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Abstract

The study of the transport and noise properties of graphene-based devices requires the com-

putation of the potential profile as a function of the applied bias voltages. However, an exact

solution for the potential profile involves a complete self-consistent treatment of the electrostatic

and transport equations, which is computationally very expensive. Here, generalising the approach

proposed by Das et al., the authors describe an approximate method that allows the evaluation of

the potential profile by properly modifying, as a function of the bias voltages applied to the gates,

the profile for a reference bias point, which is supposed to be known. The proposed approach is

not very demanding from the computational point of view and can be useful for simulations aimed

at the interpretation of experimental results or at device design.

1



I. INTRODUCTION

Since the end of the past century, a significant research effort has been spent on the

proposal, analysis and fabrication of novel devices at the nanoscale, based on new ma-

terials, geometries, technological solutions or operating principles. For example, the fab-

rication of nanodevices based on III-V heterostructures, characterised by a high-mobility

two-dimensional (2D) channel, has allowed to study transport and noise [1–7] in the bal-

listic regime. Moreover, devices based on new geometries and operating principles (see

e.g. Ref. [8]) have been proposed to overcome the scaling limits of the traditional CMOS

(Complementary Metal-Oxide-Semiconductor transistor) circuits.

In the last decade, particular attention has been devoted to electronics based on car-

bon allotropes and in particular on graphene [9–15]. Graphene is a 2D honeycomb lattice

of carbon atoms, which was isolated from graphite in 2004 by Novoselov et al. [16]. It

exhibits very interesting electric properties: unconfined graphene has an extremely high

room-temperature mobility and, being only one-atom thick, allows a very effective electro-

static control by means of nearby gates. Therefore several electronic applications have been

proposed for this material, ranging from radiofrequency devices, to electrochemical and light

sensors, to digital transistors [12]. An obstacle to the use of graphene in digital electronics

is represented by the absence of an energy gap, a problem which can be al least partially

overcome with the introduction of lateral confinement and doping or of bilayer graphene,

that exhibits a gap in the presence of an orthogonal electric field [17, 18]. Another interest-

ing aspect is that, in an envelope-function description, the transport equation of monolayer

graphene is formally represented by the Dirac equation [11, 19], that is the same equation

which describes the relativistic behaviour of massless fermions, and thus it is characterised

by phenomena, such as Klein tunneling, which typically appear only at relativistic speeds.

A numerical study of the conductance and noise properties of graphene-based devices can

be performed with different levels of approximation. For small devices, containing a limited

number of atoms, an ab initio or tight-binding simulation [18] of the whole device is possible,

whereas for larger graphene samples an envelope-function approach, based on the solution

of the Dirac equation [20, 21], is generally preferred, in order to reduce the computational

times. A very efficient solution of the Dirac equation in graphene ribbons can be performed,

for example, using a Fourier-based approach [14, 21] in the reciprocal space or, equivalently,

2



a sinc-based method [22] in the direct space.

In all cases, an accurate simulation of graphene-based devices requires the self-consistent

solution of the electrostatic and transport equations. Indeed, the solution of the Poisson

equation yields the potential profile, which is required to compute the transport properties

of the device. However, in its turn, the solution of the transport equation yields the wave

function across the device and thus, in a mean-field approximation, the charge density due

to mobile carriers. Therefore the two coupled equations should be solved iteratively until a

self-consistent solution is achieved.

This procedure is computationally very expensive, and therefore in several cases, espe-

cially when a preliminary, coarse analysis of the device properties is needed, the use of a less

accurate potential landscape, obtained with the procedure described in the following, can

be preferable.

The method we propose is an extension of that described by Das et al. [23, 24], who

consider the effect of a single biased gate on the Fermi energy (or, equivalently, on the

potential) of a graphene sheet, without, however, explicitly providing the possibility to

include other contributions to the potential profile.

In general, the potential profile in a graphene device derives from the combined action of

several contributions: our approach allows the inclusion of the effect of a number of inde-

pendently biased gates, as well as of a bare potential not deriving from capacitive couplings.

