
 1

A Fast INC-XOR Codec for Low Power Address Buses

H. Parandeh-Afshar1,*, M. Saneei1, A. Afzali-Kusha1, M. Pedram2

1Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering
University of Tehran, Tehran, Iran

2University of Southern California, Department of Electrical Engineering – Systems

Los Angeles, CA
*Currently on research leave in EPFL University, Lausanne, Switzerland

hparande@ut.ac.ir, mohsen.saneei@ece.ut.ac.ir, afzali@ut.ac.ir, pedram@usc.edu

Abstract

This paper presents a very fast and low-power address bus encoder, whose critical path

delay and area are only weakly dependent on the address bus width. Although the

encoding algorithm of the proposed structure is the same as the INC-XOR encoding, its

encoder and decoder architectures, called DX, are much faster. The DX architecture

implements the INC-XOR encoding partially (partial DX architecture) or fully (registered

DX architecture.) The partial implementation, which is faster and consumes less power

and silicon area, is appropriate for cases where the size of the basic block (sequential

addresses without branches or jumps) is bounded, e.g., by 256. The registered DX

architecture uses a multi-stage pipelined structure with pseudo-incrementers to reduce the

combinational delay of each pipeline stage. The two DX implementations (partial and

registered) are compared with three conventional INC-XOR architectures realized by

using the ripple carry, the carry look-ahead, and Sklansky prefix incrementers. The

 2

results for the critical path delay, gate count, power-delay product, and energy-delay

product show considerable improvements over the conventional implementations.

Keywords: Low-Power Incrementer, Low-Power Address Bus Encoder/Decoder,

Minimizing Switching Activity.

I. Introduction

 A computer system typically consists of a CPU, a memory controller, memory chips,

and buses dedicated to providing the means for data transfer between the CPU and the

memory. These buses form the performance bottleneck in many computer systems. At the

same time, due to the high capacitance of these off-chip buses, the energy dissipation per

memory bus access is quite high. These factors have served as the driving force for the

research on design of low-power buses (for example, see [1]- [8].)

 To lower the power dissipation of memory buses, one may utilize characteristics of

the addresses encountered during the memory access. In a computer system, the

generated addresses on an address bus are often in sequence and two sequential addresses

have a difference of one unit (also called stride value.) For example in the T0 method

 [3] [4], instead of placing sequential values on the bus, the address at the source (which is

called the “source word”) is examined and if its value is exactly one unit greater than the

previous address, then the address bus will be frozen. At the destination, if the address

that is read from the bus (which is called the “code word”) is unchanged compared to the

previous code word, then the decoded value is obtained by incrementing the previous

code word by one.

 One of the most efficient methods used for address bus encoding is the INC-XOR

method [5] (called T0-XOR in [6].) This technique makes use of the decorrelating

 3

characteristic of the XOR function (details are provided in the next section.) Both

encoder and decoder modules of the INC-XOR codec utilize an adder whose width is

equal to that of the bus. As the bus width increases, the delay, logic complexity, and

power consumption of this adder must also increase proportional to the bus width. This

increase can lead to the deterioration of the delay, power, and area parameters of the

overall structure. T0-Concise or T0-C for short is yet another variant of T0 which

eliminates the redundant bit [7].

In this paper, a method is introduced to improve the properties of the INC-XOR

encoder/decoder modules. With the proposed method, the delay, power-delay product,

and energy-delay product of the encoder/decoder improves while its power dissipation

and area become less dependent on the bus width. The remainder of this paper is

organized as follows. In Section II, we briefly describe INC-XOR memory bus encoding

technique, while in Section III the proposed method (DX) is presented. Section IV shows

a comparison between INC-XOR and DX and the synthesis results of DX method. The

summary and concluding remarks are given in Section V.

