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Abstract  

A real-time thermal imaging based, noncontact respiration rate monitoring method 

was developed. It measured the respiration related skin surface temperature 

changes under the tip of the nose. Facial tracking was required as head movements 

caused the face to appear in different locations in the recorded images over time. 

The algorithm detected the tip of the nose and then, a region just under it was 

selected. The pixel values in this region in successive images were processed to 

determine respiration rate. The segmentation method, used as part of the facial 

tracking, was evaluated on 55,000 thermal images recorded from 14 subjects with 

different extent of head movements. It separated the face from image background in 

all images. However, in 11.7% of the images, a section of the neck was also 

included, but this did not cause an error in determining respiration rate.  

The method was further evaluated on 15 adults, against two contact respiration rate 

monitoring methods that tracked thoracic and abdominal movements. The three 

methods gave close respiration rates in 12 subjects but in 3 subjects, where there 

were very large head movements, the respiration rates did not match.     

Keywords: Medical Image Processing, Medical Signal Processing, Medical 

Diagnostic Computing. 
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1 Introduction 

Respiration is an important physiological process [1]. The average number of times 

air is inhaled and exhaled per minute is respiration rate. Respiration rate is an 

important discriminatory indicator of urgency for medical attention [2]. It needs 

accurate measurement in sleep related studies and disorders, neonatal care, 

critically ill patients and the diagnosis and management of respiratory diseases [3-5]. 

Respiration produces numerous detectable signs, e.g. chest and abdomen 

movements and variations in infrared emission from the skin surface centred on the 

tip of the nose [6]. Existing respiration rate monitors are generally contact based [7], 

i.e. they need to be attached to the subject's body, thus causing discomfort during 

recording [8], which in turn may alter respiration rate. The attached monitor can also 

become dislodged and body movements can interfere with their readings.  

There were a number of studies to develop noncontact respiration rate monitors 

based on technologies such as video imaging, ultrasound and radar detection and 

air flow measurement [9-17]. Video monitoring tracks chest and abdominal 

movements. It however suffers from illumination variations and is not practical in low 

light intensity environments [14]. Ultrasound and radar based respiration rate 

monitors are highly sensitive to body movements.  

Thermal imaging as a technology for long term respiration rate monitoring, has 

recently become more realistic as thermal imaging devices have significantly 

improved in their scanning speed, sensitivity and portability, while their cost has 

reduced [18]. They can accurately measure facial skin surface temperature changes 

under the tip of the nose as air is inhaled and exhaled and these are in turn 

processed to indicate respiration rate.  
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In this study, to search for the facial region most affected by respiration, the face was 

initially segmented from the image by modifying the construction of mosaic image 

algorithm reported in [19], and then the regions' boundaries were identified using the 

projections of the image using the method reported in [20]. The face was then 

tracked in successive images and the facial regions to monitor respiration rate were 

localised.  

A number of methods were reported for detecting and tracking the facial features in 

thermal images for respiration rate monitoring. Mostafa et al. [21] reported a method 

that detected and tracked a facial region for respiration rate monitoring. It consisted 

of parts that detected the suitable regions and updates them. A method based on 

Haar-like features was proposed in [22], enhanced in [23] and was employed in [24] 

to detect the nasal cavity in thermal images. It relied on setting a predefined 

threshold for detecting the facial region that needed the temperature of the 

environment and the subjects to be constant. The facial tracking method reported in 

[25] filtered the thermal images, segmented the subject’s face from the image 

background and located the two warmest points on the face that corresponded to the 

inner corners of the eyes. Once these two points were located, the coolest facial 

region beneath them was located. This corresponded to the tip of the nose. A circle 

was then placed over this region and the pixel values within it were averaged to 

produce a point on the respiration signal.  The method however did not operate in 

real-time due to high computational intensity.  

Martinez et al. [26] detected the eyes and nostrils in thermal images by considering 

the image segments that had intensities similar to those of the skin temperature and 

extracted their features using the Haar wavelets. The method was computationally 

intensive. 
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In [27] a region beneath the tip of the nose was chosen as a respiration region of 

interest and was tracked using the method described in [28]. The subjects mostly 

made minor head movements and were in profile view of the camera. Coalitional 

tracking algorithm was reported in [29] to track the face and during the first image, a 

grid outline that composed of four particle filter trackers was manually selected over 

the nose. The left and right boundaries of the nose were detected by obtaining the 

horizontal gradients of the grid, while the locations of the nostrils were identified by 

examining the vertical and horizontal projection profiles of the nose. 

