
Test data truncation for test quality maximisation
under ATE memory depth constraint

E. Larsson and S. Edbom

Abstract: Testing is used to ensure production of high quality integrated circuits. High test quality
implies the application of high quality test data; however, technology development has led to a
need to increase test data volumes to ensure high test quality. The problem is that the high test
data volume leads to long test application times and high automatic test equipment memory
requirement. For a modular core-based system-on-chip, a test data truncation scheme is proposed,
that selects test data for each module in such a way that the system test quality is maximised while
the selected test data are guaranteed to overcome constraints on time and memory. For test data
selection, a test quality metric is defined based on fault coverage, defect probability and number
of applied test vectors, and a scheme that selects the appropriate number of test vectors for each
core, based on the test quality metric, defines the test architecture and schedules the transportation
of the selected test data volume on the test access mechanism such that the system’s test quality is
maximised. The proposed technique has been implemented, and the experimental results, produced
at reasonable CPU times on several ITC’02 benchmarks, show that high test quality can be
achieved by careful selection of test data. The results indicate that the test data volume and test
application time can be reduced to about 50% while keeping a high test quality.
1 Introduction

Technology has made it possible to develop integrated
circuits (ICs) where a complete system, with an enormous
number of transistors, which are clocked at an immense
frequency and partitioned into a number of clock-domains,
is placed on a single die. Even as such highly advanced
system chips or system-on-chip (SOC) are designed, the
electronic design automation (EDA) tools must keep up;
to enable the design of a highly advanced system with a
reasonable effort in a reasonable time. New design method-
ologies are under constant development. At the moment, a
modular design approach in which modules are integrated
into a system shows promise. The advantage of such an
approach is that pre-designed and pre-verified modules,
blocks of logic or cores, with technology-specific details,
can at a reasonable time and effort be integrated into a
system. The core provider designs the cores, and the
system integrator selects the appropriate cores for the
system where the cores may originate from previous
in-house designs or from different core vendors (compa-
nies). The cores can be delivered in various formats. In
general, they can be classified as soft cores, firm cores
and hard cores. Soft cores are general high-level specifica-
tions where the system integrator can, if necessary, apply
modifications. Hard cores are gate-level specifications
where, if any, only minor modifications are possible. Firm
cores are somewhere between soft cores and hard cores.
Soft cores allow more flexibility compared with hard

The Institution of Engineering and Technology 2007

doi:10.1049/iet-cdt:20050209

Paper first received 13th December 2005 and in revised form 17th September
2006

The authors are with the Embedded Systems Laboratory, Department of
Computer Science, Linköpings University, Sweden

E-mail: erila@ida.liu.se
IET Comput. Digit. Tech., 2007, 1, (1), pp. 27–37
cores. The main advantage is that the system integrator
can modify a soft core. On the other hand, hard cores can
be made highly protected by the core provider, which
often is desirable.

A produced chip is tested to determine if it is faulty or
not. In the test process, a number of test vectors, stored in
the automatic test equipment (ATE), are applied to the
chip under test. If the produced test response from the
applied vectors corresponds to the expected response,
the chip is considered to be fault-free and can be shipped.
However, testing complex chips is becoming a problem,
and one major problem is the increasing test data volume.
Currently, the test data volume increases faster than the
number of transistors in a design [1]. The increasing test
data volume is due to (1) high number of fault sites
because of the large numbers of transistors, (2) new defect
types introduced by nanometer process technologies and
(3) faults related to timing and delay since systems have
higher performance and make use of multiple-clock
domains [1].

The problem with high test data volume is that it leads to
long test application times and high ATE memory require-
ments. The cost of test is highly related to test application
time. Test time in a tester is purchased; hence the given
test cost budget must be kept. It is also known that the
purchase of a new ATE with higher memory capabilities
is costly; hence, it is desirable to make use of the existing
ATE instead of investing in a newone.

Vranken et al. [1] discussed three alternatives to make the
test data fit the ATE: (1) test memory reload – the test data
are divided into several partitions – is possible but not prac-
tical due to the high time involved, (2) test data truncation –
the ATE is filled as much as possible and the test data that
do not fit the ATE are simply not applied – leads to reduced
test quality and (3) test data compression – the test stimuli
is compressed – however, does not guarantee that the test
data will fit the ATE. As test memory reload is not practical,
27

the alternatives are test data truncation and test data com-
pression. Test data compression does reduce the problem
but does not make sure that the test data will fit the ATE
memory. Test data truncation is an alternative to make
sure that the test cost constraints: ATE memory requirement
and test application time are overcome. The draw-back with
test data truncation is lower test quality. However, ITRS
roadmap states ‘relaxing the requirement of 100% correct-
ness in both transient and permanent failures of signals,
logic values, devices, or interconnects may reduce the
cost of manufacturing, verification, and testing’ [2].
Hence, there is a need to explore the test quality against
test cost.

The test data must also be organised or scheduled in the
ATE. A recent industrial study showed that by making use
of test scheduling, the test data were made to fit the ATE [3].
The study demonstrated that the ATE memory limitation is
a real and critical problem. The basic idea in test scheduling
is to reduce the amount of idle bits to be stored in the ATE,
and therefore scheduling must be considered in combination
with the test data truncation scheme. Further, when discuss-
ing memory limitations, the ATE memory depth in bits is
equal to the maximal test application time for the system
in clock cycles [4]. Hence, the memory constraint is seen
as a time constraint.

