR LBP 91.00
Costa et al. [27] 1 Iris 1,600 200 NIR Shape+Texture Features, Gabor Filter 89.74
Bobeldyk et aL[28] | 1/P Tris 3314 1,083 NIR BSIF o ((]1)))
Merkow et al. [1] P Faces 936 936 VIS LBP 80.00
Chen et al. [29] P Faces 2,006 1,003 NIR/Thermal LBPH 93.59
HOG,LBPLTP
(301 P Faces 3,000 1,500 VIS WLD.LOSIB 92.46
Kuehlkamp et al. [31] 1 Iris 3,000 1,500 NIR LBP 66.00
Rattani et al. [9] P Faces 572 200 VIS LBPLPQ,BSIF 91.60
. . 10,000 unlabel - RBM 77.79
Tapia et al. [23] fris 3,000 labeled 1,500 NIR CNN 83.00
Kuehlkamp et al. [32] P Iris 6,240 2005 NIR Hand-Crafted, CNN 80.80
952 (P-UND L) 952 (P-UND L)
946 (P-UND R) 946 (Pe-UND R)
This paper P Iris/Faces 3,840 (C.E.) 120 (C.E.) NIR RAW,ULBPHOG 85.70
389(UTIRIS) 79 (UTIRIS)
1,360(UNAB-Gender) 136 (UNAB-Gender)
This paper 89.22 (4,900)
With XgBoost

Traditional Method Proposed Method
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Fig. 1.  Representation of the iris-identification stages used to extract
information for gender-classification. The white arrows show the traditional
stages of iris recognition. The dot-line arrows show the stages used for the
traditional gender classification methods. The black arrow on the right shows
the stage used in the proposed method.

We used four different types of iris features obtained from
periocular images to classify gender: intensity (raw image),
texture features (Uniform Local Binary Patterns (ULBP)),
shape (histogram of oriented gradient (HOG) and inverse HOG
(IHOG).

For all datasets the image size were 120 x 160 pixels (See
Figure [3). Along of this research, we have done a preliminary
test using the original sizes of the images, but the results were
very similar when the size is reduced. Since the resolution did
not affect our correct classification rate we keep doing all the
experiments with 120 x 160 pixels.

A. Intensity images

As intensity, we used grayscale pixel values of NIR images.
Eight bits per pixel were used. The UND periocular database
was captured by a regular LG 4000 NIR sensor. The UTIRIS
Database [35] used a ISG Lightwise LW camera. The NIR
Cross-Eyed Databases [36]], on the other hand, used a custom
developed sensor that can capture simultaneously the NIR and
RGB image. Therefore, the conditions and the distances while
capturing images are different.

B. Texture - Uniform Local Binary Patterns (ULBP)

The texture feature was extracted from LBPs as a gray-scale
texture operator. It characterizes the spatial structure of the
local image texture [37]. Given a central pixel in the image, a
binary pattern number was computed by comparing its value
with those of its neighbors. The original operator used a 3x3
window size that contains nine values. We computed the LBP
features from the pixel intensities in a neighborhood.

U

(#",y")EN (z,y)

LBPpg(z,y) = h(I(z,y), I(z',y") (1)

Where N(x,y) is the vicinity around (z,y), U is the
concatenation operator, P is the number of neighbors, and
R is the radius of the neighborhood.

Ojala et al. [37] defined a Uniform Local Binary Pattern
(ULBP) to improve the traditional approach using all circular
transitions 28 = 256. The uniform mapping produces only 59
output labels for neighborhoods when having eight sampling
points. An LBP is called uniform when its uniformity measure
is of 2 transitions. For instance, pattern 01110000 shows 2
transitions so it is uniform. The texture recognition improves
when using uniform patterns of (8, 1) neighborhood [38]]. This
was also shown for gender classification in faces [8], [39](See

Figure [2).
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Fig. 2. Features extracted from a particular right NIR periocular image without mask for intensity (raw), texture (ULBP 8,1) and shape (HOG and iHOG).

C. Shape - Histogram of gradients

The shape features were extracted from the HOG and inverse
HOG using three different scales: 3 x 3, 5 x 5, and 10 x 10
[40], [41]. Vertical and horizontal edge maps were computed
using the masks [—1,0,1] and [—1,0,1]". We considered v
and h to be the vertical and horizontal edge values at any
pixel. They were obtained by the convolution of the edge
mask with the original image respectively. The edge map was
computed using 6 = tan~' (%), and the edge magnitude was
computed as m = vv% + h2. The edge map was discretized
at 18° intervals. Each pixel contribute its magnitude m to the
bin that corresponded to its edge directions #. An image is
represented by 20 x N reals values. Where N is the number
of windows (See Figure [2).

IV. DATABASES

One of the most challenging problems in gender-
classification when using iris or periocular images is the lack of
a dataset for the training process. Most of the databases were
created with a focus on the iris/face identification problem.
Therefore, databases with gender information are private and
usually not available for research. The databases usually do
not have enough subjects.

In this paper, we use five databases that include gender
information. The first one is a subset from the GFI-UND [17].
This database was captured using an LG-4000 iris sensor with
full periocular images for the left and right eyes. Examples
are shown in Figure 3a. The UND periocular Dataset is a
new dataset different than used in [17]. This dataset will be
available to other researchers upon request.