II. DESCRIPTION OF THE METHOD

Let us introduce a coordinate frame x, y in the graphene plane, where we consider the

electrostatic action of several gates (in Fig. 1, as an example, we represent a graphene device

with two biasing gates).

In each point (x, y) of the graphene sheet, we can express the potential energy U(x, y)

as the sum of a bare potential U0(x, y), which is supposed to be known, and of a variation

∆U(x, y) (with respect to U0(x, y)) induced by the electrostatic action of the (NG, in general)

biased gates:

U(x, y) = U0(x, y) + ∆U(x, y) . (1)

In general, if U0(x, y) is known when the gates are biased at the voltages VGi0 , the term

∆U(x, y) represents the contribution to U(x, y) of the variations of the gate voltages with
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FIG. 1. Sketch of a graphene transistor with two biasing gates: a backgate and a top gate. On

the right, we represent the energy dispersion relation of unconfined graphene near each of the

Dirac points where the conduction band touches the valence band, as a function of the wave vector

(kx, ky) measured from the Dirac point.

respect to VGi0 .

The term U0(x, y) includes the effect of the graphene sheet doping, of the charged im-

purities located both inside the dielectric separating the graphene sheet from the gates and

inside the sheet itself, and in general all the contributions not deriving from the gate voltages

included in the term ∆U(x, y).

The quantity U0(x, y) is often known from experimental data or obtained in an approxi-

mate form through simplified analytical or semi-analytical approaches.

For example, if the doping profile is known, its effect on the bare potential U0 can be

obtained with a semiclassical approach. Moreover, the contribution to U0 of charged im-

purities randomly located outside the graphene sheet can be taken into consideration with

techniques, which are available in the literature, to approximate the screened disordered

potential they induce on the graphene sheet, for example modelling the contributions of the

impurities with Gaussian functions with randomly distributed amplitudes [25].

In detail, in Ref. [26], Koschny and Schweitzer have shown that a disordered potential

given by the sum of Gaussian contributions:

U(~r) =
2W

η
√

2πnimp

∑

i

αie
−|~r−~Ri|

2/η2 , (2)

(where η/
√
2 is the variance of the Gaussians, W is the strength of the disordered potential,

αi is a random variable uniformly distributed between -1 and 1 and the random positions ~Ri
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are uniformly distributed, with concentration nimp, over the considered area) has a Gaussian

autocorrelation function:

〈U(~ri)U(~rj)〉 ≈
W 2

3
e−|~ri−~rj |

2/(2η2) . (3)

In the case of disordered graphene, Adam et al. [27] have provided relations between the

Gaussian autocorrelation function and the physical parameters of the problem: the impurity

concentration nimp, the distance d of the impurities from the graphene plane, the effective

permittivity εr and the Fermi energy EF = (~vF )kF (where ~ is the reduced Planck constant,

vF is the Fermi velocity of graphene and kF is the Fermi wave vector). They have expressed

the autocorrelation function as:

〈U(~ri)U(~rj)〉 ≈
K0(~vf )

2

2πη2
e−|~ri−~rj |

2/(2η2) , (4)

(where the dimensionless parameter K0 is a function of the disorder strength, range and

concentration, whereas the correlation length η represents an estimate of the typical size of

the electron-hole puddles in the graphene sample). Using the definitions:

rs =
e2

4πε0εr(~vF )
, z = 4kFd , E1[x] =

∫ ∞

x

e−t

t
dt (5)

(where e is the modulus of the electron charge, and the effective relative permittivity εr is

given by the average between the relative permittivities of the media above and below the

graphene sheet), they have found that

K0 =
1

4r2s

(

D0

C0

)2

, η =
1

√
nimp

D0

4πr2s

1

(C0)3/2
, (6)

with

C0(z) = −1 +
4E1[z]

(2 + πrs)2
+

2e−zrs
1 + 2rs

+ (1 + 2zrs)e
2zrs(E1[2zrs]− E1[z(1 + 2rs)]) ,

D0(z) = 1− 8rszE1[z]

(2 + πrs)2
+

8e−zrs
(2 + πrs)2

− 2e−zrs
1 + 2rs

− 2zrse
2zrs(E1[2zrs]− E1[z(1 + 2rs)]) .