This paper focuses on test data truncation, where the aim
is a technique that maximises test quality while making sure
that the test data volume fits the ATE memory and the test
application time overcomes the time constraint. We assume
that given a core-based design and for each core the defect
probability, the maximal fault coverage when all its test
vectors have been applied, and the size of the test set (the
number of test vectors) are given.

We define for a core, a core test quality (CTQ) metric, and
for the system, a system test quality (STQ) metric. The CTQ
metric reflects that test data should be selected for a core (1)
with high probability of having a defect and (2) where it is
possible to detect a fault using a minimal number of test
vectors, and STQ combines all CTQs to a system quality
metric. For the fault coverage function, we make use of an
estimation function. Fault simulation can be used to extract
the fault coverage at each test vector; however, it is a
time consuming process and also it might not be applicable
for all cores due to intellectual property (IP) protection, for
instance. McLaurin and Potter discuss ways to select test
vectors for a core [5]. The test vectors in a test set can be
applied in any order. However, regardless of the order, it is
well known in the test community that the first test vectors
detect a higher number of faults compared to the last
applied test vectors and that the function fault coverage
against number of test vectors has an exponential/logarith-
mic behaviour. We therefore assume that the fault coverage
over time (number of applied test vectors) for a core can be
approximated to an exponential/logarithmic function.

We integrate the test data selection with test scheduling
and test access mechanism (TAM) design in order to
verify that the selected test data actually fit the ATE
memory. We have implemented our technique and we
have made experiments on several ITC’02 benchmarks to
demonstrate that high test quality can be achieved by apply-
ing only a subset of the test data. The results indicate that the
test data volume and the test application time can be reduced
to 50% whereas the test quality remains high. Furthermore, it
is possible to turn the problem (and our solution) and view
it as: for a certain test quality, which test data should be
selected to minimise the test application time.

The advantage of our technique is that given a core-based
system and for each core a test set per core, a number on
28
maximal fault coverage and defect probability, we can
select test data for the system, design the TAM and schedule
the selected test data in such a way that the test quality is
maximised and the selected test data fit the ATE memory
or overcome the time constraint. In this paper, we assume
a single test per core. However, the technique can easily
be extended to allow multiple tests per core by introducing
constraint considerations in the scheme.

2 Related work

Test scheduling and test data compression are approaches pro-
posed to address the high test data volumes that must be stored
in the ATE in order to test SOCs. The basic principle in test
scheduling is to organise the test bits in the ATE in such a
way that the number of introduced so-called idle bits (not
useful bits) is minimised. The gain is reduced test application
time and a reduced test data volume. A scheduling approach
depends highly on the test architecture in the system.
Examples of test architectures are the AMBA test bus [6],
the test bus [7] and the TestRail [8].

Iyengar et al. [9] proposed a technique to partition the set
of scan chain elements (scan chains and wrapper cells) at
each core into wrapper scan chains and connect them to
TAM wires in such a way that the total test time is mini-
mised. Goel et al. [3] showed that ATE memory limitation
is a critical problem. On an industrial design, they showed
that by using an effective test scheduling technique, the
test data can be made to fit the ATE.

There are scheduling techniques that make use of an
abort-on-fail strategy; the testing is terminated as soon as a
fault is detected. The idea is that as soon as a fault is
present, the chip is faulty and therefore the testing can be ter-
minated. Huss and Gyurcsik [10] proposed a sequential
technique making use of a dynamic programming algorithm
for ordering the tests, whereas Milor and Sangiovanni-
Vincentelli [11] presented a sequential technique based on
selection and ordering of test sets. Jiang and Vinnakota
[12] proposed a sequential technique, where the information
about the fault coverages provided by the tests are extracted
from the manufacturing line. For SOC designs, Larsson et al.
[13] proposed a technique based on ordering of tests, consid-
ering different test bus structures, scheduling approaches
(sequential and concurrent) and test set assumptions (fixed
test time and flexible test time). The technique takes defect
probability into account; however, the probability of detect-
ing a fault remains constant through the application of a test.

Several compression schemes have been used to compress
the test data [14–19] . For instance, Ichihara et al. [20] used
statistical codes, Chandra and Chakrabarty [21] made use of
Golomb codes, Iyengar et al. [22] explored the use of
run-length codes, Chandra and Chakrabarty [23] tried
frequency-directed run-length codes, and Volkerink et al.
[24] have investigated the use of Packet-based codes.

All these approaches (test scheduling and test data com-
pression techniques) reduce the ATE memory requirement.
In the case of test scheduling, effective organisation means
that both the test time and needed test data volume are
reduced, and in the case of test data compression, less test
data are required to be stored in the ATE. The main advan-
tage of these two approaches is that the highest possible test
quality is reached since the whole test data volume is
applied. However, the main disadvantage is that these
techniques do not guarantee that the test data volume fits
the ATE. It means that there is a need for a technique that
in a systematic way defines the test data volume for a
system in such a way that the test quality is maximised
IET Comput. Digit. Tech., Vol. 1, No. 1, January 2007

while the test data are guaranteed to fit the ATE memory or
overcome the test time constraint.

3 Problem formulation

We assume that a core-based system with n cores denoted
by i is given, and for each core i in the system, the following
are given:

† scij – length of scanned element j at core i is given where
j ¼ 0, . . . , m is the number of scanned elements
† wii – number of input wrapper cells
† woi – number of output wrapper cells
† wbi – number of bidirectional wrapper cells
† tvi – number of test vectors
† fci – fault coverage reached when all the tvi test vectors
are applied
† ppi – pass probability per core
† dpi – defect probability per core (given as 1 2 ppi)

For the system, a maximal TAM bandwidth Wtam, a
maximal number of k TAMs and an upper-bound memory
constraint Mmax on the memory depth in the ATE are given.