The second one is the same database, but with the iris masked
in black for the left and right eyes. Examples are shown in
Figure 3b. Those two datasets are person-disjoint and have
one left eye image and one right eye image for each male and
female. Note that a disjoint database assures that iris images
are only present in training or the testing partition, but not in
both.

The left full eye dataset has a partition of 952 subjects (462
female images and 490 male images). The right full eye dataset,
on the other hand, has 946 subjects (458 female images and
488 male images). Six images were removed from the dataset
because they caused errors on the automatic segmentation mask.
https://www.overleaf.com/project/Sc1a5f3¢3235f057efbfb5a9

The third database is the University of Tehran IRIS database
(UTIRIS) image repository [35]. This database is the first iris

biometric database registered in two distinct sessions of VIS
and NIR images.

The database has 389 images obtained from 79 individuals
for both right and left eyes (326 male images and 63 female
images. This database is available to other researchers El The
people are enumerated in the same way as in NIR and VIS
sessions. This database was obtained with an ISG Lightwise
LW camera, and the image dimension is 1000 x 776 pixels.
An example of database is shown in Figure 3c.

The fourth database was the CROSS-EYED, Reading Cross-
spectrum Iris/Periocular Database [36]. This is the benchmark
dataset for the identification competition presented in BTAS
2016. This database is available to other researchers [ It has
eye images captured at the same time using NIR and Visible
(RGB) VIS sensors. The images were acquired from a distance
of approximately 1.5 m. The NIR wavelength has a single
channel of information, while the VIS iris images contain
three channels. The images present an indoor environment
with realistic illumination conditions. They also include large
variations in ethnicity and eye color as well as realistic and
challenging illumination reflections. The database has 240
subjects. There are two folders for each subject: one for the
NIR and the other one for VIS images. For each folder, there
are eight images. In total, we have 632 male images and 328
female images (1,920 images). An example of the database is
illustrated in Figure 3d.

A. UNAB-Gender Database

As an additional contribution to this paper, we created a
database in order to facilitate research in this area. A database
at Universidad Andres Bello called UNAB-Gender was created.
These images provide to researchers a person-disjoint set for
evaluating the gender-classification problem.

This database was also to test and compare our approach
with other databases. El The images were captured using the
iCAM TD-100 NIR sensor. The iCAM TD-100 uses near-
infrared illumination and acquires 480x640 8-bit pixels per
image. This set of iris images was obtained over five sessions
with 69 female and 66 male subjects. In total, we obtained
1,412 female images and 1,356 male images. All the images
are labeled with the gender information.

Uhttps://utiris.wordpress.com/2014/03/04/university-of-tehran-iris-image-
repository/

Zhttps://sites.google.com/site/crossspectrumcompetition/cross-eyed-2016

3The UNAB-Gender is available to download in
https://jtapiafarias.wordpress.com/biometric/database/
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Fig. 3.

NIR Images from the right and left eyes: (a) Example of Periocular UND image, (b) Example of Periocular UND image, with the iris area covered

automatically in black, (c) Example of UTIRIS images, (d) Example of Cross-Eyed 2016 images.

It is important to note that all the dataset samples from all
source were represented in a balanced manner in both training
and testing datasets.

V. EXPERIMENTS AND RESULTS

In this section, we describe five experiments and seven tests
designed to test the performance of the gender classification
when using the iris image. An SVM and nine ensemble
classifiers as shown in Tables [[I, and [[T]] were used.

The experiments were designed to try different features
extracted from the datasets. The tests, on the other hand, were
designed to test subsets taken from the databases described in
section [Vl

For training purpose, we used the UND periocular dataset
because has a bigger number of disjoint images. A training
portion of 952 and 946 periocular UND images were used for
the left and right eyes, respectively.

All the datasets were selected using a person-disjoint method,
60% of the males and 60% of the females images but taking
into account a k-fold cross-validation function that ensures
the images are unique in each dataset and also unique when
considering both datasets together. Therefore, images in the
testing set are not present in the validation set.

Once the parameter selection was finalized, the selected
parameterization of the method was trained on the full 60%
of training data, and we performed a single evaluation on 40%
of the test data. In each experiment, an SVM classifier with a
Gaussian kernel was trained using LIBSVM implementation
[42]. To validate the results, we used NIR-UTIRIS, NIR-Cross-
Eyed 2016 and NIR-UNAB-Gender databases to analyze how
well the classifier generalizes the new data.

A. Experiments

We performed five experiments using different inputs for
the SVM classifier.

Experiment 1: : In this experiment, we use the raw pixel
intensity as the input of the SVM classifier.

Experiment 2: : In this case, the inputs to the SVM classifier
are histograms from ULBP (8,1) up to ULBP (8,8). Where
each histogram was build considering 59 bins.

Experiment 3: : In this experiment, the inputs to the SVM
classifier are a concatenation of ULBP feature extracted from
each image (from ULBP (8,1) to ULBP (8,8) in the radii ULBP
database) The resulting length is 472 (59 features x 8radii =
472bins) for each periocular image.

Experiment 4: : For this experiment, the inputs to the SVM
classifier are HOG and IHOG features obtained using block
sizes of 3 x 3, 5 x 5, and 10 x 10, respectively. In the last
three experiments (from 2 to 4) we use a histogram of features.
That allows us to reduce the number of features used in the
SVM classifier. This reduces considerably the timing of the
process which is a factor in most real-time applications.