(7)

Substituting the actual physical parameters into these relations, the autocorrelation function

of the potential, and thus the values required to simulate the contribution of the charged

impurities through a superposition of Gaussian functions, can be obtained.

Once the potential profile U0(x, y) is known, the presence of gate bias voltages

VGi = VGi0 +∆VGi (8)
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(differing by the quantities ∆VGi from the values VGi0 for which U0(x, y) has been determined)

alters the value of the graphene potential profile U(x, y) by an amount ∆U(x, y).

In order to estimate ∆U(x, y), we have to take into consideration the charge that the

gate voltages induce in the graphene sheet.

The variations ∆VGi of the gate voltages with respect to the reference voltages VGi0 cause

in each point (x, y) of the graphene layer a variation ∆ρ(x, y) of the charge density ρ(x, y)

with respect to the value ρ0(x, y) which would otherwise be present. Therefore we can

express the 2D charge density in graphene as

ρ(x, y) = ρ0(x, y) + ∆ρ(x, y) , (9)

using a naming of the variables analogous to that used in Eq. (1).

We assume to work in quasi-equilibrium conditions, that is, with µS ≈ µD ≈ EF (where

µS and µD are the electrochemical potentials of the source and of the drain, respectively). If

the potential is slowly varying [28], we can also assume that the energy dispersion relations

are locally shifted by the value of the potential energy U(x, y). Therefore we can approximate

the local density of states (which would in principle require the knowledge of the wave

function all over the graphene sample and thus the complete self-consistent solution of the

electrostatic and transport equations) with the density of states evaluated in E − U(x, y)

(where E is the energy).

The total charge density can be easily obtained by summing up the density of the holes

in the valence band, multiplied by the hole charge e, and the density of the electrons in

the conduction band, multiplied by the electron charge −e. Under the approximation of

slowly varying potential, these densities are obtained with an energy integration of the

density of states (evaluated in E − U) multiplied by the occupation function, which in

the case of electrons corresponds to the Fermi-Dirac function f(E − EF ) (where f(x) =

1/(1 + exp(x/(kBT ))), with kB the Boltzmann constant and T the absolute temperature),

and in the case of holes to 1− f(E − EF ).

Therefore in each point (x, y) the total charge density can be approximately written as:

ρ = ρ0 +∆ρ = e

∫ U0+∆U

−∞

DOS(E − U0 −∆U)[1− f(E − EF )] dE

− e

∫ ∞

U0+∆U

DOS(E − U0 −∆U)f(E − EF ) dE

(10)
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where, because of the shift of the energy bands, the energy level where the conduction band

touches the valence band corresponds to the potential energy U(x, y) (see Fig. 1). In this

equation, we have expressed U(x, y) and ρ(x, y) using Eqs. (1) and (9), and we have omitted

the dependence on x and y, for the sake of simplicity.

Notice that when the hypothesis of quasi-equilibrium is not verified, the method can be

extended modifying Eq. (10) as follows (as long as no inelastic scattering is assumed in the

device):

ρ = ρ0 +∆ρ = e

∫ U0+∆U

−∞

DOS(E − U0 −∆U)[1− f(E − EFD
)] dE

− e

∫ ∞

U0+∆U

DOS(E − U0 −∆U)f(E − EFS
) dE ,

(11)

where EFS
and EFD

are the Fermi energies at the source and drain contacts. Indeed, in

the absence of inelastic scattering, electrons and holes keep the energy distribution and the

Fermi energy of their emitting contact (the source and the drain, respectively) throughout

the device.