The TAM bandwidth Wtam is to be partitioned into a
set of k TAMs denoted by j each of width Wtam ¼ fw1,
w2, . . . , wkg in such a way that

Wtam ¼
Xk

j¼1

wj ð1Þ

and on each TAM, one core can be tested at a time.
Since the memory depth in the ATE (in bits) is equal to

the test application time for the system (in clock cycles)
[4], the memory constraint is actually a time constraint tmax

Mmax ¼ tmax ð2Þ

Our problem is to:

† select the number of test vectors (stvi) for each core i,
† partition the given TAM width Wtam into no more than k
TAMs,
† determine the width of each TAM (wj), j ¼ 1, . . . , k,
† assign each core to one TAM and
† assign a start time for the testing of each core.
IET Comput. Digit. Tech., Vol. 1, No. 1, January 2007
The selection of test data (stvi for each core i), TAM design
and the test scheduling should be done in such a way that the
test quality of the system (defined in Section 4) is maxi-
mised while the memory constraint (Mmax) (time constraint
tmax) is overcome.

4 Test quality metric

We need a test quality metric to (1) select test data for each
core and (2) measure the final system test quality. In this
section, we describe the metric where we take the following
parameters into account to measure test quality:

† defect probability
† fault coverage
† number of applied test vectors

The defect probability, the probability that a core is defect,
can be collected from the production line or set by experi-
ence. Defect probability has to be taken into account since
it is better to select test data for a core with a high defect
probability than to select test data for a core with a low
defect probability since the core with high defect prob-
ability is more likely to hold a defect.

The possibility to detect faults depends on the fault cover-
age against the number of applied test vectors; hence the
fault coverage and the number of applied test vectors also
have to be taken into account. Fault simulation can be used
to extract which fault each test vector detects. However,
in a complex core-based design with a high number of
cores, fault simulation for each core is, if possible due to
IP-protection, highly time consuming. A core provider
may want to protect the core, which makes fault simulation
impossible. We therefore make use of an estimation tech-
nique. It is known that the fault coverage does not increase
linearly over the number of applied test vectors. For instance,
Fig. 1a shows the fault coverage for a set of ISCAS bench-
marks. The following observation can be made: the curves
have an exponential/logarithmic behaviour (as in Fig. 1b).
This can also be observed in the results by others [25, 26].
We therefore assume that the fault coverage after applying
stvi test vectors for core i can be estimated as (Fig. 1b)

fciðstviÞ ¼
logðstvi þ 1Þ

slopeConst
ð3Þ
Fig. 1 Fault coverage against number of test vectors

a For a set of ISCAS designs
b Estimated as an exponential function
29

where the slopeConst is given as follows

slopeConst ¼
logðtvi þ 1Þ

fci

ð4Þ

and the þ1 is used to adjust the curve to pass the origin.
For a system, we assume that the test quality can be

estimated as

Pðwe find a defectjwe have a defect in the SOCÞ ð5Þ

The test quality describes the probability of finding a defect
when we have the condition that the SOC has one defect. By
introducing this probability, we find a way to measure the
probability of finding a defect if a defect exists in the
SOC and hence the test quality. However, it is important
to note that our metric only describes the test quality, and
hence we are not introducing any assumptions about the
number of defects in the SOC.

In order to derive an equation for the test quality using
information about defect probability, fault coverage and
the number of test vectors, we make use of definitions
from basic probability theory [27]:

Definition 1: If A and B are independent events ¼ .
P(A > B) ¼ P(A)P(B).

Definition 2: If A > B is the empty set 1 ¼ .
P(A < B) ¼ P(A)þ P(B).

Definition 3: P(A > B) ¼ P(A)P(BjA), where P(BjA) is the
probability of B conditioned on A.

Furthermore, we assume (Section 3) that the quality of a test set
(a set of test vectors) for a core i is composed by the following:

† fault coverage fci

† probability of defect dpi

Since the number of applied test vectors indirectly has an
impact on the fault coverage, we define for each core i:

† stvi is the selected number of test vectors
† fci(stvi) is the fault coverage after stvi test vectors have
been applied

We assume the following:

† dpi and fci are independent events
30
Since we assume one defect in the system when we
introduced test quality (5), we can only have one defect in
a core at a time in the system. Therefore we can say:

† The intersection of any of the events dpi is the empty set 1

For a system with n cores, we can now derive STQ (system
test quality) from (5) by using Definitions 1, 2 and 3

STQ ¼ Pðdefect detected in the SOC j defect in the SOCÞ

)
Pðdefect detected in the SOC > defect in the SOCÞ

Pðdefect in the SOCÞ

)

Pn
i¼1 Pðdefect detected in core i > defect in core iÞ

Pðdefect in the SOCÞ

)

Pn
i¼1 Pðdefect detected in core iÞPðdefect in core iÞ

Pðdefect in the SOCÞ

)

Pn
i¼1 dpi � fciðstviÞPn

i¼1 dpi

ð6Þ

From STQ, we can derive the quality metric for a single
core, the CTQ (core test quality) is

CTQ ¼
Xn

i¼1

dpi � fciðstviÞ ð7Þ

5 Test vector selection, test scheduling and
TAM design

In this section, we describe our technique to optimise test
quality by selecting test vectors for each core, design the
TAM and schedule the selected vectors for an SOC under
the time constraint given by the ATE memory depth ((2)
and [4]). We assume that given is a system as described in
Section 3, and we assume an architecture where the TAM
wires can be grouped into several TAMs and the cores con-
nected to the same TAM are tested sequentially one after
the other [7]. We make use of the test quality metric defined
in Section 4.