Experiment 5: : For Experiment (5), we concatenated the
information from the histogram of intensity, histogram of
texture and histogram of shape (Pixel Values + ULBP(8,1
to 8,8) + HOG (3 x 3, 5 x 5, 10 x 10)).

B. Tests for validation

We defined seven tests for validating the correct classification
rate. For each test, we use a subset taken from the databases
described previously.

Test 1: : In this test, we have considered the correct
classification rate using the full UND periocular NIR images
(Non occluded), as illustrated in Figure 3a.

Test 2: : In this test, we used the iris artificially masked
(occluded condition) from UND periocular NIR images, as
illustrated in Figure 3b. The segmentation stage automatically
finds the iris and the pupil. It also masks in black the
highlight, occlusion and the iris from the periocular image.
The normalization, encoding, and comparison stages are not
needed in this approach.

Test 3: : In this test, we added a new dataset named UTIRIS.
The previous two tests, this dataset was not part of the training
set. Therefore, the results allow us to understand how well the
previous classifier (Test 1 and Test 2) generalized to the new
data. In this test, we considered the correct classification rate
using an SVM model that was trained with the UND periocular
database (Non-occluded and Occluded) (see Figure 3c).

Test 4: : For additional validation, we use the Cross-Eyed
2016 database. This dataset, like the previous one, was not
part of the training set. In this test, we considered the correct
classification rate using an SVM model trained with the UND
periocular database (Non-occluded and Occluded) (See Figure
3d).

Test 5: : In this test, we use the new database created for
this paper, the UNAB-Gender NIR images (See Figure 3c).
The database was not part of the training set.

Test 6: : In the previous test (from 1 to 5), we have used
the UND Periocular database as a training set. In this case,
in particular, we used images from the following databases:



UND Periocular+UTIRIS+Cross-Eyed. This combined database
was used for training and testing. The use of three features
(Intensity, shape, and texture) combined at different scales

performed better than using only one feature on a single scale.

In all the experiments, we estimated the correct classification
rate separately for the left and right eyes. Since some of the
capture systems worked with a single periocular image. For
systems capturing both irises, we can use either of them to
validate the identification.

The results for the correct classification rate obtained for
Tests 1 to 6 are reported in Table TablgV] TabldVI] and
TablgVTI] respectively. In these tables we report results when
using SVM classifier.

Note that we are using different databases where the images
may not present exactly the same conditions. Even images that
were acquired at the same time (i.e left and right eye) may

present different illumination conditions due to sensor position.

Specular highlights may also be present in different parts of
the image. The inclination of the head, the eyelid occlusion,
and the type of camera used may also modify the image.

VI. DISCUSSION

In this section we present the results for the six tests and
five experiments (section [VI-A). In Section we discuss
the most relevant information for gender classification when
using periocular images. A statistical ANOVA test to validate
our results is shown in section

A. Gender Classifications results

Table [[Il shows the correct classification rate achieved from
periocular images (Non occluded and Occluded) when the
images are trained and tested using UND Periocular database
(test 1 and 2, experiments 1 to 5). The periocular UND database
presents a similar balance between male and female images.
For the Non occluded periocular images of the left eyes, the
best result was achieved by the fusion of HOG 5 x 5 with
82.83 +/- 0.5%. For the right eyes, the best result was achieved
by the concatenation of HOG 10 x 10 with 85.74 +/- 0.4%. For
the occluded or masked periocular images of the left eyes, the
best result was HOG 10 x 10 with 80.00 +/- 0.5%. For the right
eyes, the best result was also achieved by the concatenation of
ULBP(8,1) to (8,8) with 84.33 +/- 0.6%.

Based on these results, we can state that there is no significant
influence of iris information on correct classification rate
when using periocular images. We observed a variation of
approximately 4% between the best results when using Non
occluded and Occluded images. Table also demonstrate
this finding when using the nine different classifiers applied to
the best experiments and tests from Table [Il]

In order to show that the results are not dependent the SVM
classifier we included new experiments using other classifiers
applied to the best results of Table [l We used nine "ensemble
classifiers’ with the periocular UND images: AdaboostMI,
LogitBoost, GentleBoost, RobustBoost, LPBoost, TotalBoost,
RUSBoost with "Tree learners’ classifiers and learning rate
of 0.1, Random Forest classifier (RF) with 900 *Trees’. The
results are presented in Table

TABLE 11
CORRECT CLASSIFICATION RATES FOR THE LEFT AND RIGHT PERIOCULAR
IMAGES TRAINED AND TESTED USING UND PERIOCULAR CONSIDERING
THE COMPARISON BETWEEN THE NON OCCLUDED AND OCCLUDED IRIS