We can obtain Eq. (10) also observing that charge neutrality is achieved when there

is a π electron for each carbon atom, that is, when the valence band is completely full,

whereas the conductance band is empty: in that condition the charge of the electrons is

exactly neutralised by the charge of the nuclei of the carbon atoms. Therefore, ρ(x, y) can

be obtained computing the charge (per unit area) of all the occupied electron states and

subtracting the electron charge corresponding to a full valence band. Separating the total

electron charge into those deriving from the valence and from the conduction bands, the

previous expression is recovered:

ρ = −e

∫ +∞

−∞

DOS(E − U)f(E − EF ) dE −
[

−e

∫ U

−∞

DOS(E − U) dE

]

= −e

∫ U

−∞

DOS(E − U)f(E − EF ) dE − e

∫ +∞

U

DOS(E − U)f(E − EF ) dE

+ e

∫ U

−∞

DOS(E − U) dE

= e

∫ U

−∞

DOS(E − U)[1− f(E − EF )] dE − e

∫ ∞

U

DOS(E − U)f(E − EF ) dE ,

(12)

where U = U0 +∆U and we have omitted again the spatial dependence.

This expression can be further simplified if we are simulating a device operating at low

temperature. In such a case, the Fermi-Dirac function can be approximated with the unit
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step function u:

f(E − EF ) = u(EF − E) (13)

(where u is equal to 1 if its argument is positive and to 0 if it is negative). Then, Eq. (10)

can be rewritten as:

ρ = ρ0 +∆ρ =

[

e

∫ U0+∆U

EF

DOS(E − U0 −∆U) dE

]

u(U0 +∆U − EF )

+

[

−e

∫ EF

U0+∆U

DOS(E − U0 −∆U) dE

]

u(EF − U0 −∆U)

(14)

(where the step-function factors u which multiply the two terms between square brackets

express the fact that ρ is equal to the first term if EF < U and to the second term if

EF > U). More briefly, we have that:

ρ0 +∆ρ = e

∫ U0+∆U

EF

DOS(E − U0 −∆U) dE . (15)

In each point (x, y) of the graphene layer, the charge density ρ0(x, y) corresponding to the

absence of gate voltage shifts ∆VGi can be easily computed from the knowledge of U0(x, y)

setting ∆U to zero in the previous expression:

ρ0 = e

∫ U0

EF

DOS(E − U0) dE . (16)

Instead, when the gate voltages are shifted by ∆VGi, they electrostatically induce a further

charge density ∆ρ(x, y) in the graphene sheet, which is obtained through a variation of the

number of states that are occupied by electrons at the considered Fermi energy (established

by the potential at the contacts). Since the density of states in graphene is finite, this

∆ρ(x, y) is at the origin of the finite variation ∆U(x, y) of the potential: the appearance of

∆U(x, y) causes the shift (with respect to the Fermi energy) of the local energy dispersion

relations (and thus the change in the local density of states) which generates the required

variation of the number of occupied electron states.

In order to write a simplified electrostatic relation between the voltage and charge varia-

tions, we introduce the geometrical capacitances per unit area CGi(x, y) (which are assumed

to be known, once the device geometry has been established) between each gate and the

generic point (x, y) of the graphene layer.

For each point (x, y) we can consider an equivalent circuit relating the voltage variations,

in which the gates are coupled to the graphene region by means of capacitors with capaci-

tance CGi(x, y), with a voltage ∆VGi on the plate corresponding to the gate and a voltage
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FIG. 2. Equivalent circuit that relates the variations of the gate voltages to the change of the

potential on the graphene plane. For example, here we consider two biasing gates.

∆U/(−e) on the plate corresponding to the graphene elementary area. As a consequence, the

overall variation of charge per unit area ∆ρ(x, y) is the sum of the charges on the graphene

plates of the NG capacitors (which represent the charges induced in the graphene sheet by

the voltages ∆VGi), according to

∆ρ =
∑

i

CGi

(

∆U

−e
−∆VGi

)

(17)

(we divide ∆U by −e in order to convert it into the corresponding potential).

If only small variations were considered, the equivalent circuit could be completed with the

graphene quantum capacitance CQ (between the graphene flake and the reference node) [29],

which relates ∆ρ and (∆(EF −U))/(−e) (where EF −U describes the position of the Fermi

energy with respect to the energy bands) through the density of states DOS(E − U) of

graphene (see Fig. 2).