The scanned elements (scan-chains, input cells, output
cells and bidirectional cells) at a core have to be configured
into a set of wrapper chains, which are to be connected to a
corresponding number of TAM wires. The wrapper scan
chains, which are to be connected to the TAM wires, wj,
should be as balanced as possible, and we make use of the
Design_wrapper algorithm proposed by Iyengar et al. [9].
Fig. 2 Variation of WDC and maximum value of scan-in and scan-out lengths at different TAM widths at core 1 (p93791)

a WDC
b max(scan-in, scan-out)
IET Comput. Digit. Tech., Vol. 1, No. 1, January 2007

1. Given:
τmax - the upper bound on test time limit for the system
Wtam - number of TAM wires - distributed over k TAMs w

1
, w

2
, ..., w

k
 in such a way that

Eq.1 holds.
2. Variables:

stvi = 0 //selected number of test vectors for core i
TAT = 0 // test application time of the system

3. Compute WDCi for all cores at all k TAMs (Eq. 10)
4. Select best TAM for each core based on WDC i
5. whileTAT< τmax at any TAM begin
6. for i=1 to n begin // For all cores
7. Compute τ(wj ,1) (Eq. 8)
8. Compute CTQi assuming stvi=stvi+1 (Eq. 6)
9. end
10. for core with highest CTQ/τ(wj ,1) and stvi<tvi //best contribution to increase STQ
11. stvi=stvi+1
12. for all cores where stvi>0 begin// some selected vectors
13. Vectors for each core are grouped and TAT is computed
14. if a TAM is full (<τmax) - mark TAM as unavailable.
15. end
16. end
17. Compute and return STQ (Eq. 6).
18. end

Fig. 3 Test vector selection and test scheduling algorithm
For a wrapper chain configuration at a core i where sii is the
longest wrapper scan-in chain and soi is the longest wrapper
scan-out chain, the test time for core i is given by [9]

tiðw; tvÞ ¼ ð1þmaxðsiiðwÞ; soiðwÞÞÞ � tv

þminðsiiðwÞ; soiðwÞÞ ð8Þ

where tv is the number of applied test vectors for core i and
w is the TAM width.

We need a technique to partition the given TAM width
Wtam into a number of TAMs k and to determine which
core should be assigned to which of the designed TAMs.
The number of different ways we can assign n cores to k
TAMs grows with kn, and therefore the number of possible
alternatives will be huge. We also need a technique to guide
the assignment of cores to the TAMs. We make use of the
fact that Iyengar et al. [9] made use of, which is that balan-
cing the wrapper scan-in chain and wrapper scan-out chain
IET Comput. Digit. Tech., Vol. 1, No. 1, January 2007
introduces different number of ATE idle bits as the TAM
bandwidth varies. We define TWUi (TAM width utilisation)
for a core i at a TAM of width w as

TWUiðwÞ ¼ maxðsiiðwÞ; soiðwÞÞ � w ð9Þ

and we make use of a single wrapper-chain (one TAM
wire) as a reference point to introduce wrapper design
cost (WDC) that measures the imbalance (introduced
number of idle bits) for a TAM width w relative to TAM
width 1

WDCi ¼ TWUiðwÞ � TWUið1Þ ð10Þ

For illustration of the variations in the number of ATE
idle bits, we plot in Fig. 2a the value of WDC for different
TAM widths (number of wrapper chains), obtained by using
core 1 of the ITC’02 benchmark p93791. We also plot the
maximum value of the scan-in and scan-out lengths at
Table 2: Selected test vectors (%) for the cores in design d695 considering different scheduling techniques

Technique Selected test data for each core (%)

0 1 2 3 4 5 6 7 8 9 10

1 0 0 100 0 0 20 0 0 0 0 0

2 0 0 0 0 0 0 0 54.7 0 0 0

3 0 100 0 0 0 0 0 52.6 0 0 0

4 0 100 9.6 6.7 4.8 0 1.7 10.5 6.2 8.3 4.4

5 0 100 9.6 16.0 10.5 0 3.8 21.1 13.4 8.3 4.4

6 0 100 9.6 17.3 11.4 0 2.6 13.7 17.5 33.3 14.7

Table 1: Data for benchmark d695

Core

0 1 2 3 4 5 6 7 8 9 10

Scan-chains 0 0 0 1 4 32 16 16 4 32 32

Inputs wi 0 32 207 34 36 38 62 77 35 35 28

Outputs wo 0 32 108 1 39 304 152 150 49 320 106

Test vectors tvi 0 12 73 75 105 110 234 95 97 12 68

Pass probability ppi 0 98 99 95 92 99 94 90 92 98 94

Max fault coverage fci (%) 0 93 99 98 96 96 99 94 99 95 96
31

Fig. 4 Results for different scheduling techniques

a Test scheduling without test vector selection when defect probability and fault coverage are not considered
b Test scheduling considering defect probability
c Test scheduling considering defect probability and fault coverage
d Test scheduling using test vector selection and one TAM
e Test scheduling using test vector selection and two TAMs
f Test scheduling using test vector selection and three TAMs
various TAM widths for the previous design in Fig. 2b.
In Fig. 2b, several TAM widths have the same test time.
For a set of TAM widths with the same test time, a
pareto-optimal point is the one with lowest TAM [9]. We
can notice that the TAM widths having a low value of the
WDC, and hence a small number of idle bits, correspond
to the pareto-optimal points. Hence, we make use of
WDC to guide the selection of wrapper chains at a core.