IMAGES.
Test 1 Test 2
Method Left eye [ Right eye Lefteye [ Right eye
Non occluded | Non occluded Occluded [ Occluded
Experiment 1
Raw [ 5357+-07 [ 51.57 +/-0.7 [ 5457 +-0.7 [ 53.57+-07
Experiment 2
ULBP (8,1) 73.68 +/- 0.6 78.83+/- 0.6 75.78 +/- 0.8 | 75.66 +/- 0.8
ULBP (8.,2) 74.73 +/- 0.6 73.80 +/- 0.7 76.31 +/- 0.8 | 75.92 +/- 0.8
ULBP (8.3) 74.73 +/- 0.7 74.07 +/- 0.7 75.78 +/- 0.7 | 74.60 +/- 0.6
ULBP (8.,4) 74.73+/- 0.6 74.60 +/- 0.7 7947 +/- 0.7 | 74.60 +/- 0.6
ULBP (8,5) 76.31 +/- 0.6 78.83 +/- 0.6 78.42 +/- 0.7 | 78.30 +/- 0.6
ULBP (8,6) 77.89 +/- 0.6 74.60 +/- 0.6 76.31+/- 0.7 77.24,+/- 0.5
ULBP (8,7) 74.21 +/- 0.6 73.80 +/- 0.6 75.52 +/- 0.7 | 77.24,4/- 0.5
ULBP (8.8) 74.73 +/- 0.6 77.24+/- 0.6 76.31+4/- 0.7 75.66 +/- 0.6
Experiment 3
ULBP
8.1- 8.8) 78.68 +/- 0.6 80.42 +/- 0.6 78.82 +/- 0.7 | 84.33 +/- 0.6
Experiment 4
HOG
(3x3) 78.42 +/- 0.6 82.01 +/- 0.6 76.57 +/- 0.7 | 79.01 +/- 0.8
ggg 82.83 +/- 0.5 83.06+/- 0.5 74.73 +/- 0.4 | 78.04 +/- 0.7
HOG 80.52 +/- 0.6 85.74 +/- 0.4 | 80.00 +/- 0.5 | 83.59 +/- 0.6
(10x10)
Experiment 5
Fusion | 81.84 [ 83.60 [ 82.63 [ 82.01
TABLE III

CORRECT CLASSIFICATION RATES WITH METHOD HOG/LBP FOR NINE
ENSEMBLE CLASSIFIER APPLIED TO THE BEST RESULTS OF TABLE[l B
REPRESENTS: BOOST.

Classifier Left eye (%) Right eye (%) Left eye (%) Right eye (%)
Non occluded Non occluded Occluded Occluded
SVM 82.83 +/- 0.5 85.74 +/- 0.4 80.00 +/-0.5 84.33 +/- 0.6
Bag 79.52 +/- 0.3 84.66 +/- 0.3 81.33 +/- 0.3 82.33 +/- 0.6
Ada-B 78.66 +/- 0.6 84.33 +/- 0.6 81.33 +/- 0.6 81.66 +/- 0.6
Logit-B 80.33 +/- 0.3 79.66 +/- 0.6 80.66 +/- 0.3 83.33 +/- 0.3
Gentle-B 81.00 +/- 0.3 79.66 +/- 0.3 79.66 +/- 0.6 80.66 +/- 0.6
Robust-B 79.66 +/- 0.3 82.33 +/- 0.6 80.66 +/- 0.3 81.33 +/- 0.3
LP-B 81.66 +/- 0.6 83.33 4/ 0.3 81.00 +/- 0.3 82.33 +/- 0.6
Total-B 79.66 +/- 0.6 81.33 +/- 0.6 79.66 +/- 0.6 80.33 +/- 0.3
Rus-B 78.66 +/- 0.3 81.66 +/- 0.3 78.66 +/- 0.6 80.66 +/- 0.3
RF GDI 81.33 +/- 0.6 84.66 +/- 0.5 81.66 +/- 0.6 84.00 +/- 0.3

Table [IV] (test 3, experiments 1 to 5), Table [V] (test 3,
experiments 1 to 5), Table (test 4, experiments 1 to 5),
and Table (test 5, experiments 1 to 5), also show the
correct classification rate. The results on the Table indicate the
performance of the classifier.

In Table [VII] we show the results for test 6 with experiments
from 1 to 5. This test shows results when the training and
testing datasets are obtained by combining the Periocular UND,
Periocular UTIRIS, and Periocular Cross-Eyed databases. The
resulting training dataset has 1,265 images and the Test set has
1,036 images. The results of the correct classification rate are
presented in Table [V_H} The ULBP 8,1 to 8,8 feature extraction
achieved the best results for the left and right eyes. This shows
that when combining the texture features with different scales
(radii) provides better results than using only one scale.

When a dataset is unbalanced (i.e the number of samples
in one class is higher than in the other class - which happens
with UTIRIS and Cross-Eyed 2016 datasets), the evaluated
correct classification rate of a classifier is not representative of
the true performance of the classifier. For binary classification,



TABLE IV
CORRECT CLASSIFICATION RATES FOR THE LEFT AND RIGHT PERIOCULAR
IMAGES TRAINED WITH UND DATABASE (NON OCCLUDED AND
OccLUDED) AND TESTED WITH UTIRIS NIR.

TABLE VI
CORRECT CLASSIFICATION RATES FOR THE LEFT AND RIGHT PERIOCULAR
IMAGES TRAINED WITH UND DATABASE (NON OCCLUDED AND
OCCLUDED) AND TESTED WITH UNAB-GENDER.