More in detail, the quantum capacitance is defined as:

CQ =
∆ρ

(∆(EF − U))/(−e)
=

−e∆n

(∆(EF − U))/(−e)
= e2

∆n

∆(EF − U)
(18)

(where n is the electron concentration in the graphene flake and in our case ∆(EF − U) =

−∆U). From a circuit point of view, enforcing the condition of charge neutrality in the node

which represents the graphene sheet, we have that

CQ

(

∆U

−e

)

+
∑

i

CGi

(

∆U

−e
−∆VGi

)

= 0 . (19)

From this relation, it follows that

∆ρ = −CQ

(

∆U

−e

)

=
∑

i

CGi

(

∆U

−e
−∆VGi

)

, (20)
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which corresponds to Eq. (17).

Since (in the hypotheses of quasi-equilibrium and low temperature)

n =

∫ EF

−∞

DOS(E − U) dE =

∫ EF−U

−∞

DOS(α) dα (21)

(with α = E − U), if small variations are considered the quantum capacitance can be

expressed as

CQ ≈ e2
∂n

∂(EF − U)
= e2DOS(EF − U) . (22)

In general, the quantum capacitance written in this form depends on the relative position

of the potential energy with respect to the Fermi energy, and thus is not constant over

significant variations of the gate voltages.

In our calculation we do not explicitly consider the quantum capacitance, but we instead

describe the relation (governed by the density of states of graphene) between ∆ρ and ∆U

through Eq. (15), which connects the total quantities ρ and U , including their variations.

Even large variations of the gate voltages are allowed, since Eq. (10) relates the total quanti-

ties (and thus does not involve differential parameters) and in Eq. (17) only the geometrical

capacitances, which are constant (i.e. not depending on the particular values of the energies)

parameters, appear.

Therefore, in order to compute the variation ∆U(x, y) resulting from the application of

the voltages ∆VGi, we just have to solve the system made up of Eqs. (15) and (17):


















ρ0 +∆ρ = e

∫ U0+∆U

EF

DOS(E − U0 −∆U) dE

∆ρ =
∑

i

CGi

(

∆U

−e
−∆VGi

) (23)

for each point (x, y) of the graphene layer (we recall that ρ0, ∆ρ, U0, ∆U , and CGi depend

on x and y), where U0 is known and ρ0 is given by Eq. (16). This corresponds to solving

the equation (substituting ∆ρ from the second equation into the first equation):

ρ0 +
∑

i

CGi

(

∆U

−e
−∆VGi

)

= e

∫ U0+∆U

EF

DOS(E − U0 −∆U) dE . (24)

In the case of unconfined monolayer graphene (which is also a good approximation for

large ribbons) and for the low energies for which the envelope-function approximation is

valid, the density of states is given by [11]

DOS(E) =
2|E|

π(~vF )2
(25)
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(for smaller ribbons this expression should be replaced with that derived in Ref. [29]).

Therefore, Eq. (15) becomes:

ρ0 +∆ρ =
2e

π(~vF )2

∫ U0+∆U

EF

|E − U0 −∆U | dE . (26)

Since for EF < U0 +∆U the argument of the modulus is negative in the overall integration

range, whereas for EF > U0 +∆U it is positive, this relation can be rewritten as:

ρ0 +∆ρ = sign(EF − U0 −∆U)
2e

π(~vF )2

∫ U0+∆U

EF

(E − U0 −∆U) dE . (27)

The integral is easily solvable performing the change of variable ǫ = E − U0 −∆U :

ρ0 +∆ρ = sign(EF − U0 −∆U)
2e

π(~vF )2

∫ 0

EF−U0−∆U

ǫ dǫ

= sign(U0 +∆U − EF )
e

π(~vF )2
(U0 +∆U − EF )

2 .

(28)

Therefore the system (23) becomes:















ρ0 +∆ρ = sign(U0 +∆U − EF )
e

π(~vF )2
(U0 +∆U − EF )

2

∆ρ =
∑

i

CGi

(

∆U

−e
−∆VGi

)

,
(29)

where U0 is known and ρ0 is given by

ρ0 = sign(U0 − EF )
e

π(~vF )2
(U0 − EF )

2 . (30)

The resulting equation (24) becomes

ρ0 +
∑

i

CGi

(

∆U

−e
−∆VGi

)

= sign(U0 +∆U − EF )
e

π(~vF )2
(U0 +∆U − EF )

2 . (31)

In order to find the value of ∆U , we have to solve this equation twice, once for each of

the two possible signs of U0 +∆U − EF .