II. INC-XOR Encoding Algorithm

The INC-XOR code of [5] [6], may be described as follows:

 Encoder: B(t) = b(t) ⊕ (b(t – 1) + 1) ⊕ B(t – 1)

 Decoder: b(t) = B(t) ⊕ B(t – 1) ⊕ (b(t – 1) + 1)

where b(t) and B(t) denote the source word and the code word at time t, respectively. At a

given clock cycle, t, the encoder computes the incremented address of cycle t – 1 and

compares it to the address generated at cycle t. If the incremented old address (b(t – 1) + 1)

 4

and the new address (b(t)) are equal, then the result of the left XOR in the encoder

equation will be zero and the old code word (B(t – 1)) will be left on the bus. It can be

easily seen that when the addresses are consecutive, no switching activity occurs (similar

to the case of T0 code.) In general, the encoder/decoder structures of the INC-XOR codec

are simpler than those of the T0-C. That is why we will focus on the INC-XOR codec

from here on.

+1

b

Xn-1

Xn

Yn

Bn
Bn-1

Figure 1. INC-XOR encoder architecture [5].

The encoder architecture for INC-XOR is shown in Figure 1 where Xn is the current

source word, Xn-1 is the previous source word, and Yn is calculated as the XOR of Xn and

Xn-1+1 by the left XOR gate. The right XOR gate performs transition signaling of Yn with

respect to the previous code word on the bus. In this figure, all the lines have a width

equal to W and, hence, W parallel XOR gates are shown as a simple boldface XOR gate.

The encoder inserts one cycle delay between the arrival of the address b and the output of

the encoded bus B. The critical path delay of the encoder is the delay of combinational

logic between two registers (incrementer and XOR gates.) This delay can be critical in

delay-constrained systems with wide buses. Additionally, note that glitches on B must be

avoided because B is connected to large output buffers that should always be driven by

clean and fast edges to eliminate excessive power dissipation and signal quality

 5

deterioration [5]. Due to the fact that the address b is generated by a complex logic that

produces glitches and misaligned transitions, the second register is used to filter out

glitches and align the transitions on B to the clock edge (The register is needed even if the

binary code, i.e., no encoding, is used.) The decoder architecture is similar to the encoder

architecture [5]. In the next section, we introduce a new method to improve the delay and

the power delay and energy delay products of the INC-XOR encoder/decoder.

III. The DX Architecture

As explained in the previous section, the delay and power consumption overhead of the

incrementers in the INC-XOR encoder/decoder of the wide address buses may be

unacceptable. This is especially important when the encoder is used in high performance

VLSI designs where the decoder could be on the critical signal path whose delay would

be of critical importance. To remedy the problem, the adder and the following XORs

should be replaced by a simpler and faster architecture. Toward this end, we use the

structure of Figure 2 as the internal logic of a 4-bit incrementer (ripple carry adder

structure) with its successive XORs for proposing a faster and smaller pseudo-

incrementer. The half adders, denoted by HA, are used for constructing the incrementers

where for each bit slice, the longest path (shown by arrow) is the path that goes through

two XOR gates. Hence, the delay of each bit of Yn is the delay of its right input plus the

delay of two XOR gates. The delay of the right input is equal to the delay of the chain of

its previous two-input AND (AND2) gates. As the size of the chain grows, this delay

increases making the delay of the most significant bit the largest one. To reduce the delay

of this structure, first note that Yn is generated by a 3 input XOR, which has been

implemented by a two cascaded 2 input XOR gates. If we change the inputs of the two

 6

XOR gates as shown in Figure 3, we can eliminate one of the XOR gates from the critical

paths. We utilize the structure of Figure 3 in the INC-XOR encoder/decoder and call

them the DX encoder/decoder.

Figure 2. 4-bit incrementer with successive XORs.

Figure 3. Modified version of the circuit shown in Figure 2.

Although one-level of XOR gates has been eliminated from the Yn generation path,

the chain of AND gates still exists. This chain is the carry chain of the adder. The delay

of this chain grows with the increase of the bus width, making this architecture unusable

for high performance systems. To solve the problem, we should use a faster incrementer.