The algorithm for our scheme is outlined in Fig. 3. Given
is a system, the upper bound on the test time (tmax) and the
TAM width (Wtam) distributed over k TAMs w1, w2, . . . , wk.
Initially no test vectors are selected for any core (stvi ¼ 0
for all i) and the test time for the test schedule is zero
(TAT ¼ 0).

At line 4, the cores are assigned to TAMs and the while
loop continues until tmax is overcome. In each iteration of
the loop (lines 7 and 8), the algorithm explores for all
cores the contribution in improving CTQ if an additional
vector is added to a core. The test vector for a core that
contributes most to improving CTQ is selected (line 11).

Note that the test vectors for a core might not be selected
in order (line 13 in Fig. 3). For instance, in a system
with two cores A and B, the first vector can be selected
from core A, the second from core B and the third from
core A. However, at scheduling (application), selected test
32
vectors for each core are grouped and scheduled as a
single set. If grouping is not applied, we would not benefit
from the scan-in/scan-out pipelining.

The algorithm (Fig. 3) assumes a given TAM architecture
(number of TAMs and their width). We have therefore
added an outer loop that makes sure that we explore all
possible TAM configurations.

5.1 Illustrative example

To illustrate the proposed technique for test scheduling and
test vector selection, we make use of an example where the
time constraint is set to 5% of the maximal test application
time (the time when all available test vectors are applied).
For the example, we make use of the ITC’02 benchmark
[28] d695 with the data as in Table 1. As the maximal
fault coverage for a core when all test vectors are applied
and the pass probability per core are not given in the
ITC’02 benchmarks, we have added these numbers. In
order to show the importance of combining test scheduling,
TAM design and test vector selection, we compare our pro-
posed technique to a naive approach where we order the
tests and assign test vectors according to the initial sorted
order until the time limit (ATE memory depth) is reached.
Table 3: Pass probability and maximal fault coverage numbers for the cores in the used SOCs

Core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

d281 pp (%) — 98 99 95 92 99 94 90 92

fc (%) — 98 97 95 98 98 96 99 97

d695 pp (%) — 98 99 95 92 99 94 90 92 98 94

fc (%) — 93 99 98 96 96 99 94 99 95 96

p22810 pp (%) 98 98 97 93 91 92 99 96 96 95 93 91 92 93 99 99 99 95 96 97 93 99 96 98 99 92 91 91 93

fc (%) 95 99 97 98 94 99 99 97 95 97 97 99 99 94 97 94 99 98 94 95 99 99 95 98 95 99 99 97 98

p34392 pp (%) 98 98 97 91 95 94 94 93 99 99 91 91 90 95 94 96 96 97 92 90

fc (%) 97 97 99 98 99 99 97 98 94 96 98 98 99 94 97 95 98 98 95 95

p93791 pp (%) — 99 99 97 90 91 92 98 96 91 94 93 91 91 90 99 98 97 99 99 99 90 99 90 98 92 96 95 91 90 96 99 99

fc (%) — 99 95 98 98 99 97 99 95 96 97 99 99 94 98 94 97 97 95 95 99 98 96 98 94 99 99 98 99 97 98 99 94
IET Comput. Digit. Tech., Vol. 1, No. 1, January 2007

Table 4: Comparison of different TAM widths using ITC’02 benchmark p93791

SOC % of max test time Technique 1 Technique 2 Technique 3 Technique 4 Technique 5 Technique 6

STQ STQ STQ STQ STQ STQ

p93791 TAM

width 16

5 0.00542 0.118 0.560 0.719 0.720 0.720

10 0.0248 0.235 0.618 0.793 0.796 0.796

25 0.0507 0.458 0.747 0.884 0.885 0.885

50 0.340 0.619 0.902 0.945 0.945 0.945

75 0.588 0.927 0.958 0.969 0.969 0.969

100 0.976 0.976 0.976 0.976 0.976 0.976

p93791 TAM

width 32

5 0.00542 0.118 0.559 0.715 0.748 0.748

10 0.0249 0.235 0.618 0.791 0.822 0.822

25 0.0507 0.459 0.742 0.883 0.908 0.908

50 0.340 0.619 0.902 0.945 0.960 0.960

75 0.584 0.927 0.957 0.969 0.974 0.974

100 0.976 0.976 0.976 0.976 0.976 0.976

p93791 TAM

width 64

5 0.00535 0.118 0.499 0.703 0.752 0.752

10 0.00606 0.235 0.567 0.780 0.827 0.827

25 0.0356 0.461 0.739 0.878 0.918 0.918

50 0.335 0.620 0.901 0.944 0.965 0.965

75 0.566 0.927 0.961 0.969 0.975 0.975

100 0.976 0.976 0.976 0.976 0.976 0.976
Fig. 5 Comparing STQ at TAM width 16, 32 and 64 on design p93791

a For Technique 2
b For Technique 4
c For Technique 6
IET Comput. Digit. Tech., Vol. 1, No. 1, January 2007 33

For this naive approach, we consider three different
techniques:

1. Sorting when defect probability and fault coverage are
not considered (Technique 1).
2. Sorting when defect probability is considered but not
fault coverage. The cores are sorted in descending order
according to defect probability (Technique 2).
3. Sorting when defect probability in combination with
fault coverage is considered. In this technique, we make
use of the STQ equation (6) to find a value of the test
quality for each core. The cores are then sorted in descend-
ing order according to test quality per clock cycle. The
sorting constant is described in (11) (Technique 3)

sortConst ¼
dpi � fciðtviÞ

tðw; tviÞ �
Pn

i¼1 dpi

ð11Þ

For our technique, we consider three cases where we
divide the TAM into one (Technique 4), two (Technique
5) or three test buses (Technique 6). The selected test
data volume per core for each of the six scheduling tech-
niques is reported in Table 2 and the test schedules with
34
the corresponding STQ are presented in Fig. 4. Fig. 4a
illustrates the case when no information about defect prob-
ability and fault coverage is used in the test ordering. As
seen in the figure, such technique produces a schedule
with an extremely low system test quality (STQ). By
making use of the information on defect probability
(Fig. 4b), respective defect probability and fault coverage
(Fig. 4c) in the ordering, we can improve the test quality
significantly. Although it is possible to increase the STQ
by using an efficient sorting technique, we are still not
exploiting the fact that the first test vectors in a test
set detect more faults than the last test vectors. In
Figs. 4d– f , we make use of this information as we are
using our proposed technique for test scheduling and test
vector selection. We note that it is possible to further
improve the STQ by dividing the TAM into several test
buses (Figs. 4e– f).

5.2 Optimal solution for single TAM

The above algorithm can easily be improved to produce an
optimal solution in the case of a single TAM. The above
Table 5: Experimental results

SOC % of max test time Technique 1 Technique 2 Technique 3 Technique 4 Technique 5 Technique 6

STQ STQ STQ STQ STQ STQ

d281 5 0.0209 0.164 0.496 0.674 0.726 0.726

10 0.0230 0.186 0.563 0.774 0.818 0.818

25 0.198 0.215 0.834 0.879 0.905 0.912

50 0.912 0.237 0.903 0.935 0.949 0.949

75 0.956 0.870 0.923 0.960 0.968 0.968

100 0.974 0.974 0.974 0.974 0.974 0.974

d695 5 0.0332 0.167 0.203 0.440 0.538 0.556

10 0.0370 0.257 0.254 0.567 0.670 0.690

25 0.208 0.405 0.510 0.743 0.849 0.863

50 0.335 0.617 0.803 0.879 0.952 0.952

75 0.602 0.821 0.937 0.946 0.965 0.965

100 0.966 0.966 0.966 0.966 0.966 0.966

p22810 5 0.0333 0.174 0.450 0.659 0.691 0.759

10 0.0347 0.186 0.608 0.764 0.796 0.856

25 0.0544 0.398 0.769 0.885 0.900 0.940

50 0.181 0.830 0.912 0.949 0.949 0.968

75 0.600 0.916 0.964 0.969 0.969 0.973

100 0.973 0.973 0.973 0.973 0.973 0.973

p34392 5 0.0307 0.312 0.683 0.798 0.843 0.859

10 0.0341 0.331 0.766 0.857 0.893 0.898

25 0.0602 0.470 0.846 0.919 0.940 0.942

50 0.533 0.492 0.921 0.950 0.963 0.967

75 0.547 0.906 0.943 0.965 0.972 0.972

100 0.972 0.972 0.972 0.972 0.972 0.972

p93791 5 0.00542 0.118 0.559 0.715 0.748 0.748

10 0.0249 0.235 0.618 0.791 0.822 0.822

25 0.0507 0.459 0.742 0.883 0.908 0.908

50 0.340 0.619 0.902 0.945 0.960 0.960

75 0.584 0.927 0.957 0.969 0.974 0.974

100 0.976 0.976 0.976 0.976 0.976 0.976

1 – Only test scheduling, 2 – test scheduling and considering defect probability (dp), 3 – test scheduling considering dp and fault coverage
(fc), 4 – test-vector selection and test scheduling considering dp and fc at one TAM, 5 – as in 4 but two TAMs, 6 – as in 4 but three TAMs
IET Comput. Digit. Tech., Vol. 1, No. 1, January 2007

algorithm aborts the assignment of test vectors immediately
when the time constraint (memory constraint) is reached – a
selected test vector cannot be assigned since it violates the
constraint. However, test vectors from other cores (not from
the core that violates the time constraint) could have been
selected while making sure that they do not violate the
ATE constraint. Note that the selection of test vectors is
based on a monotonically increasing function. The test
vector that contributes most to the test quality is first
selected. That process continues on an updated list until
IET Comput. Digit. Tech., Vol. 1, No. 1, January 2007
the constraint is reached. In the case of a single TAM, the
scheme is optimal.

6 Experimental results

The aim with the experiments is to demonstrate that the test
quality can be kept high by using the proposed scheme. We
have implemented the technique described earlier, and we
have in the experiments made use of five ITC’02 bench-
marks [28], d281, d695, p22810, p34392 and p93791.
Fig. 6 Experimental results

a d281
b d695
c p22810
d p34392
e p93791
35

Given for each core in these benchmarks are the number of
test vectors, the number of scanned elements (number and
length of the scan-chains), the number of input pins, bidir-
ectional pins and output pins. The netlists for the ITC’02
benchmarks are not publicly available, and therefore we
have, in order to perform experiments, added for each
core a pass probability and a maximal fault coverage
number when all its test vectors are applied (Table 3).
Note that core 0 in d281, d695 and p93791 does not
contain any logic; hence we have not assigned a pass
probability and a fault coverage.