If U0 +∆U − EF ≥ 0 the equation becomes

[

e

π(~vF )2

]

(∆U)2 +

[

2e

π(~vF )2
(U0 − EF ) +

∑

i

CGi

e

]

∆U

+

[

e

π(~vF )2
(U0 − EF )

2 − ρ0 +
∑

i

CGi∆VGi

]

= 0 ,

(32)
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FIG. 3. Approximate representation, as a function of ∆U , of the two sides of Eq. (34). The

meaning of α, β, and χ is explained in the text. The actual position of the two curves depends

on the values of these quantities. The dashed lines represent the axes of the reference frame. The

solution ∆U of Eq. (34) is given by the abscissa of the intersection point between the two curves.

while for U0 +∆U − EF < 0 it becomes

[

e

π(~vF )2

]

(∆U)2 +

[

2e

π(~vF )2
(U0 − EF )−

∑

i

CGi

e

]

∆U

+

[

e

π(~vF )2
(U0 − EF )

2 + ρ0 −
∑

i

CGi∆VGi

]

= 0 .

(33)

In both cases, it is a second degree equation in ∆U : a(∆U)2 + b(∆U) + c = 0. If the

discriminant b2 − 4ac is negative, no solution exists for the corresponding choice of the sign

of U0 +∆U −EF . Instead, if the discriminant is positive, we have to check if one of the two

possible solutions ∆U = (−b ±
√
b2 − 4ac)/(2a) is consistent with the hypothesis that has

been made for the sign of U0 +∆U − EF .

As one could expect from a physical point of view, the problem has a single solution.

This can be deduced rewriting Eq. (31) as:

(

ρ0 −
∑

i

CGiVGi

)

−
(

∑

i

CGi

e

)

∆U = sign ((U0 − EF ) + ∆U)
e

π(~vF )2
((U0 − EF ) + ∆U)2 .

(34)

If we plot the two sides of this equation as a function of ∆U , we observe that the left-hand

side is a straight line with a negative slope and thus a monotonically decreasing function,

whereas the right-hand side is a monotonically increasing curve (consisting of a parabola

with positive curvature for ∆U ≥ EF − U0 and of a parabola with negative curvature for
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FIG. 4. Longitudinal behaviour of the (transversally constant) bare potential U0 that we have

assumed to know for VBG = 5 V. In detail, defining x̃ = x − 500 nm, we have taken: U0 = 0

for x̃ ≤ −x1 and for x̃ ≥ x1, U0 = −C (x̃ + x1)
2 for −x1 ≤ x̃ ≤ −x2, U0 = A x̃2 − B for

−x2 ≤ x̃ ≤ x2 and U0 = −C (x̃ − x1)
2 for x2 ≤ x̃ ≤ x1, with x1 = 100

√
5 nm, x2 = 80

√
5 nm,

A = 5 × 10−6 eV/nm2, B = 200 meV, C = 20 × 10−6 eV/nm2.

∆U < EF − U0). Therefore only one intersection between the two curves (and thus one

solution of the equation) exists (see Fig. 3, where we have used the following shorthands:

α = ρ0 −
∑

i(CGiVGi), β =
∑

i(CGi/e), and χ = EF − U0).

In the form we have just presented, the method is valid at low temperature and in quasi-

equilibrium conditions (µS ≈ µD). As previously stated, if the temperature is not low (or

the device is not in equilibrium conditions and no inelastic scattering is present), it is instead

necessary to solve the system of Eq. (10) and of Eq. (17) (or of Eq. (11) and of Eq. (17),

respectively), using Eq. (25) for the graphene density of states. However, in this case a

numerical, iterative procedure will be necessary to solve the system.