Test 1 Test 2 Test 1 Test 2
Method Left eye [ Right eye Left eye Right eye Method Left eye [ Right eye Left eye Right eye
Non occluded [ Non occluded Occluded | Occluded Non occluded | Non occluded Occluded | Occluded
Experiment 1 Experiment 1
Raw [ 55.60+/-0.6 [ 57.53 +/-0.5 | 55.90 +/- 0.8 | 58.00+- 0.3 Raw [ 54.61+/-0.66 [ 53.30 +/- 0.3 [ 53.66 +/- 0.6 [ 55.00+/- 0.6
Experiment 2 Experiment 2
ULBP (8,1) 80.55 +/- 1.0 83,80+/- 1.0 85.09 +/- 0.8 | 85.35 +/- 0.8 ULBP (8,1) | 71.66 +/- 0.9 72.33+/- 0.8 72.66 +/- 0.8 | 73.66 +/- 0.8
ULBP (8,2) 83.55 +/- 0.9 79.18 +/- 0.9 85.09 +/- 0.8 66.32+/- 0.9 ULBP (8,2) | 71.66 +/- 0.7 74.48 +/- 0.7 73.66+/- 0.8 72.33+/- 0.9
ULBP (8.,3) 83.80 +/- 0.8 80.46 +/- 0.8 84.32 +/- 0.7 | 70.44 +/- 0.7 ULBP (8,3) | 72.40 +/- 0.6 76.90 +/- 0.6 78.33 +/- 0.8 | 74.33 +/- 0.5
ULBP (8,4) 80.98 +/- 0.9 68.64 +/- 0.8 76.91+/- 0.7 82.78 +/- 0.6 ULBP (8,4) | 77.33 +/- 0.9 72.33 +/- 0.9 77.33 +/- 0.3 | 72.66 +/- 0.6
ULBP (8,5) 83.03 +/- 0.8 66.84 +/- 0.8 79.18 +/- 0.7 | 84.83 +/- 0.6 ULBP (8,5) | 74.66 +/- 0.3 78.65 +/- 0.3 78.21+/- 0.6 76.66 +/- 0.6
ULBP (8,6) 82.01 +/- 0.8 85.35 +/- 0.6 82.26+/- 0.7 82.26 +/- 0.6 ULBP (8,6) | 77.33 +/- 0.6 73.33 +/- 0.6 74.66+/- 0.7 76.66 +/- 0.6
ULBP (8,7) 81.75 +/- 0.8 81.32 +/- 0.7 81.49 +/- 0.7 | 77.63 +/- 0.6 ULBP (8,7) | 77.33 +/- 0.7 75.66 +/- 0.7 76.33 +/- 0.5 | 76.33 +/- 0.3
ULBP (8.,8) 81.75 +/- 0.6 77.12+/- 0.7 53.21+4/- 0.7 74.04,+/- 0.6 ULBP (8,8) | 76.66 +/- 0.4 80.33 +/- 0.3 75.33+/- 0.7 76.33 +/- 0.3
Experiment 3 Experiment 3
@1 kg | $43-05 | BES8 406 | 84324407 | 6427406 1 g | TO6OH-03 | 7866 +-06 | 7633 +-07 | 8333406
Experiment 4 Experiment 4
(g | TM12#-06 | 72244106 | 6992407 | 5861+ 06 (3, | TT3H-06 | 80664406 | 7533+ 06 | 7566+ 0.6
ggg 57.58 +/- 0.6 65.04+/- 0.6 41.13 +/- 0.7 47.59+/- 0.6 ggg 81.33 +/- 0.3 80.33 +/- 0.6 | 79.33 +/- 0.6 | 81.66+/- 0.6
HOG 52.19 +/- 0.6 60.33 +/- 0.5 56.22 +/- 0.7 57.22+4/- 0.6 HOG 81.66 +/- 0.6 82.33 +/- 0.5 | 77.66 +/- 0.6 80.66+/- 0.6
(10x10) (10x10)
Experiment 5 Experiment 5
Fusion | 85.60 [ 82.26 [ 85.26 [ 86.89 Fusion | 81.0 [ 79.6 [ 80.3 [ 81.6
TABLE V TABLE VII

CORRECT CLASSIFICATION RATES FOR THE LEFT AND RIGHT PERIOCULAR
IMAGES TRAINED WITH UND DATABASE (NON OCCLUDED AND
OCCLUDED) AND TESTED WITH CROSS-EYE-2016 NIR.