 A coalitional tracking was also reported in [30]. The coalitional tracking reported in 

[31] was based on a preselection of a template, thus requiring a user intervention. A 

solution to template pre-selection that could deal with the issues highlighted in [29-

31] was reported in [32]. It however was constrained by several issues, e.g.   

computational intensity, need for selecting a suitable threshold, requirement for face 

to be stationary at the start and detection of an involuntary eye blink.    

A particle filter tracker was used to update a manually selected template of a facial 

region [33]. The filter was based on a probabilistic template function and correlation 

analysis. 

In thermal imaging, infrared radiation emitted from an object is dependent on its 

surface temperature and emissivity. Emissivity measures the amount of infrared 

radiation from an object as compared to a black body at the same temperature. For 

the human skin at 32 oC, the emissivity is about 0.98 [34]. The infrared spectrum has 

a wavelength ranging between 750 nm to 1 mm  ( 400 THz  to  300 GHz ) range. 

Thermal imaging is unaffected by illumination and is a safe technology [35].  
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In this study, a real-time thermal imaging based respiration rate monitoring that 

detected facial skin surface temperature changes under the nose tip was developed 

and its performance was evaluated. The tracking method in this study reduces the 

restrictions on the subject during the recording as compared with the earlier studies 

thus providing a significant advance on noncontact real time respiration rate 

monitoring. 

In the following sections, the methodology, results and conclusions of the study are 

explained. 

2 Methodologies 

2.1 Recruitment 

Ethics approvals for the study were obtained from Sheffield Hallam University and 

the National Health Service (NHS), UK. An assessment of facial features detection 

method was carried out on 55,000 thermal images recorded from 14 adults at 

Sheffield Hallam University. A further evaluation in determining respiration rate was 

carried out against two contact based respiration rate monitoring methods. These 

operated by detecting thoracic and abdominal movements. This evaluation was 

performed on 15 adult volunteers (mean age 36.6 years, standard deviation 8.2 

years) in a hospital setting after obtaining informed consent. 

2.2 Experimental setup  

A FLIR A40 thermal camera was used in this study. This has a field of view of 24o x 

18o with a spectral range (i.e. the portion of electromagnetic spectrum detected by 

camera) of 7.5 µm to 13.0 µm, maximum 50 images per second capture rate, image 

size 320 x 240 pixels, temperature range  -40 to 500 ºC and thermal sensitivity 0.08 

Kelvin. The camera's emissivity was set to 0.98 as this is suitable for skin surface 
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temperature measurement. The camera was connected to a 32-bit laptop computer 

using IEEE 1398 (FireWire) communication protocol.   

Thoracic and abdominal piezoelectric bands based respiration rate monitors were 

used to assess the performance of the thermal imaging method on the 15 subjects 

enrolled at the hospital. The thermal camera was mounted on a tripod, about 1 meter 

from where the subject sat comfortably on a chair. The subject's face and a section 

of each shoulder were visible in the camera's field of view. The mean temperature 

and relative humidity of the recording room were 24.4°C (standard deviation of 0.35) 

and 45% (standard deviation of 0.71) respectively. The ambient temperature and 

humidity did not have a significant effect on the reported results as they were broadly 

consistent during recordings and also the method measured the relative changes in 

the skin temperature and thus to an extent negated minor ambient changes. 

The image capture rate was 10 per second and recording duration was at least 10 

minutes per subject. The image capture rate was sufficiently high to measure 

respiration rate and allowed real time processing. The camera was controlled by 

software developed using the National Instrument's LabVIEW environment. A brief 

overview of the processes is provided in the following paragraph and more detailed 

explanations are included in the following sections.  

The subject's face was first localised in each image as explained in Section 2.4. The 

detected facial area was then searched to locate the inner corners of the eyes and 

from it the nose (coolest facial region). A region of interest (ROI) was created under 

the tip of the nose and the pixel values within it were averaged to produce a single 

feature for each image. A respiration signal was produced by plotting the features 
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from successive images over time. Respiration rate was determined from this signal 

by obtaining its fast Fourier transform.  

