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Abstract: A novel block diagonalisation (BD)-based Multiuser multiple input multiple output (MU-MIMO)-aided relaying
scheme is proposed for downlink transmissions, which does not require any channel state information at the base station (BS)
and decomposes a MU-MIMO-aided relaying system into several parallel single-user MIMO-assisted relaying schemes.
Furthermore, based on the proposed algorithm the optimal linear processing matrix designed for the maximum achievable
capacity is derived, which significantly outperforms the so-called naive weighting matrix.

Nomenclature

xk Symbol vector transmitted to the kth MS from BS

H Channel matrix between the BS and the RS

Hk Channel matrix used for kth MS between the BS
and the RS

yr Received signal at the RS

W Weighting matrix at the RS

xr Transmitted signal at the RS

Tk Postprocessing matrix for the kth MS at the RS

Pk Preprocessing matrix for the kth MS at the RS

Fk Weighting matrix for the kth MS at the RS

xk Transmitted signal for the kth MS at the RS

H̃ k Channel matrix between the RS and the kth MS

ỹk Received signal at the kth MS

1 Introduction

High-rate wireless transmissions can be supported by multiple
antennas employed both at the base station (BS) and
the mobile stations (MS), when using the concept of
multiple input multiple output (MIMO) systems, since they
are capable of substantially increasing the achievable
system capacity [1]. Hence diverse MIMO-aided
transmission schemes have been developed. In [2], the so-
called Bell Laboratories layered space-time (BLAST)
MIMO system was proposed, which is capable of achieving
a beneficial multiplexing gain. By contrast, space time
block codes are capable of attaining a diversity gain [3]. In

order to achieve the maximum attainable throughput, a
BLAST-based MIMO system is adopted in this paper.

As a design alternative, relay-assisted transmission
techniques also attracted substantial research interests, since
they are capable of achieving a spatial diversity gain, hence
extending the cellular coverage area, even when using a
reduced transmitter power [4]. Relay strategies can be
roughly divided into two categories, regenerative and non-
regenerative. In a regenerative scenario the relay decodes
the data and then re-encodes the symbols before their
retransmission. By contrast, non-regenerative relays linearly
process the received signal and forward it. The inherent
drawback of the regenerative relay is the increased
complexity imposed by the employment of sophisticated
decoding algorithms. Furthermore, decoding at the relay
station (RS) may also result in a potential ‘eavesdropping’
problem. For these reasons a non-regenerative relay is
considered in this paper.

Single-user MIMO-aided relaying has been investigated in
[5–9]. Specifically, the system performance may be
significantly improved by employing an optimal linear
processing matrix at the RS, which may be designed using
different optimisation criteria, such as for example that of
achieving the maximum capacity [7], or the minimum mean
square error [8]. We assume that only the RS and the MS
have the downlink (DL) channel state information (CSI) for
the link spanning from the BS to RS and from the RS to
MS, but not the BS. Hence no CSI is fed back from the RS
to BS and MS to BS.

In multiuser MIMO-aided DL relaying most research
concentrated on the scenario, where only a single receive
antenna is used at each MS [10, 11]. Furthermore, it was
typically assumed that the BS knows the DL CSI [10, 11].
However, it would be rather challenging to inform the BS
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of the CSI between the RS and each MS, especially for high-
velocity MSs. It would be a slightly more realistic scenario for
the RS to estimate the CSI for the link spanning from the BS
to the RS and that between the RS and each MS [7, 8].

Against this background, we proposed a block
diagonalisation (BD)-based MIMO-aided multiuser relaying
scheme employing linear matrix-multiplication assisted
processing at the RS for decomposing this multiuser
scheme into low-complexity single-user ones. Furthermore,
based on the proposed algorithm, the optimum linear
processing matrix yielding the maximum achievable
capacity is derived.

The paper is structured as follows. In Section 2, the
MIMO-aided relaying assisted multiuser system employing
matrix-multiplication-based linear processing at the RS is
discussed. In Section 3 BD-based linear preprocessing
is used at the RS. In Section 4 the canonical form of
the linear processing matrix designed for attaining the
maximum achievable capacity is derived and the maximum
achievable capacity is quantified. Our simulation results are
provided in Section 5, while our conclusions are offered in
Section 6. Furthermore, in order to make it easier to
understand the paper, some important symbols are listed in
the nomenclature.

2 Multiuser MIMO relay employing linear
processing at the RS

The multiuser MIMO-aided DL relaying scheme employing
linear processing at the RS is shown in Fig. 1, which relies
on a single BS using M DL transmit antennas and a single
RS equipped with R transmit/receive antennas, as shown in
Fig. 1. Furthermore, there are K MSs, each having Nk DL
receive antennas.