Test 1 Test 2
Method Left eye [ Right eye Lefteye [ Right eye
Non occluded | Non occluded Occluded [ Occluded
Experiment 1
Raw [ 60.61+/-03 [ 59.30 +/- 0.5 [ 59.33 +/- 0.6 | 59.00+/- 0.6
Experiment 2
ULBP (8,1) 68.96 +/- 0.9 69.38+/- 0.8 7240 +/- 0.8 | 74.69 +/- 0.8
ULBP (8,2) 68.94 +/- 0.7 74.48 +/- 0.7 70.63+/- 0.8 66.98+/- 0.9
ULBP (8.3) 72.40 +/- 0.6 79.90 +/- 0.6 78.85 +/- 0.7 | 74.90 +/- 0.7
ULBP (8.4) 77.19 +/- 0.9 52.08 +/- 0.9 7740 +/- 0.7 | 71.88 +/- 0.6
ULBP (8.,5) 72.67 +/- 0.6 68.65 +/- 0.6 80.21+/- 0.9 72.29 +/- 0.6
ULBP (8,6) 77.50 +/- 0.6 77.29 +/- 0.6 75.00+/- 0.7 74.58 +/- 0.6
ULBP (8,7) 77.50 +/- 0.7 78.23 +/- 0.7 79.48 +/- 0.5 | 76.35 +/- 0.6
ULBP (8,8) 78.85 +/- 0.6 79.90 +/- 0.9 77.92+4/- 0.7 75.10 +/- 0.6
Experiment 3
(Sl’Jl]stI”S) 75.10+/- 0.6 76.88 +/- 0.6 76.04 +/- 0.7 73.96+/- 0.6
Experiment 4
HOG
(3x3) 73.54 +/- 0.9 71.56 +/- 0.6 75.10 +/- 0.7 | 65.10 +/- 0.6
HOG
(5x5) 67.08 +/- 0.6 74.79 +/- 0.6 57.92 +/- 0.7 51.88+/- 0.6
HOG
74.58 +/- 0.6 63.23 +/- 0.5 55.21 +/- 0.9 57.29+/- 0.6
(10x10)
Experiment 5
Fusion | 7171 [ 71.92 [ 70.73 | 7177

such as problems like gender classification, we can derive two
indicators: True Positive Rate(TPR) and True Negative Rate
(TNR). Those indicators are commonly used to evaluate binary
classifiers. TPR can be expressed as TP/(TP + FN), and
TNR as TN/(TN + FP).

In general, the True Negative Rate refers to the correct
classification rate on the class negative (male), and the True
Positive Rate refers to the correct classification rate on the class
positive (female). We can conclude that the male prediction is
more robust. This assumption is based on the high value of
TPR and the low level of TNR.

CORRECT CLASSIFICATION RATES FOR TRAINING THE LEFT AND RIGHT
PERIOCULAR IMAGES WITH A TRAINING SET OF
UND+UTIRIS+CROSS-EYED DATABASES AND TESTING WITH A TEST SET
OF UND+UTIRIS+CROSS-EYED. TNR: TRUE NEGATIVE RATE. TPR:
TRUE POSITIVE RATE, MCC: MATTHEWS CORRELATION COEFFICIENT.

Test 6
Method Left eye (%) Right eye (%)
CCR] TPR [ TNR [ MCC| CCR] TPR | TNR | MCC
Experiment 1
Raw [ 6533] 67.33] 64.33] 0.44 | 64.33] 6433] 62.33] 045
Experiment 2
ULBP(8,1) | 81.46| 81.11| 63.87| 0.46 | 82.79 | 87.43| 76.40| 0.62
ULBP(8,2) | 7847 | 82.11| 64.43| 0.51 80.56 | 85.54| 72.75| 0.57
ULBP(8,3) | 76.25| 80.97| 62.75| 047 | 76.02| 8238 | 67.13 | 0.47
ULBP(8,4) | 7741 | 8239 | 66.11| 0.50 | 81.72 | 86.66| 75.00 | 0.60
ULBP(8,5) | 79.15| 84.19| 70.03 | 0.54 | 81.43 | 86.05| 73.60| 0.59
ULBP(8,6) | 76.35| 8220 | 66.39| 0.48 | 79.98 | 85.10| 71.91| 0.56
ULBP(8,7) | 77.70| 82.46| 66.11| 0.50 | 78.92 | 8239 | 64.89| 0.52
ULBP(8,8) | 77.22 | 82.43| 6639 | 049 | 78.05| 82.45| 65.73| 0.51
Experiment 3
ULBP ‘ 83.49 ‘ 84.59 ‘ 70.35 | 0.56 ‘ 83.56 ‘ 87.46 ‘ 76.12 ‘ 0.64
(8,1- 8,8)
Experiment 4
HOG
(3x3) 79.63 | 84.11| 69.47| 0.55 | 82.79| 86.76| 74.72| 0.62
g?g 82.14 | 84.59| 69.11| 0.60 | 82.59| 8527 | 70.79 | 0.61
HOG 80.41| 84.60| 68.35| 0.63 | 81.72| 84.68 | 69.66| 0.59
(10x10)
Experiment 5
Fusion [ 79.79] 80.63] 79.38] 0.52 [ 80.33] 92.70 [ 77.02] 0.57

Also in Table the Matthews Correlation Coefficient
(MCC) [43] of the best results reached for all of the experiments
from Table [ to Table [VIIl MCC takes into account true and
false positives and negatives. It is a balanced measure which
can be used even if the classes are of very different sizes. The
MCC is a correlation coefficient between the observed and
predicted binary classifications. MCC values returns a value
between —1 and +1. A coefficient of +1 represents a perfect
prediction, 0 no better than random prediction and —1 indicates
total disagreement between prediction and observation.



Fig. 4. Blue pixels represent incremental increase of feature selected from a random female image. From left to right: 1,000; 2,000; 3,000; 5000; 10,000
features.

TABLE VIII
SUMMARY OF THE BEST RESULTS FROM TABLE[[II TO TABLE[VIIl THE
THIRD COLUMN SHOWS A MCC FOR THE EACH EXPERIMENT.