2.3 Image Processing tasks during the recording stage 

A median filter was applied to the images to remove obscuring high frequencies. A 

copy of each image iC was created (for use in later stages) and normalised from its 

original 16 bits to 8 bits to reduce memory requirement. The original images were 

segmented to remove objects with temperatures significantly lower than the skin 

temperature. Three algorithms were compared for this segmentation: inter-variance 

(Otsu method) [36], moment (Tsai method) [37] and entropy (Kapur et al. method) 

[38]. The procedure for choosing between these methods was reported in [6]. Briefly, 

this involved manually segmenting the image to produce the ground-truth by 

experimenting with different segmentation thresholds and visually observing the 

outcome against the subject in the image. The ground-truth was compared against 

the segmented images obtained using the inter-variance, moment and entropy. This 

was performed by determining the total number of pixels (Ptg) in the ground-truth that 

had a binary value of 1 and then ANDing these pixels with the segmented image 

using each of the three techniques. The total number of pixels (Ptm) in the resulting 

image that were 1 was determined. The closeness of each segmentation to the 

ground-truth was determined by  

                                        𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 =  
𝑃𝑡𝑚

𝑃𝑡𝑔
 × 100                                (1)                                

The inter-variance method was used in this study as it was closest to the ground-

truth. The algorithm's computational requirement was sufficiently low for real-time 

operation.  
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2.4 Face detection and tracking  

In a study the mosaic of images were used for face detection in black and white 

images [19]. The mosaic reduced the resolution of the image by dividing it into 

square cells and replacing the intensity of pixels in each cell by their average. We 

have adapted this technique to perform face detection in thermal images. In our 

method, the mosaic image 𝐼𝑚 was constructed by dividing the segmented image 𝐼𝑠 

into square cells of sides 𝑘 pixels and setting the grey level pixels in each cell equal 

to the maximum grey level pixel within the cell in order to make the higher 

temperature regions such as the corners of the eyes more prominent. Different k 

values in the range of 2 to 32 were experimented and k = 8 was chosen as it gave a 

better localisation of the face. 

The horizontal (𝐻𝑝(𝑥)) and vertical (𝑉𝑝(𝑦)) projections of the mosaic image were 

obtained for an 𝑀 ×  𝑁  image (I(x,y)) as: 

     𝐻𝑝(𝑥) =
1

𝑀
∑ 𝐼(𝑥, 𝑦)𝑀−1

𝑥=0     (2) 

                𝑉𝑝(𝑦) =
1

𝑁
∑ 𝐼(𝑥, 𝑦)𝑁−1

𝑦=0              (3) 

As only the subject remained in 𝐼𝑠, the projections gave zero values for all points, 

except where the subject was in the image. This helped in dealing with false abrupt 

positive changes that could be mistaken as the side of the face. A simpler approach, 

considering that only the subject remained in the image, would have been to discard 

the null points and consider the sides of the face. This would have been valid if only 

the subject's face was in the image, but since parts of the shoulders also appeared in 

the image, it was not valid. To improve the effectiveness of detecting the sides of the 

face, the points where there were abrupt incremental changes at both the vertical 

and horizontal projections were present were located. The coordinates of these 

points are marked as (𝑥𝑙𝑡,𝑦𝑙𝑡), (𝑥𝑟𝑡, 𝑦𝑟𝑡), (𝑥𝑙𝑏,𝑦𝑙𝑏) as (𝑥𝑟𝑏 , 𝑦𝑟𝑏) as indicated in Figure 1. 
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The abrupt changes on both projections were present because the face had a higher 

temperature than other parts of the body appearing in the image. 

2.5 Detecting the inner corners of the eyes  

In order to detect the inner corners of the eyes a search region and an approach to 

analyse it were needed. These are explained in the next sections. 

2.5.1 Determining the search region 

In the horizontal profile (𝐻𝑝(𝑥)), a region existed between the detected sides that 

contained information about the location of the inner corners of the eyes (Figure 1b). 

This region exhibited largest abrupt changes, mainly because the inner corners of 

the eyes have highest segmented facial temperature. This temperature difference 

was further enhanced by the method in which the pixel values within each cell were 

replaced by their maximum. The local top and bottom minima on the horizontal 

profile, where these changes occurred were marked as top (𝑥𝑡𝑓) and bottom (𝑥𝑏𝑓) 

feature areas respectively. Since this information did not specify the vertical 

coordinates of the inner corners of the eyes, a search area was created spanning 

from the left 𝑦𝑙𝑡  to the right 𝑦𝑟𝑡  boundaries. Thus the feature search area 𝐹𝑠𝑎  was 

over a region that was contained within  (𝑥𝑡𝑓 , 𝑦𝑙𝑡) to (𝑥𝑏𝑓, 𝑦𝑟𝑡).  