In this work, we investigate three incrementer architectures which include ripple-carry

structure, binary-tree Carry Look Ahead structure [10], and Sklansky Prefix-adders

 [11] [12]. When comparing the incrementers, the performance level is greatly dependent

 7

on the technology used for the implementation. To be able to evaluate each architecture

independent of the target implementation, we adopted the model proposed in [13] which

relates the required circuit area to the propagation time of each logic cell [11]. In this

approach, each two-input monotonic gate (e.g., AND and NAND gates) is counted as one

gate while an XOR gate is counted as two gates in terms of the area and the delay. In

 [10], the above structures have been compared by assuming that the width of the desired

adder is ‘W’. The results of this comparison are given in Table I which shows the ripple

carry incrementer has the minimum area while the Sklansky-Prefix incrementer has the

minimum delay. Since for the encoder/decoder, we do not need a general purpose

incrementer, in the following, we present two techniques for increasing the speed without

sacrificing the power consumption.

Table I. Conventional Incrementer Features [10]. W is the incrementer width.

Incrementer Circuit Area Circuit Delay
Ripple Carry 3.W W+1

Carry Look-Ahead 6.W 4.log2W

Sklansky Prefix 1/2.W.log2W+2W log2W + 2

A. Partial DX Architecture

The first and simple solution to the above problem is to use the DX encoder described

earlier for a small set of the least significant bits (LSBs). This idea is motivated by the

fact that in practice, nearly one out of every seven consecutive instructions is a control

transfer instruction [16]. Furthermore, an experimental study on several benchmarks

presented in [16] reveals that, the address changes in some 90% of all jumps affect eight

or fewer LSBs of the address bus. Finally, our own experiments on the SPEC2000

benchmark programs [14] show that in most cases, a series of sequential addresses has

 8

fewer than 256 addresses, which results in changes of only the eight least significant bits

(LSBs). This means that instead of applying the INC-XOR method to all the bits, we can

use the DX encoder for the 8 least significant bits, and utilize simple XOR gates for the

other most significant bits. This gives rise to very few transitions when the sequential

changes of the address bus value correspond to the changes of bits other than the least 8

significant bits or when there is a jump out of this boundary. The additional transitions

associated with the former case may be solved using techniques such as the Offset-XOR

code [6]- [8].

The partial DX-architecture enables us to obtain almost the same power saving as

applying the INC-XOR method to all bits. The method is depicted in Figure 4 which

shows that the encoder simply sends the original 24 bits, which tend to toggle very

infrequently, while the 8 LSB bits are coded by an 8-bit DX encoder. Since the DX

coding is applied to 8 LSB bits, in the worst case, it could have an AND gate with 7

inputs (instead of chaining the AND2 gates) to reduce the delay. In the proposed

architecture, when the address changes exceed 256, the outputs of the XOR gates show

the bits that have changed to the other side for correcting the address. Finally, one should

note that the number of the LSBs which are coded by the DX encoder depends on the

application and its input data characteristics. There may exist applications where this

number is larger than 8. In these cases where a higher number of LSBs than 8 should be

invoked (e.g., because of many jumps with address changes requiring larger than 8 LSBs

of the address bus), the use of partial DX architecture may lead to higher power

consumption, and thus, the registered DX architecture, which is described next, should be

used.

 9

Figure 4. Partial DX Architecture.

B. Registered DX Architecture

As discussed previously, the bottleneck in the DX encoder is the chain delay of the AND

gates. To alleviate the problem, we use the fact that during the incrementation process,

the carry will reach a specific bit position when all previous bits of the number (before it

is incremented) are 1. This feature allows us to propose a pseudo-incrementer which is

based on the ripple carry incrementer structure. In this architecture, registers are inserted

in the carry path for reducing the propagation delay. This is different from a pipelined

adder since no latency has been added to the circuit. In the proposed architecture, starting

from the LSB, each group of M consecutive bits of the input are placed into a slice. The

input carry of 1 of the slice i is propagated to the output carry when all of the Xn-1 input

bits to slice i, ranging from bit position M × i to bit position M × (i + 1) – 1, are 1.