Test Method MCC
Test 1 HOG(10x10) 0.61
Test 2 | ULBP(8,1-8,8) 0.60
Test 3 Fusion 0.62
Test 4 ULBP(8,5) 0.54
Test 5 HOG(10x10) 0.59
Test 6 | ULBP(8,1-8,8) 0.64

B. Feature Relevance

In this paper, we achieved a correct classification rate for
the left and the right eyes of 82.83% and 85.74% with Non-
occluded images and 80.00% and 84.33% with Occluded
images. The best result obtained when using a combination
of features was 83.60%. When we merged all of the features
extracted (raw pixels, shape, texture) with the same scale did
not improve the results using texture or shape alone. Therefore,
we estimated the histogram from pixels and concatenated with
the histograms of ULBPs and HOGs to improve the results and
reduces the length of feature vectors. Overall, the raw pixel
produced the worst results.

As we have shown, the iris information is not relevant to
classify gender when we used periocular images. Therefore, the
most relevant feature for the classification should be located
on the surrounded area of the iris (not in the iris). In order to
demonstrate our statement, we estimate the relevance of each
feature using the Gini Index with the XgBoost algorithm [44].
We tested several threshold values until we achieved the best
results which were the correct classification rate of 89.22%
when using 4,900 features. This is shown in Table

The relevance of the features was calculated explicitly for
each attribute in the dataset. The attributes are ranked and
compared to each other. In order to estimate the group of
most relevant features, we use a decision tree. In the decision
tree, we split the groups by using the relevance information
weighted by the number of observations in the node. This differ
from traditional decision tree methods where the threshold is
used instead of relevance.

The performance was evaluated using the purity measure
(Gini index). We select the split points to compute the relevance
of the tree by averaging across it. See Table

In Figure @] we show an example of an image where the
most relevant features located with the XgBoost algorithm
are highlighted. This image was randomly selected from the
periocular UND database. Each image has 19,200 pixels (160 x
120 ) and shows the increment of the highlighted features

from 500 to 10, 000. If we consider more features (pixels) than
necessary, the redundancy of the information increase as shown
in the figure El (d) with 10,000 features.

Our initial experiments indicated that the relevant features
for gender classification from periocular images are spread
throughout the whole periocular area with exception of the iris.
We validated our hypothesis that iris information contained in
periocular images is less relevant than the information outside
the iris for gender classification. The NIR images add extra
information compared to VIS images. Thus, we can remove this
area to improve the image-processing stage and gender classifi-
cation. There are clear computational advantages to predicting
gender using the same images like those in iris-recognition
systems without needing other texture representations.

C. Statistical Test

We employed an ANOVA test for functional data [43]
to analyze the results of Tables [} [[V] [V] and [VII| and to
confirm that the differences in gender-classification rates of
the predictive models, between Non occluded and Occluded
periocular images, are not statistically significant. To get this,
for each database we performed the experiment five times
through a 5-fold cross-validation, and the average correct
classification rate results were submitted to the ANOVA test.
We applied this method to the results for different periocular
images, from the left and right eyes, and also for different
features extracted, from the Non occluded and Occluded iris
images.

One of the advantages of the ANOVA procedure for
functional data is that it allows us to deal with the multiplicity
problem, which arises when a large number of statistical test
are performed simultaneously. In this case, if decisions about
the individual hypotheses are based on the unadjusted marginal
p-values, then there is usually a high probability that some of
the true null hypotheses will be rejected.

For each experiment, the correct classification rates of
different extracted features are modeled as functions, which

are compared through the norm:
L 1/2
(2)

el = (| x2<t>dt)l/2 -(3

where L is the number of features considered and x; is the
associated correct classification rate.

The p-values of Cuevas et al. [43] procedure are calculated
in terms of the bootstrap simulations where the null hypothesis
is Hy: the mean precision functions between Non occluded

€5



TABLE IX
FEATURES SELECTED FROM NON OCCLUDED VERSUS OCCLUDED UND DATASET USING THE BEST RESULTS WITH XGBOOST ALGORITHM FROM TABLE ]
AND DIFFERENT THRESHOLDS VALUES. N= NUMBER OF FEATURES SELECTED, CCR= CORRECT CLASSIFICATION RATE.

LEFT EYE RIGHT EYE LEFT EYE [ RIGHT EYE
Non Occluded Occluded
Thresh. N CCR.% Thresh. N CCR.% Thresh. N CCR.% Thresh. N CCR.%
0.00000 | 9,000 81.27 0.00000 | 9,000 85.94 0.00000 | 9,000 78.41 0.00000 | 9,000 84.35
0.00151 2,900 81.27 0.00152 | 2,900 85.94 0.00156 | 2,900 78.41 0.00148 | 3,020 84.35
0.00452 | 7,900 82.22 0.00759 | 2,900 85.94 0.01252 1,100 80.95 0.00890 | 2,100 79.55
0.00754 | 2,800 81.90 0.01366 1,000 80.83 0.00782 | 3,200 81.59 0.00742 | 3,200 81.15
0.00302 | 1,470 83.90 0.00303 1,290 86.58 0.00313 1,400 79.37 0.01039 1,900 80.51
0.01056 1,500 78.41 0.0067 4,900 89.22 0.00469 | 8,200 80.00 0.00593 | 5,000 82.75
0.01207 8,000 76.83 0.00455 8,100 87.22 0.01095 1,600 81.00 0.00455 | 7,200 83.07
0.00603 | 5,300 70.79 0.00910 1,900 84.35 0.00939 | 2,100 79.41 0.00297 1,300 83.39

and Occluded images are equal”. A p-value p < 0.05 indicates
strong evidence against the null hypothesis, so we can reject
the null hypothesis. A p-value p > 0.05 shows weak evidence
against the null hypothesis, so we fail to reject the null
hypothesis. Since the p-values 0.1789, 0.2146 and 0.1675 are
not lower than the significance level o = 5%, then there is no
statistical evidence that there exists a difference in the mean
correct classification rate obtained in the gender-classification
using Non occluded and Occluded iris images. See Figure [5}

[6] and [7] in appendix

VII. CONCLUSIONS

In this paper we presented competitive gender-classification
results with respect to the state of the art. Even when using
several databases captured in different conditions. Our approach
does not need the image to be centered by the pupil.