2.5.2 Search region analysis approach 

According to the anthropometry of the face, the separation between the inner 

corners of the two eyes (i.e. the distance between the two medial inter-canthals, B) is 

approximately one-fifth of the breadth of the head (H) [39, 40]. Therefore, a search 

template of size 3
𝐻

5
 was created. The search was initiated from the left-top corner of 

the selected region, moving forward by a pixel at a time to the end of the right side 

and then returning the left, a pixel below the previous row. The template that 

contained two peaks, separated by about   
𝐻

5
, indicated the location of the inner 
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corners of the eyes.  When the face was fully visible in the image, the template 

contained two peaks with similar magnitudes separated by about  
𝐻

5
. For images that 

full face was not visible, the side of the eye nearest to the camera had a larger peak. 

2.6 Detection of the tip of the nose  

The tip of the nose was located by the vertical projection of the region enclosed by 

the identified inner corners of the eyes and the bottom boundary of the face. As the 

tip of the nose is the coolest facial point under the eyes, it corresponded to the 

lowest point in this vertical projection (shown in Figure 3). 

2.7 Generation of respiration signal 

Once the tip of the noise was detected, a circle with radius 5 pixels was placed under 

it and pixel values within it were averaged to produce a point on the respiration 

signal. This process was repeated for the successive images and every 20 

consecutive points of the respiration signal were filtered using a 4th-order Butterworth 

filter that had a cut off frequency of 2 Hz. The respiration signal was continuously 

displayed in real-time to aid monitoring of the data recording. After each 1024 points, 

the filtered signal was windowed with the Kaiser window (flatness value = 0.5, this 

value was chosen as it suitably tapered the signal edges without significantly altering 

its shape) and its magnitude frequency spectrum was obtained. The frequency 

corresponding to the largest peak in the spectrum was multiplied by 60 to obtain 

respiration rate in cycles per minute. 

3 Results and Discussion 

In this section the study’s results for segmenting the images to localise face, 

detecting the inner corners of the eyes, identifying the tip of the nose and generating 

the respiration signal are presented. The respiration rate values obtained using 
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thermal imaging are compared against the values obtained using the two contact 

respiration rate monitors. 

3.1 Image segmentation to extract of subject's face 

The segmentation results comparing the ground-truth, entropy, moment and inter-

variance methods to extract the subject from the image background are summarised 

in Table 1. The accuracy of inter-variance method was highest, providing 99.9% 

closeness (determined using equation 1) to the ground truth.  

Table 1 Segmentation performance comparison 

Segmentation Method % Closeness to the ground truth 

Entropy 82.8 

Moment 40.2 

Inter-variance 99.9 

 

Figures 1a and 1b show typical vertical and horizontal facial profiles. They indicate 

the average pixel temperature intensities against column number for Figure 1a and 

row number for Figure 1b. Figure 1c indicates the localised face enclosed by a 

rectangle as determined by the two profiles. 

 
Figure 1 (a) vertical, (b) horizontal profiles and (c) localised face 
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The facial localisation method was evaluated 55000 thermal images recorded from 

14 adult subjects. The images contained the head and a part of the shoulders. The 

method localised the face in all images, but in 11.7% of images, a section of the 

neck was also extracted. This assessment used the information from the 

anthropometry of the face in which the face length is expected to be more than 1.5 

times its width [39, 40]. 

Figure 2 shows the search area (Fsa) to localise the inner corners of the eyes in three 

subjects. The area was detected from the horizontal profiles shown in Figure 1(b). 

 

 
Figure 2  Search area to locate the inner corners of the eyes in three subjects.  

 

The area contained the inner corners of the eyes and covered a region from the left 

side to the right side of the face. It was centred on the inner corners of the eyes (as 

shown in Figure 2a) in most subjects, however in few cases, the region moved 

slightly higher (as in the case in Figure 2b) or lower (as in the case in Figure 2c).  

The height of the rectangle containing the inner corners of the eyes depended on the 

temperature profile of the segmented face and thus varied in between subjects. 