When incrementing a number by one, the higher significance bits tend to change less

frequently. This property allows us to use the registered values of the bits instead of the

original values for deciding to propagate the input carry, cutting the long carry path to

several shorter ones. Figure 5 shows the registered DX architecture. In this figure each

elongated box with inputs Xn[.] and Xn-1[.] and outputs CO and Yn[.] represents a set of

two XOR and one AND gates depicted in Figure 3. Clearly, each register stores the result

 10

of ANDing of M bits of the previous address, Xn-1. Inserting registers in the AND gate

chain produces a new chain of AND gates which is much shorter than the previous one.

This reduces the combinational delay of each stage while keeping the total latency

unchanged. In fact, we will present a pseudo-incrementer which is based on ripple-carry

incrementer and may be effectively utilized in the INC-XOR encoder/decoder structure to

reduce the combinational delay of each pipeline stage.

Figure 5. Modified version of DX architecture (called registered DX.)

The new chain consists of two separate chains: before and after the register. The first

part of this chain is inside the DX slices and performs AND of Xn-1 bits inside that slice

to form the ‘co’ output. This is depicted in Figure 6, where a basic slice of DX encoder

for M = 4 is shown. Compared to the circuit of Figure 3, a new AND gate chain has been

added. This output is registered so that it can be used in the next clock cycle. The second

part of the new chain is out of the DX blocks, where the ‘ci’ inputs of the DX blocks are

constructed. Note that the ‘ci’ input of the last DX block has the longest propagation

delay. Except for the first clock, the ‘ci’ input may be considered as the input carry bit of

the block. If the input is 1, some of the addresses associated with that block may change

while if it is 0, no address bit for that block will change for cycle n.

 11

Note that the ‘co’ output of each block is independent of the ‘ci’ input and only

depends on ‘Xn-1’, and, therefore, the generations of ‘co’ outputs of all M-bit blocks are

performed in parallel. Finally, the circuit for the first slice is slightly different from the

circuit shown in Figure 6(a). As shown in Figure 6(b), the ‘ci’ input of the first block is

connected to Xn-1[0] and the ‘co’ output is independent of Xn-1[0]. It is imperative to

mention that for the cases where the inputs are not consecutive, the proposed pseudo

incrementer may generate a value different from the incremented value of the new input.

This is the reason for calling the structure ‘pseudo incrementer’. In this case, the result is

corrected for the next consecutive address. Because the decoder uses the same structure,

no address conflicts occurs and the original address is recovered in the decoder side.

The basic blocks of Figure 6 can be cascaded for encoding/decoding of wider buses.

In Figure 5, a 16-bit modified DX encoder has been developed with 4-bit basic blocks

where the ‘co’ output of each 4-bit block is registered. By insertion of this register, the

original functionality of encoder will be kept, while the critical path of the encoder is

reduced considerably. Using this architecture and choosing a proper width for each basic

block, the delay of the encoder/decoder becomes as small as the delay of each basic

block. The basic block width varies as a function of the bus width. A proper width

selection for the basic block is essential since the delay of the encoder and the number of

registers that are used between the basic blocks both depend on this parameter.

 12

(a)

(b)

Figure 6. (a) Basic block (other than the first block) of registered DX architecture for M = 4. (b)
First block of registered DX architecture for M = 4.

IV. Results and Discussion

In this section, the efficiency of the proposed technique is evaluated by comparing its

results by those of the conventional INC-XOR architecture given in Figure 1. Two

different DX architectures were presented in the above. Although the partial DX encoder

is very simple, when the sequential addresses on the bus overflow with respect to the 256

bound, some transitions will occur on the bus. Given the small number of gate delays on

the critical path and the weak dependence of the delay on the bus width, higher

performance and lower power consumption is achieved by the proposed technique

 13

compared to the conventional INC-XOR encoder/decoder. To assess the improvements

quantitatively, we need to evaluate the power dissipation and the delay of the encoder and

the decoder. For this purpose, the encoder and decoder architectures described in the

previous sections have been implemented in Verilog HDL at the RT level, simulated for

functional verification, and a prototype has been synthesized using Synopsys Design

Compiler with the a 0.18μm standard CMOS library with a supply voltage of 1.8V.