We showed that periocular features have high quality
information for classifying gender. The results obtained for
classification are similar to other approaches even-though we
use fewer features. Most traditional methods use several stages
such as acquisition, segmentation, normalization and encoding
information while we only use the acquisition stage. We also
show the high redundancy (not useful information) present in
the images. Therefore, it is possible to reduce the number of
features (pixels) using the XgBoost algorithm and to select the
most relevance features.

The highest correct classification rate reported in previous
works was 85.7% [28]. Also, Kuehlkamp et al. approach [32],
complement our result and to validate our conclusion with
the analysis of the automatic feature extraction method using
deep learning methods. These results confirm that periocular
information reaches better results.

In this paper, we achieve a correct classification rate of
89.22% when using the Xgboost algorithm with only 4,900
features and a threshold of 0.00607 for the right eye. However,
our results were tested on databases that were not used for
training the best parameters. This shows the robustness of our
method. Our approach is fully automatic and does not require
initialization as state of the art techniques. We use a circular
segmentation mask instead of the square one used in [28]]. This
allows us to better represent the iris shape.

In order to evaluate the results, we included two new
databases: Periocular UND database (a subset manually labeled
for gender-classification and automatically segmented and

masked) and UNAB-Gender a homemade database. Further-
more, we presented results that showed comparable cor-
rect classification rate for NIR disjointed with gender-from-
periocular databases using the same images as those used
in iris-recognition systems. This contribution suggests that
Non occluded and Occluded information are very similar, and
therefore the NIR information obtained from the iris does
not improve gender classification. Gender can be classified
with periocular NIR images without the need to include iris
information.

The cross-performance analysis using different datasets with
different image conditions and captured with different sensors,
shows that shape and texture information is more relevant than
intensity information. Therefore, we can reduce the amount
of information required by the classifiers (SVM and ensemble
methods). The concatenation of the texture feature at different
scales (instead of using only one) from the same image such
as ULBP improves the gender classification.

The XgBoost algorithm was used to select the most relevant
features of the periocular image. This allows us to significantly
reduce the number of features selected by only using the most
relevant ones. This improves the gender-classification rates.

VIII. FUTURE WORK

The iris information is an unique pattern have been shown
to be stable over the years. This still can be not established
for periocular images because of using some skin information
areas. The skin changes with years and some wrinkles appear.
Therefore, much more work must be done before establishing
a general conclusion even create a new dataset to be able to
measure these changes and the validation of the results. This
work going in that direction.
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of the average precision functions are shown. On the right is the kernel estimator of the density of the statistic proposed by (see Cuevas et al., 2004) for the

computation of the p-value.
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rate functions for the different features studied. From 1 up to 12: ULBP 8,1; ULBP 8,2; ULBP 8,3; ULBP 8,4; ULBP 8,5; ULBP 8,6; ULBP 8,7; ULBP 8,8;
ULBP 8,1 to 8,8; HOG 3 x 3; HOG 5 x 5; HOG 10 x 10 for occluded images (Green), Non-occluded (Red) and their total average (Black). At the center,

bootstrap simulations of the average precision functions are shown. On the right is the kernel estimator of the density of the statistic proposed by [see Cuevas

et al., 2004] for the computation of the p-value.
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Fig. 7. ANOVA test for functional data for periocular images trained with UND Periocular and tested with Cross-Eye-2016 NIR. Left side: the correct
classification rate functions for the different features studied. From 1 up to 12: ULBP 8,1; ULBP 8,2; ULBP 8,3; ULBP 8,4; ULBP 8,5; ULBP 8,6; ULBP 8,7;
ULBP 8,8; ULBP 8,1 to 8,8; HOG 3 x 3; HOG 5 x 5; HOG 10 x 10 for occluded images (Green), Non-occluded (Red) and their total average (Black). At the
center, bootstrap simulations of the average precision functions are shown. On the right is the kernel estimator of the density of the statistic proposed by [see
Cuevas et al., 2004] for the computation of the p-value.



	I Introduction
	II State of the Art
	III Methods
	III-A Intensity images
	III-B Texture - Uniform Local Binary Patterns (ULBP)
	III-C Shape - Histogram of gradients

	IV Databases
	IV-A UNAB-Gender Database

	V Experiments and Results
	V-A Experiments
	V-B Tests for validation

	VI Discussion
	VI-A Gender Classifications results
	VI-B Feature Relevance
	VI-C Statistical Test

	VII Conclusions
	VIII Future work
	IX Acknowledgements
	References
	X Appendix