In order to have a memory (time) constraint from the
ATE, we performed for each design a schedule where all
vectors are applied and that test application time refers to
100%. We have performed experiments at various ATE
memory depths constraints (equal to time constraints (2)
and [4]) and these constraints are set as a percentage of
the time it would take to apply all test vectors.

We identify six techniques:

1. Test scheduling when defect probability or fault
coverage is not considered and testing is aborted at tmax –
Technique 1.
2. Test scheduling when defect probability is considered
but not fault coverage and testing is aborted at tmax –
Technique 2.
3. Test scheduling when defect probability as well as fault
coverage is considered and testing is aborted at tmax –
Technique 3.
4. Test scheduling and test-vector selection when defect
probability and fault coverage are considered, using one
TAM – Technique 4.
5. Test scheduling and test-vector selection when defect
probability and fault coverage are considered, using up to
two TAMs – Technique 5.
6. Test scheduling and test-vector selection when defect
probability and fault coverage are considered, using up to
three TAMs – Technique 6.

In the first experiment, we analyse the importance of
TAM width. We have made experiments on benchmark
p93791 at TAM width 16, 32 and 64 at time constraint
5, 10, 25, 50, 75 and 100% of the test application time if
all test data are applied. The results are presented in
Table 4 and illustrated for Techniques 2, 4 and 6 in
Fig. 5. The results show that the produced results (STQ)
are at a given time constraint, rather similar at various
TAM widths. Therefore for the rest of the experiments,
we assume a TAM bandwidth Wtam of 32.

The results from the experiments on d281, d695, p22810,
p34392 and p93791 are presented in Table 5 and also
plotted in Fig. 6. In column 1 the design name is given, in
column 2 the percentage of the test time is given, and in
columns 3–8 the produced STQ is reported for each tech-
nique (1–6). The computational cost for every experiment
is in the range of a few seconds to a few minutes.

From the experimental results collated in Table 5 and
Fig. 6, we learn that the STQ value increases with the time
constraint (a larger ATE memory results in a higher STQ),
which is obvious. It is also obvious that the STQ value for
a design is the same at 100% test time, all test data are
applied. From the results, we also see that test set selection
improves the test quality when comparing STQ at the same
test time limit. That is, Techniques 4, 5 and 6 have significant
higher STQ value compared to Techniques 1, 2 and 3. But also
important, we note that we can achieve a high test quality at low
testing times. Take design p93791, for example where the STQ
value (0.584) for Technique 1 at 75% of the testing time is
36
lower than the STQ value (0.748) at only 5% for Technique
6. It means that it is possible, by integrating test set selection,
TAM design and test scheduling, to reduce the test application
time while keeping the test quality high. Also, we have selected
rather high pass probabilities and rather high fault coverage as
these numbers are not publicly available. For designs with
lower pass probabilities and lower fault coverage, and also,
for designs where the variations in these numbers are higher,
our technique becomes more important.

7 Conclusions

The technology development has made it possible to design
extremely advanced chips where a complete system is placed
on a single die. The requirement to test these system chips
increases, and especially, the growing test data volume is
becoming a problem. Several test scheduling techniques
have been proposed to organise the test data in the ATE in
such a way that the ATE memory limitation is not
violated, and several test compression schemes have been
proposed to reduce the test data volume. However, these
techniques do not guarantee that the test data volume fits
the ATE.

In this paper, we have therefore proposed a test data
truncation scheme that systematically selects test vectors
and schedules the selected test vectors for each core in a
core-based system in such a way that the test quality is
maximised while the constraint on ATE memory depth is
overcome. We have defined a test quality metric based on
defect probability, fault coverage and the number of
applied vectors that is used in the proposed test data selec-
tion scheme. We have implemented our technique and
the experiments on several ITC’02 benchmarks [28] at
reasonable CPU times show that high test quality can be
achieved by careful selection of test data. Further, our tech-
nique can be used to shorten the test application time for a
given test quality value.

8 Acknowledgment

This work has been partially supported by the Swedish
Foundation for Strategic Research (SSF) under the
Strategic Integrated Electronic Systems Research
(STRINGENT) Program.

9 References

1 Vranken, H., Hapke, F., Rogge, S., Chindamo, D., and Volkrink, E.:
‘ATPG padding and ATE vector repeat per port for reducing test
data volume’. Proc. Int. Test Conference (ITC), Charlotte, NC,
USA, 2003, pp. 1069–1078

2 International Technology Roadmap for Semiconductors (ITRS), 2003,
http://public.itrs.net/Files/2003ITRS/Home2003.htm

3 Goel, S.K., Chiu, K., Marinissen, E.J., Nguyen, T., and Oostdijk, S.:
‘Test infrastructure design for the NexperiaTM Home Platform
PNX8550 system chip’. Proc. Design, Automation and Test in
Europe Conference (DATE), Paris, France, 2004, pp. 1530–1591

4 Iyengar, V., Goel, S.K., Marinissen, E.J., and Chakrabarty, K.: ‘Test
resource optimization for multi-site testing of SOCs under ATE
memory depth constraints’. Proc. Int. Test Conference (ITC),
Baltimore, USA, October 2002, pp. 1159–1168

5 McLaurin, T.L., and Potter, J.C.: ‘On-the-shelf core pattern
methodology for ColdFire(R) microprocessor cores’. Proc. Int. Test
Conference (ITC), Atlantic City, NJ, USA, October 2000, pp. 1100–1107