A. Analytical Timing Analysis

There are different choices for the width of each DX block depending on the bus width.

Here, we obtain an approximate relation between the maximum delay of the incrementer

of the encoder as a function of the bus width and the width of the DX block. Suppose that

the bus width is W and each DX slice is M bit wide. As explained, the model used in [13]

is utilized for computing the delay and the area of incrementer. The critical path of the

pseudo incrementer will pass through the last slice of the DX block, where the Wth bit (Y

[W – 1]) is constructed. First, consider the ‘ci’ input of this slice which is generated using

(W/M – 1) AND gates. If the balanced tree of 2-input AND gates is used for constructing

the ‘ci’ input, then the delay of ‘ci’, τci, (with the delay of an AND gate delay set as a unit

delay) will be given by

 τci = ⎡log2 (W/M – 1)⎤ (1)

We have used "⎡X ⎤" to denote the ceiling operation to the nearest integer number

which is equal to or larger than X. On the other hand, note that the most significant bit in

each slice has the maximum delay in that slice. This delay is equal to the sum of the

delays of the ‘ci’ input to that slice and the internal delay of the DX block (τint). The latter

delay, which is the delay of (M – 1) AND gates, is given by

 14

 τint = ⎡log2 (M – 1)⎤ (2)

where a balanced tree of 2-input AND gates is assumed. Therefore, the total delay of the

pseudo incrementer (τinc) is obtained as

 τinc = ⎡log2 (W/M – 1)⎤ + ⎡log2 (M – 1)⎤ (3)

 The area of the proposed incrementer is the sum of the areas consumed by the DX

blocks, the external AND gates, and the flip-flops. First, notice that because the AND

chain that starts from the 'ci' input inside each basic block should be constructed by a

balanced tree AND network for a faster generation (Figure 6 corresponds to a ripple carry

format and not a balanced tree one), extra AND gates are required to concurrently

compute the required intermediate AND products for the ripple carry adder, which are

not obtained from the balanced AND tree network. For example, when the AND network

has eight inputs, seven AND gates are required for constructing the tree while three other

AND gates are required for computing the intermediate AND values. Therefore, on

average 1.25 AND gates per input are needed for constructing the 'ci' tree of the slice.

The tree inputs are the first M – 1 bits of Xn-1 (see Figure 6 (a)). As the 'co' output of the

slice, which is obtained by ANDing of the last M – 1 bits of Xn-1, is registered, there is no

need to use a balanced tree. Based on this count and considering the M XOR gates, which

is assumed to be equivalent to (2 × M) AND gates, the area of the incrementer logic

inside each slice equals to 4.25 × M – 2.25 (AND gate) area unit. This area should be

multiplied by W/M which is the number of the slices in the DX encode/decoder.

Similarly, the area for the external AND gate network can be estimated as 1.25 × (W/M –

1) when it is constructed by a balanced tree. On the other hand, there are (W/M – 1) flip-

 15

flops in the design. According to the TSMC 0.18 standard library cell data book, each

flip-flop area with asynchronous set and reset and enable input is equal to the area of the

five AND gates. Hence, the total area of the incrementer (Ainc) is obtained from

 Ainc = 4.25 × W + 4 × W/M – 6.25 (4)

The above analysis may be used for obtaining the optimum M for any W. For

example, in the case of a 32-bit address bus width, by differentiating (3) with respect to

M, the optimum of M in terms of delay is calculated to be four. Using the above

equations, the optimum M in terms of delay has been computed for different bus widths

and the areas and the delays of the proposed circuit have been compared with those of the

conventional incrementers. Table II shows the comparison results for different

incrementer structures with different widths. As evident from the results, the proposed

structure has the lowest delay while its circuit area is comparable to the fastest

conventional circuit.

Table II. Area and delay comparison of conventional incrementers and the proposed
circuit.