Subjects (such as the one in Fig.2a) with cooler skin temperature within this region 

had a smaller search region than those with a warmer facial skin (e.g. Fig.2c). In all 

𝑥𝑡𝑓 
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cases the inner corners of the eyes were correctly identified due to the temperature 

dominance of the regions around the inner corners of the eyes. 

Figures 3a and b show the vertical profile of 𝐹𝑠𝑎 and the localised corners of the eyes 

respectively. There are two dominant peaks in the profile with the plot bounded 

within  𝐹𝑠𝑎 and the locations of the two peaks matched the horizontal locations of the 

inner corners of the eyes.  

 
Figure 3 (a) The vertical profile of  𝐹𝑠𝑎 and (b) automatic identification the eyes’ inner 

corners (shown as red dots). 

 

The two peaks in the vertical profiles shown in Figure 3a do not have an identical 

magnitude as the head is slightly oriented to one side in relation to the camera. To 

investigate the robustness of detecting the inner corners of the eyes, the distance 

between the two detected inner corners of the eyes was determined. This distance 

was expected to be a quarter or less than a fifth of the width of the face [39, 40]. In 

89.6% of 55000 images, the distance between the detected inner corners of the eyes 
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conformed to this expectation. In 10.4% of the images, the inner corners of the eyes 

were not the warmest facial points. This was caused by facial skin abnormalities 

such as scars. 

A tip of the nose location search area that includes a region between the two corners 

of the eyes and bottom boundary of the detected face is shown in Figure 4a. The 

width and height of the rectangle enclosing the nose was set by the vertical and 

horizontal temperature distributions of pixels respectively (the details of the process 

are provided in section 2.5). The coolest point in this area was the tip of the nose. 

The identification of this point by the method is shown in Figure 4b.  

 
Figure 4 (a) nose search area, (b) identified tip of the nose indicated as tN 

 

Once the tip of the nose (tN) was detected, a respiration region interest (ROI) was 

created beneath it. The skin surface in this region was sensitive to temperature 

changes caused by respiration. This region was represented by a circle, radius=5 

pixels. The pixel values within it were averaged to produce a point for the respiration 

signal. A plot of these points from consecutive recorded images produced a 

respiration signal. The signal was compared with the respiration signals obtained 

from the ground truths which were obtained using thoracic and abdominal bands 

systems. The magnitude of the respiration signals from the ground truth methods 

was larger than the signal obtained using thermal imaging. Therefore, they were 
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scaled so that they could be shown on the same plots. Also, to facilitate comparison 

with the other signals, the signal from thermal imaging method was inverted as it was 

180 degree out of phase with the ground truths.  

3.2 Comparison of respiration signals and respiration rates obtained using 

the three methods 

Figures 5 and 6 show typical respiration signals obtained using contact based 

ground truths and thermal imaging recorded from two subjects. The duration of the 

plot shown was restricted to 30 seconds of the 10 minutes recording to aid its 

visualisation.  

 

Figure 5 A section of respiration signals obtained using abdominal band, thoracic 
band and thermal imaging for a subject. 
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Figure 6 Respiration signals obtained using the abdominal band, thoracic band and 

thermal imaging for a subject. 

 

The respiration signals obtained using the thermal imaging based method lagged the 

other two methods, but the amount of the lag was larger for the abdominal band 

signal as shown in Figure 7.  

 

Figure 7 Comparison of respiration signals obtained from abdominal and thoracic 
bands against thermal imaging based for a subject. 

 

The time delay observed in the thermal imaging based signal is related to the 

physics of respiration, initiating from exhalation, causing the chest to move back, the 
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effect then cycling through, warming the skin surface around the nose. The image 

capture rate difference in the ground truths (capture rate =32 images per second) 

and the thermal imaging methods (capture rate=10 images per second) may have 

influenced this effect [41].  

Figure 6 shows the respiration signals in which around the 30th second, the 

abdominal band signal has an opposite phase to those from both the thoracic band 

and thermal imaging. The thermal imaging signal is in agreement with the thoracic 

band signal and from the expiratory pause of the previous respiration cycle, it is 

expected that an inspiration would follow as indicated by both the thoracic band and 

thermal imaging based signals. The reason for the reversing of the abdominal band 

signal could be a body movement at the region where the abdominal band had been 

attached. The thoracic band signal also lagged the abdominal band signal during 

inspiration and led it during expiration, but the time interval was shorter as seen in 

Figures 6 and 7.  