Assume that the Mk-component symbol vector xk has to be
transmitted to the kth MS, which is given by

xk = [xk1, xk2, . . . , xkMk
]T (1)

where the total number of symbols transmitted to each MS is
identical to the number of BS antennas, yielding∑K

k=1 Mk = M . The BS’s signal vector x transmitted in the
DL to the K MSs may be expressed as

x = [xT
1 , . . . , xT

K ]T (2)

Furthermore, we assume that the DL channel between the BS
and the RS experiences frequency-flat fading, which is
described by a (R × M )-dimensional matrix H. The signal

yr received at the RS is given by

yr = Hx + n =
∑K

i=1

H ixi + n (3)

where Hi is an (R × Mk)-dimensional matrix, representing the
channel coefficients between the specific Mk transmit
antennas of the BS which are dedicated to the kth MS, and
the R receive antennas at the RS, while n is a length-R
noise observation vector, which is assumed to be Gaussian
distributed with a zero mean and a covariance matrix of s2

1IR.
As shown in Fig. 1, an (R × R)-dimensional linear

processing matrix W is used at the RS, hence the signal
transmitted by the RS is expressed as

xr = Wyr = W
∑K

i=1

H ixi + Wn (4)

The Nk-component received signal vector ỹk of the kth MS is
given by

ỹk = H̃ kxr + ñk

= H̃ kWHkxk + H̃ kW
∑K

i=1,i=k

H ixi + H̃kWn + ñk (5)

where the (Nk × R)-dimensional matrix H̃k represents the
channel coefficients between the RS and the kth MS.
Furthermore, similarly to the BS–RS link, a flat-fading
channel is assumed also for the RS-MS link, while ñk is a
length-Nk noise observation vector at the kth MS, which is
assumed to be Gaussian distributed with a zero mean and a
covariance matrix of s2

2INk
. As we can see from the second

term of (5), the multiuser interference (MUI) imposed on
the kth MS is given by

∑K
i=1,i=k H̃kWH ixi.

By appropriately choosing the RS’s weight-matrix W, the
MUI can be mitigated for the kth MS. In the next section,
we determine the BD-based linear processing matrix W of
the RS.

3 BD-based linear processing matrix at
the RS

Again, the MUI imposed on the kth MS’s received signal yr at
the RS is given by

∑K
i=1,i=k H ixi. In order to remove the MUI

imposed on the kth MS’s signal at the RS, we invoke the
postprocessing matrix Tk of Fig. 1 at the RS, resulting in

Fig. 1 Schematic representation of the multiuser MIMO relay system with linear processing at RS and multiple antenna at each mobile
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the postprocessed vector ŷ given by

ŷk = T kyr = T kH kxk + T k

∑K

i=1,i=k

H ixi + T kn (6)

Furthermore, let us define an R ×
∑K

i=1,i=k Mi

( )
- component

matrix Ĥk as

Ĥk = [H1, . . . , H (k−1), H (k+1), . . . , HK ] (7)

Moreover, let us assume R . max
∑K

i=1,i=k Mi

( )
, hence we

have rank(Ĥ) ≤
∑K

i=1,i=k Mi. If the elements in each
channel matrix are independent identically distributed
(i.i.d), we have rank(Ĥ k) =

∑K
i=1,i=k Mi with a unity

probability [12] and the singular value decomposition
(SVD) of Ĥk can be expressed as

Ĥk = [ÛksÛkn] L̂1/2
k

0

[ ]
V̂ H

k , k = 1, 2, . . . , K (8)

where L̂k = diag l1, l2, . . . , l∑K

i=1,i=k
Mi

{ }
contains the∑K

i=1,i=k Mi non-zero eigenvalues of ĤH
k Ĥk or ĤkĤH

k .

Furthermore, the R ×
∑K

i=1,i=k Mi

( )
-component semi-

unitary matrix Ûks consists of the
∑K

i=1,i=k Mi eigenvectors

corresponding to the signal subspace of ĤkĤH
k , while the

R × R −
∑K

i=1,i=k Mi

( )
-component semi-unitary matrix Ûks

Ûkn consists of the R −
∑K

i=1,i=k Mi

( )
eigenvectors

corresponding to the null subspace of ĤkĤH
k . Similarly, the

columns of V̂k correspond to the eigenvectors of ĤH
k Ĥk .

We can now specifically design the RS’s (Lk × R)-

component postprocessing matrix Tk, where we have

Lk = R −
∑K

i=1,i=k Mi, so that it removes the MUI from the
kth MS’s signal at the RS, which is ensured by choosing Tk as

T k = ÛH
kn (9)

Upon substituting (9) into (6), we arrive at

ŷk = ÛH
knyr = ÛH

knHkxk + nk (10)

where we have nk = ÛH
knn, ÛH

kn is a semi-unitary matrix and
nk has the same statistical properties as n.