8-bit 16-bit 24-bit 32-bit 40-bit
Incrementer

AREA DELAY AREA DELAY AREA DELAY AREA DELAY AREA DELAY
Ripple Carry 24 9 48 17 72 25 96 33 120 41

Carry Look-Ahead 48 12 96 16 144 18 192 20 240 21
Sklansky Prefix 28 5 64 6 103 7 144 7 186 8
Proposed Circuit 35 3 72 4 112 5 145 5 184 6

B. Synthesis Results

The switching activities of the gate-level implementation of the encoding/decoding

circuits were obtained by simulating the synthesized blocks with the streams of

addresses. We have used Synopsys Power Compiler tool to correlate the switching

 16

activities to the power dissipation. Table III shows the performance parameters for the

40-bits encoders and decoders of the both partial and registered DX architectures and the

conventional INC-XOR schemes using a 0.18μm CMOS technology with 1.8V supply

voltage and 180-MHz clock frequency. The conventional INC-XOR encoder and decoder

were implemented using ripple carry and carry look-ahead, and also Sklansky-Prefix

incrementers. The clock frequency of 205-MHz was chosen to accommodate the slowest

critical path of 4.87 ns in the circuits. The results show that the proposed structures have

smaller delays compared to the INC-XOR encoder/decoder architectures. The partial DX

encoder/decoder has the smallest delay and power consumption among all structures.

However, one should note that there could be more transitions on the bus in comparison

with the registered DX and the conventional INC-XOR architectures if the sequential

address series leads to changes in bits other than the least 8 significant bits or a jump to

an address out of 256 bound occurs.

The power dissipation was estimated using SPEC2000 benchmark programs [14]. The

results are based on averaging over four programs named “parser”, “vortex”, “gcc”, and

“art” when they were executed on the LEON processor [15]. The encoder and decoder

were used on the AMBA (Advance Microcontroller Bus Architecture) bus of the LEON

processor at the master (for the processor core) and slave (the main memory) side,

respectively. Although, the area and power consumptions of the registered DX

encoder/decoder are higher compared to those of the INC-XOR architecture with the

ripple carry adder, the delay reduction of the registered DX is considerably less in this

case. If the carry look-ahead adder or Sklansky-Prefix structure is used in the

incrementer, the area, the delay, and the power of the registered DX encoder/decoder are

 17

less. Both the power delay and the energy delay products of the registered DX

encoder/decoder are much lower compared to the other implementations of the

conventional INC-XOR encoder/decoder.

Table III. Performance Parameters for DX and INC-XOR.

DX

Parameter
Partial Registered

INC-XOR
(Ripple-
Carry)

INC-XOR
(Carry
Look-
Ahead)

INC-XOR
(Sklansky

Prefix
Adder)

Pencoder + Pdecoder (mW) 0.213 0.277 0.256 0.398 0.288
Critical Path (ns) 0.96 1.68 4.87 3.08 2.39

Encoder Area (µm2) 4773 8970 6912 9677 8934
PDP (10-12J) 0.204 0.465 1.246 1.225 0.688

PD2P (10-15Js) 0.196 0.781 6.071 3.775 1.645

It is imperative to mention that the proposed implementation of the INC-XOR is

registered-based (see Figure 5) and, hence, the use of encoding only increases the latency

without affecting the delay. Therefore, the bus speed will not be affected. In general, any

encoding system has an encoder and a decoder at the both ends of the bus imposing some

timing, area, and power overheads. In low-power applications where minimizing the

power is the primary concern, the encoding should be used to lower the overall power

consumption (encoder_power + bus_power + decoder_power) compared to the case of

no coding where only the bus_power exists. If the power of the encoding case is lower,

then one should check the timing (delay/latency) and the area overheads of the encoding

case. If these overheads are within the acceptable range for that application, then the use

of the encoding is justified. Obviously, as the bus length increases, the relative weight of

fixed-complexity overheads becomes smaller.