III. NUMERICAL RESULTS AND COMPARISON WITH PREVIOUS APPROACHES

We have first considered a graphene sheet in the presence of a backgate, assuming the

bare potential U0 to be known for a backgate voltage VBG equal to VBG0
= 5 V. We have

considered U0 transversally constant and varying along the longitudinal direction x with the

behaviour represented in Fig. 4.

We have assumed the backgate to be coupled to the graphene sheet by a constant ca-

pacitance per unit area equal to CBG = 0.1151 mF/m2 (corresponding to the presence of a

300 nm thick layer of SiO2 between the gate and the graphene flake). We have considered

13



x (nm)

(eV)U

(eV)U

(V)BGV

 0.1
 0

−0.1
−0.2

 0.1

 0

−0.1

−0.2

 0 200
400

600
800

1000

−10

 0

 10

 20

−20

(V)BGV

(C/m  )2ρ

(C/m  )2ρ

x (nm)

 0.004

 0

−0.004

−0.008

−20

 0.004

 0

−0.004

−0.008

 0
200

400
600

800
1000

 0

−10

 10

 20

a)

b)

FIG. 5. Cross-section of U (panel (a)) and of ρ (panel (b)) along the longitudinal direction, in

the middle of the flake, represented as a function of x and of the voltage VBG on the backgate.

The bare potential for VBG = 5 V has the profile shown in Fig. 4. The capacitance coupling the

backgate and the graphene flake is CBG = 0.1151 mF/m2.

EF = 0 and we have varied the voltage VBG applied to the backgate between −20 and 20 V.

In Fig. 5, we report the cross-section of the resulting U (panel (a)) and ρ (panel (b)) along

the longitudinal direction, in the middle of the flake, as a function of x and of VBG. Note

that, as long as in Eq. (17) ∆U/(−e) is much less than ∆VBG, the behaviour of ρ as a

function of VBG is nearly linear.

Then, we have included disorder (in addition to the potential with the profile represented

in Fig. 4) into U0. The potential disorder has been approximately represented with a sum

of Gaussian functions randomly distributed over the flake (see Eq. (2)), with concentration

nimp = 5× 1011 cm−2, random amplitude uniformly distributed between −120 and 120 meV

and half-width at half-maximum equal to 5 nm. These values have been obtained from

Eqs. (2)–(7), considering EF = 50 meV, d = 1 nm and εr = 2.5. In Fig. 6, we represent

a cross-section of the resulting U0 (for VBG = 5 V) along the longitudinal direction, in the

middle of the graphene sheet. In Fig. 7, instead, we report the cross-section of U (panel

(a)) and of ρ (panel (b)) in the middle of the flake as a function of x and of VBG, computed
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FIG. 6. Cross-section, along the longitudinal direction, in the middle of the graphene sheet, of the

bare potential U0 (for VBG = 5 V) obtained adding some disorder to the potential represented in

Fig. 4.

assuming again EF = 0 and CBG = 0.1151 mF/m2.

As a further example, we have added the effect of a probe, biased with a voltage VP ,

located at a certain distance from the graphene layer. The projection of the probe position

on the graphene flake is (xP , yP ), with xP = 200 nm and yP in the middle of the sheet.

The coupling between the probe and the generic point (x, y) of graphene is represented by a

capacitance per unit area with a Lorentzian dependence CTG = CTGmax
/(1 + (d/d0)

2) (with

CTGmax
= 0.1 mF/m2 and d0 = 50 nm) on the distance d between (x, y) and (xP , yP ). In

this example, we assume that at the reference backgate potential VBG0
and for VP = 0 the

bare potential has a profile identical to that represented in Fig. 4. We consider EF = 0 and

CBG = 0.1151 mF/m2. If we vary VP between −20 and 20 V keeping VBG constant at VBG0
,

in the middle of the flake we obtain the values of U and of ρ represented in Fig. 8 (panel

(a) and panel (b), respectively) as a function of x and of VP .