The differences between the abdominal and thoracic bands respiration signals could 

be due to the mechanics of breathing. As the diaphragm flattens to initiate inspiration, 

the effect is mostly registered on the abdominal band. When the diaphragm recoils 

during expiration, the thoracic band experiences a delayed contraction as compared 

with the abdominal band.  

The respiration rate values for the 15 subjects included in the study are included in 

Tables 2 and 3.    
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Table 2 Respiration rates determined using the three methods for 12 of the 15 
recorded subjects that did not have large head movements 

Subject Gender 
Age 

(years) 

Respiration rate 
(cycles per minute) 

Thermal 
Imaging 

Thoracic 
band 

Abdominal 
band 

1 Female 42 11.3 11.3 11.3 

2 Male 27 17.4 16.8 16.8 

3 Male 32 16.5 16.0 16.0 

4 Female 25 22.3 22.5 22.5 

5 Female 30 14.1 14.2 14.2 

6 Male 36 23.4 22.8 22.8 

7 Male 27 19.5 19.7 19.7 

8 Female 45 22.0 22.0 22.3 

9 Male 55 10.2 11.0 11.0 

10 Male 29 15.0 15.0 15.0 

11 Male 52 26.0 26.3 26.3 

12 Male 22 13.0 13.1 13.1 

statistics: mean(m), 
standard deviation (s), 
correlation coefficient 
between thermal imaging 
and thoracic band (c) 

8 males 
4 females 

m=35.2 
s= 10.9 

m=17.6 
s= 5.1 
c=0.997 

m=17.6 
s=5.0 

m=17.6 
s=5.1 

 
 
 

Table 3 Respiration rates determined using the three methods for 3 of 15 recorded 
subjects with very large head movements 

Subject Gender 
Age 

(years) 

Respiration rate 
(cycles per minute) 

Thermal 
Imaging 

Thoracic 
band 

Abdominal 
band 

13 Male 41 20.8 25.9 25.9 

14 Male 45 9.4 17.8 17.8 

15 Female 27 19.3 20.6 20.6 

statistics: mean(m), 
standard deviation (s) 

2 males 
1 females 

m=37.7 
s=9.5 

m=16.5 
s= 6.2 

m=21.4 
s=4.1 

m=21.4 
s=4.1 

 

For the subjects included in Table 2, the mean (17.6 cycles per minute) and standard 

deviation (5.1 cycle per minute) of their respiration rates as measured by thermal 

imaging are close to those measured by the abdominal and theoretic bands. The 

correlation coefficients between the respiration rates values obtained by thermal 

imaging and those obtained using thoracic and abdominal bands is 0.997.  

In subjects 13 to 15, there were very large head movements causing the inner corner 

of an eye not to be within the camera’s field of view. This led to a false detection of 
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the eye’s corner, an inaccurate detection of the respiration region of interest, 

incorrect measurement of respiration signal and respiration rate. 

The thermal imaging method operated well in situations where the head movements 

did not cause the face to move out of the camera's field of view and the subject 

breathed through the nose. Further developments will include incorporating a 

method to will also cater breathing through the mouth and tacking very large 

movements by for example automatically rejecting the associated images. A general 

purpose thermal camera was used in this study. A further area of improvement will 

be to develop a more customised thermal imaging device for respiration rate 

monitoring thus reducing the cost and making its use easier.  

4 Conclusions 

A real-time thermal imaging based noncontact respiration rate monitoring method 

was developed. Its ability to segment the face from the image background was 

tested on 55000 images recorded from 14 adults. It extracted the face correctly in all 

images, but in 11.7% of the images, a section the neck was also included, but this 

did not affect the accuracy of determining respiration rate values.    

The thermal imaging respiration rate monitoring was evaluated on a further 15 adults 

by comparing it against the contact respiration rate monitoring methods that used 

thoracic and abdominal bands. In 12 subjects, the respiration rate values obtained 

using the 3 methods were very close. In the remaining 3 subjects that had very large 

head movements that led to in a significant proportion of the face to move out of 

camera's field of view, the respiration rates from the thermal imaging method was not 

accurate.  The existing method works well in scenarios that head movements are not 

so large to cause the face to move out of camera's field of view.   
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