To assess the efficiency of the technique, we have estimated the average power (per

line) associated with the switching of the on-chip address bus lines in the 180nm

 18

technology. For estimating the bus power, the average transition per bus line was

computed by running SPEC2000 benchmarks. Using this parameter and the data about

the global interconnect width, spacing, thickness, and the dielectric height numbers

reported in [17] for the 180nm technology, the power dissipation for each bus width and

line length was computed. Table IV shows the average power consumptions of the on-

chip buses. For the buses with coding, the power dissipations of the registered DX

encoder and decoder shown in Table V have been included. As the results show, the

power difference between the coding and non-coding cases increases with the increasing

the length. It should be noted that since the power overhead of the encoder/decoder is less

for the case of the partial DX architecture when compared to the case of the registered

DX architecture, even more power saving will be achieved if the coding technique is used

with these encoder/decoder.

Table IV. Power consumption (mW) for different on-chip address bus widths and line
lengths with (C) and without coding (NC).

8-bit 16-bit 24-bit 32-bit 40-bit Length
(mm) C NC C NC C NC C NC C NC

1 0.234 0.332 0.277 0.353 0.310 0.363 0.334 0.370 0.350 0.376
1.5 0.249 0.409 0.292 0.434 0.326 0.447 0.350 0.456 0.367 0.463
2 0.265 0.499 0.310 0.530 0.344 0.545 0.369 0.556 0.385 0.565

2.5 0.278 0.569 0.324 0.604 0.358 0.621 0.383 0.634 0.400 0.644
3 0.293 0.650 0.339 0.690 0.374 0.709 0.400 0.724 0.417 0.735

Table V. Power consumed in the registered DX encoder and decoder for different bus
widths.

Bus Width Pencoder + Pdecoder (mW)
8-bit 0.173

16-bit 0.212
24-bit 0.235
32-bit 0.266
40-bit 0.277

 19

Now we consider the use of the coding for off-chip addressing of the memory. Table

VI contains the power estimation for off-chip busses as a function of the bus bit-width

and line length with and without coding. A bus capacitance per length of 1pF/mm has

been assumed in these calculations [18] [19]. In the case of off-chip buses, since the

switching power associated with the bus is much higher, the power savings obtained are

much more compared to the case of the on-chip buses. It should be mentioned that as the

results presented in Table IV and Table VI reveals the power dissipation of coding case

increases more aggressively with the bus bit width as opposed to the bus length. The

exact opposite is true for the non-coded case. The reasons for this behavior is the

dependence (independence) of the encoder/decoder power overhead with the bus bit

width (length) and the diminished effect of the bus power in the overall power

consumption when the coding is used. Finally, we have plotted the power savings

achieved through coding as a function of the length for different bus widths in Figure 7.

As expected, the results show that as the bus length increases, the amount of power

saving also increases.

Table VI. Power consumption (mW) for different off-chip address bus widths/lengths
with (C) and without coding (NC).

8-bit 16-bit 24-bit 32-bit 40-bit Length
(cm) C NC C NC C NC C NC C NC

1 0.336 0.884 0.386 0.939 0.421 0.966 0.448 0.986 0.466 1.001
2 0.465 1.581 0.522 1.679 0.562 1.726 0.592 1.763 0.612 1.789
3 0.590 2.256 0.655 2.396 0.698 2.464 0.731 2.516 0.753 2.554
4 0.711 2.913 0.784 3.094 0.831 3.181 0.866 3.249 0.890 3.298
5 0.838 3.600 0.919 3.823 0.969 3.931 1.008 4.015 1.034 4.075
6 0.958 4.247 1.045 4.510 1.100 4.638 1.141 4.736 1.169 4.808
7 1.086 4.939 1.181 5.245 1.240 5.393 1.284 5.507 1.314 5.591
8 1.204 5.581 1.307 5.927 1.369 6.094 1.416 6.223 1.448 6.317
9 1.333 6.276 1.444 6.665 1.509 6.853 1.559 6.998 1.594 7.104

10 1.460 6.964 1.579 7.396 1.648 7.605 1.701 7.766 1.738 7.883

 20

(a)

(b)

Figure 7. The power savings achieved through coding as a function of the length for different bus

widths. (a) On-chip buses (b) off-chip buses.