Finally, let us compare our equation with that previously used in the literature in a few

simpler situations. In particular, let us consider a device with a single gate and let us assume

ρ0 = 0, U0 = 0, and EF = 0. In this case, Eq. (31) becomes

CG

(

∆U

−e
−∆VG

)

= sign(∆U)
e

π(~vF )2
(∆U)2 , (35)

which can be rewritten as:

e∆VG = −sign(∆U)
e2

π(~vF )2CG

(∆U)2 −∆U (36)

Since shifting the energy dispersion relations by ∆U while keeping the Fermi energy constant
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FIG. 7. Cross-section of U (panel (a)) and of ρ (panel (b)) along the longitudinal direction, in the

middle of the flake, represented as a function of x and of the voltage VBG on the backgate. The

bare potential for VBG = 5 V has been obtained adding some disorder to the potential represented

in Fig. 4; its cross section in the middle of the graphene sheet is shown in Fig. 6. The capacitance

coupling the backgate and the graphene flake is CBG = 0.1151 mF/m2.

at 0 is equivalent to keeping the energy bands constant while shifting the Fermi energy by

−∆U , this corresponds to the expression used by Das et al. in Refs. [23, 24].

Under the further hypothesis that |e∆VG| >> |∆U | (which corresponds to neglecting

∆U/(−e), with respect to ∆VG, in the electrostatic equation (17)) the term −∆U can be

disregarded, and the equation becomes:

∆VG = sign(∆VG)|∆VG| = −sign(∆U)
e

π(~vF )2CG

(∆U)2 . (37)

Since a voltage shift ∆VG > 0 (< 0) applied to the gate induces a charge variation ∆ρ < 0

(> 0) on the unit area of the graphene sheet, which corresponds to a shift ∆U < 0 (>

0) of the energy bands and thus to a potential shift ∆U/(−e) > 0 (< 0), we have that

sign(∆U/(−e)) = sign(∆VG). Therefore we conclude that

|∆VG| =
e3

π(~vF )2CG

(

∆U

−e

)2

(38)
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FIG. 8. Cross-section of U (panel (a)) and of ρ (panel (b)) along the longitudinal direction, in the

middle of the flake, represented as a function of x and of the voltage VP on the probe. The bare

potential at the reference backgate voltage (which is kept constant) and for VP = 0 is assumed

to be the same as that represented in Fig. 4. We assume the capacitive coupling between the

probe and the points of the graphene flake to have a Lorentzian spatial dependence, whereas

CBG = 0.1151 mF/m2.

and thus
∣

∣

∣

∣

∆U

−e

∣

∣

∣

∣

=

√

π(~vF )2CG

e3

√

|∆VG| . (39)

This is in agreement with the approximate relation reported in Ref. [30], where the gate is

separated from the graphene layer by a silicon oxide layer with a thickness tox =300 nm. In

that case, the value of the gate geometrical capacitance is CG = ε0εr/tox ≈ 0.1151 mF/m2

and thus it is possible to make an estimation of the effect of the gate voltage on the potential

of the graphene layer using the relation |∆U/(−e)| =
√

|∆VG|/36.6, where both |∆U/(−e)|
and |∆VG| are expressed in volt (if |∆U/(−e)| is expressed in mV the result is analogous to

that reported in Ref. [30]).
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IV. CONCLUSION

We have presented a method to compute the effect of the voltages applied to a number

of bias gates on the potential in a graphene sheet, taking into account the presence of a

non-zero bare potential profile evaluated for a reference bias condition (and in this way

generalising existing approaches [23, 24]).

The obtained potential landscape (which includes the screening effect in an approximate

way) can be used as an input for a non-self-consistent transport simulation (using proper

numerical methods, such as those described in Refs. [20, 21]), in such a way as to avoid

the more exact but computationally expensive self-consistent solution of the electrostatic

and transport equations. This makes a quick evaluation of the transport characteristics

of graphene devices as a function of the applied gate voltages possible, and therefore is

especially useful during the design and optimisation phase, when a short turnaround time

is needed for simulations run to understand the effect of changes in the device parameters.

It is to be noted that this method can be applied also in the presence of a scanning

probe, which can be treated as a particular type of gate, and, in general, for arbitrary gate

geometries.
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