6 Harrod, P.: ‘Testing reusable IP–a case study’. Proc. Int. Test
Conference (ITC), Atlantic City, NJ, USA, 1999, pp. 493–498

7 Varma, P., and Bhatia, S.: ‘A structured test re-use methodology
for core-based system chips’. Proc. Int. Test Conference (ITC),
Washington, DC, USA, October 1998, pp. 294–302

8 Marinissen, E.J., Arendsen, R., Bos, G., Dingemanse, H., Lousberg,
M., and Wouters, C.: ‘A structured and scalable mechanism for test
IET Comput. Digit. Tech., Vol. 1, No. 1, January 2007

access to embedded reusable cores’. Proc. Int. Test Conference (ITC),
Washington, DC, USA, October 1998, pp. 284–293

9 Iyengar, V., Chakrabarty, K., and Marinissen, E.J.: ‘Test wrapper
and test access mechanism co-optimization for system-on-chip’.
Proc Int. Test Conference (ITC), Baltimore, MD, USA, 2001,
pp. 1023–1032

10 Huss, S.D., and Gyurcsik, R.S.: ‘Optimal ordering of analog integrated
circuit tests to minimize test time’. Proc. Design Automation
Conference (DAC), San Francisco, CA, USA, June 1991, pp. 494–499

11 Milor, L., and Sangiovanni-Vincentelli, A.L.: ‘Minimizing production
test time to detect faults in analog circuits’, IEEE Trans. Computer-
Aided Design Integrated Circuits Syst., 1994, 13, (6), p. 796

12 Jiang, W.J., and Vinnakota, B.: ‘Defect-oriented test scheduling’, Trans.
Very-Large Scale Integration (VLSI) Syst., 2001, 9, (3), pp. 427–438

13 Larsson, E., Pouget, J., and Peng, Z.: ‘Defect-aware SOC test
scheduling’. Proc VLSI Test Symposium (VTS), Napa Valley, CA,
USA, April 2004, pp. 359–364

14 El-Maleh, A., and Al-Abaji, R.: ‘Extended frequency-directed run
length code with improved application to system-on-a-chip test data
compression’. Proc. 9th IEEE Int. Conf. Electronics, Circuits and
Systems, September 2002, pp. 449–452

15 Gonciari, P.T., Al-Hashimi, B.M., and Nicolici, N.: ‘Variable-
length input Hoffman coding for system-on-a-chip test’, Trans.
Computer-Aided Design Integrated Circuits Syst., 2003, 22, (6),
pp. 783–796

16 Iyengar, V., and Chandra, A.: ‘Unified SOC test approach based on
test data compression and TAM design’, IEE Proc.-Comput. Digit.
Tech., 2005, 152, (1), pp. 82–88

17 Li, L., and Chakrabarty, K.: ‘Test data compression using dictionaries
with selective entries and fixed-length indices’, ACM Trans. Design
Automation Electron. Syst., 2003, 8, (4), pp. 470–490

18 Tehranipoor, M., Nourani, M., and Chakrabarty, K.: ‘Nine-coded
compression technique for testing embedded cores in SoCs’, IEEE
IET Comput. Digit. Tech., Vol. 1, No. 1, January 2007
Trans. Very Large Scale Integration (VLSI) Syst., 2005, 13, (6),
pp. 719–731

19 Wurtenberger, A., Tautermann, C.S., and Hellebrand, S.: ‘Data
compression for multiple scan chains using dictionaries with
corrections’. Proc. Int. Test Conference (ITC), Charlotte, NC, USA,
2004, pp. 926–935

20 Ichihara, H., Ogawa, A., Inoue, T., and Tamura, A.: Dynamic test
compression using statistical coding’. Proc. Asian Test Symposium
(ATS), Kyoto, Japan, November 2001, pp. 143–148

21 Chandra, A., and Chakrabarty, K.: ‘System-on-a-chip test data
compression and decompression architectures based on Golomb
codes’, Trans. CAD IC. Syst., 2001, 20, (3), pp. 355–367

22 Iyengar, V., Chakrabarty, K., and Murray, B.: ‘Built-in self-testing of
sequential circuits using precomputed test sets’. Proc. VLSI Test
Symposium (VTS), Princeton, NJ, USA, 1998, pp. 418–423

23 Chandra, A., and Chakrabarty, K.: ‘Frequency-directed-run-length
(FDR) codes with application to system-on-a-chip test data
compression’. Proc. VLSI Test Symposium (VTS), Marina Del Rey,
CA, USA, April 2001, pp. 42–47

24 Volkerink, E.H., Khoche, A., and Mitra, S.: ‘Packet-based input test
data compression techniques’. Proc. Int. Test Conference (ITC),
Baltimore, MD, USA, October 2002, pp. 154–163

25 Lin, X., Rajski, J., Pomeranz, I., and Reddy, S.: ‘On static compaction
and test pattern ordering for scan designs’. Proc. Int. Test Conference,
2001, pp. 1088–1098

26 El-Maleh, A., and Osais, Y.: ‘On test vector reordering
for combinational circuits’. Proc. 16th Int. Conf. Microelectronics,
6–8 December 2004, pp. 772–775

27 Blom, G.: ‘Sannolikhetsteori och statistikteori med tillämpningar’,
Studentlitteratur, 1989

28 Marinissen, E.J., Iyengar, V., and Chakrabarty, K.: ‘A set of
benchmarks for modular testing of SOCs’. Proc. Int. Test Conference
(ITC), Baltimore, MD, USA, October 2002, pp. 519–528
37