V. Summary and Conclusion

We presented new encoder/decoder architecture for the INC-XOR encoding method to

reduce the delay, the power delay product, and the energy delay product. Both the

 21

analytical and simulation results showed that the proposed architecture was very fast in

comparison to the conventional encoder/decoder architectures implemented using the

ripple carry, carry look-ahead, and Sklansky-prefix incrementers. The simulations results

showed considerable improvements for these parameters in the case of the proposed

structure. An important feature of the proposed architecture is that its delay is weakly

dependent on the address bus width compared to the conventional INC-XOR

encoder/decoder architecture. Therefore, the proposed architecture improves the features

of the INC-XOR address bus encoder/decoder.

References

[1] M. R. Stan and W. P. Burleson, “Bus-Invert Coding for low-Power I/O,” IEEE

Trans. on Very Large Scale Integration Systems, vol. 3, no. 1, Mar. 1995, pp. 49-58.

[2] Y. Shin, S. I. Chae, and K. Choi, “Partial Bus-Invert Coding for Power

Optimization of System Level Bus,” Proc. Int’l Symp. on Low Power Electronics

and Design, Aug. 1998, pp. 127-129.

[3] L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano, “Asymptotic Zero-

Transition Activity Encoding for Address Buses in Low-Power Microprocessor-

Based Systems,” Proc. of 7th Great Lakes Symp. on VLSI, Mar. 1997, pp. 77-82.

[4] L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano, “Address Bus

Encoding Techniques for System-Level Power Optimization,” Proc. of Design

Automation and Test in Europe, 1998, pp. 861-866.

 22

[5] S. Ramprasad, N. Shanbhag, and I. Hajj, “A Coding Framework for Low Power

Address and Data Buses,” IEEE Trans. Very Large Scale Integration Systems, vol.

7, June 1999, pp. 212-221.

[6] W. Fornaciari, M. Polentarutti, D. Sciuto, and C. Silvano, “Power Optimization of

System-Level Address Buses Based on Software Profiling,” Proc. of Int’l

Conference on Hardware-Software Codesign and System Synthesis, 2000, pp. 29-

33.

[7] Y. Aghaghiri, F. Fallah, and M. Pedram, “Irredundant address bus encoding for low

power,” Proc. of Int'l Symp. on Low Power Electronics and Design, Aug. 2001, pp.

82-187.

[8] Y. Aghaghiri, F. Fallah, and M. Pedram, “ALBORZ: address level bus power

optimization,” Proc. of Int'l Symp. on Quality of Electronic Designs, Mar. 2002, pp.

470-475.

[9] H. Mehta, R. M. Owens, and M. J. Irwin, “Some Issues in Gray Code Addressing,”

Proc. of the 6th Great Lakes Symposium on VLSI, March 1996, pp.178-180.

[10] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, Oxford

University Press, New York, 2000.

[11] Reto Zimmermann, "Binary Adder Architectures for Cell-Based VLSI and their

Synthesis, Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, 1997.

[12] J. Sklansky, “Conditional sum addition logic,” IRE Transactions on Electronic

Computers, volume EC-9, no. 6, June 1960, pp. 226–231.

 23

[13] A. Tyagi, “A reduced-area scheme for carry-select adders,” IEEE Transactions on

Computers, vol. 42, no. 10, October 1993, pp. 1163–1170.

[14] SPEC Benchmark data, http://www.spec.org.

[15] LEON2 Processor (2005), http://www.gaisler.com/products/leon2/leon.html.

[16] Computer Architecture, A Quantitative Approach, John L. Henessey and David A.

Patterson, 3rd Ed., 2002.

[17] Predictive Technology Model (PTM): http://www.eas.asu.edu/~ptm/.

[18] Ioannis Koryfidis, "Power Aware HW/SW Partitioning for a DVB-H Receiver

Module," M.Sc. Thesis, Faculty of Electrical Engineering, Mathematics and

Computer Science, Delft University of Technology, 2006.

[19] Mahesh Mamidipaka, Nikil Dutt, and Dan Hirschberg, "Efficient Power Reduction

Techniques for Time Multiplexed Address Buses," in Proceedings of ISSS'02,

October 2–4, 2002, pp. 207-212.