As seen in Fig. 1, after removing the MUI imposed on the
kth MS’s signal at the RS with the aid of Tk, we can employ
the linear weighting matrix Fk and the preprocessing matrix
Pk at the RS for processing the signal vector ŷk , resulting in
the R-element signal vector x̃k transmitted by the RS to the
kth MS, which is given by

x̃k = PkFk ŷk = PkFkÛH
kny

= PkFkÛH
knH kxk + PkFknk (11)

Consequently, the signal vector ỹk at the receiver output of kth

MS becomes

ỹk = H̃ k

∑K

i=1

x̃k + ñk

= H̃ kPkFk ŷk + H̃k

∑K

i=1,i=k

PiFiŷi + ñk (12)

By appropriately choosing Pk of Fig. 1, the MUI

H̃ k

∑K
i=1,i=k PiFiŷi can be efficiently mitigated. The role of

the weighting matrix Fk of Fig. 1 will be discussed later in
Section 4.

To this end, we adopt the so-called BD-based
multiuser transmission technique [12], where a new∑K

i=1,i=k Nk × R
( )

-dimensional matrix H
^

k is generated for

the kth MS as

H
^

k = [H̃
T
1 , . . . , H̃

T
k−1, H̃

T
k+1, . . . , H̃

T
K ]T (13)

Furthermore, if we assume that R . max
∑K

i=1,i=k Ni

( )
, then

we have rank(Ĥ) ≤
∑K

i=1,i=k Ni. If the elements in each
channel matrix are i.i.d, then we have

rank(H
^

k ) =
∑K

i=1,i=k Ni with a probability of unity [12].

Furthermore, the SVD of the matrix H
^

k is formulated as

H
^

k = U
^

k L
^1/2

k 0

[ ]
[V
^

ksV
^

kn]H, k = 1, 2, . . . , K (14)

where L
^

k = diag l
^

1, l
^

2, . . . , l
^∑K

i=1,i=k
Ni

{ }
contains the

∑K
i=1,i=k Ni non-zero eigenvalues of H

^ H

k H
^

k or H
^

kH
^ H

k .

Furthermore, the columns of U
^

k are constituted by the

eigenvectors of H
^

kH
^ H

k , V
^

ks consists of the
∑K

i=1,i=k Ni

eigenvectors corresponding to the signal subspace of

H
^

kH
^ H

k , while V
^

kn consists of the R −
∑K

i=1,i=k Ni

( )
eigenvectors corresponding to the null subspace of H

^

kH
^ H

k .
We can now determine the preprocessing matrix Pk of

Fig. 1 as a (R × Jk)-component matrix, with Jk = R −∑K
i=1,i=k Ni, where Pk is given by

Pk = V
^

kn (15)

which is capable of completely removing the MUI term
imposed on the kth MS’s received signal. Upon substituting
(15) into (12), we arrive at

ỹk = Hk2FkHk1xk + n̂k (16)

where the (Lk × Mk)-dimensional matrix Hk1 is given by
Hk1 = ÛH

knHk , while the (Nk × Jk)-dimensional matrix Hk2

is formulated as Hk2 = H̃ kV
^

kn and the Nk-component noise
vector n̂k is given by n̂k = H k2Fknk + ñk , which has a zero
mean and a covariance matrix Rk of

Rk = E[n̂k n̂H
k ] = s2

1H k2FkFH
k HH

k2 + s2
2INk

(17)
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As we can see from (16), the MUI imposed on the kth MS has
been completely removed, hence the kth MS effectively
benefits from what is perceived to be a single-user MIMO-
aided relay system, which is the explicit benefit of using the
linear weighting matrix Pk at the RS, as shown in Fig. 2.

Upon substituting (15) into (11) the signal vector x̃k
transmitted by the RS to the kth MS becomes

x̃k = V
^

knFk ŷk = V
^

knFkÛH
knyr

= V
^

knFkÛH
knH kxk + V

^

knFknk (18)

Consequently, the composite multiuser signal vector xr

transmitted by the RS to the K MSs becomes

xr = [x̃T
1 , . . . , x̃T

K ]T = V
^

FÛy (19)

where we have

V
^

= [V
^

1n, . . . , V
^

Kn] (20)

F = diag[F1, . . . , FK ] (21)

Û = [Û1n, . . . , ÛKn]H (22)

Based on (19), we can see that the linear processing matrix W
is given by

W = V
^

FÛ (23)

Having determined V
^

and Û , let us now proceed
by determining the ( Jk × Lk)-dimensional matrix Fk.
Depending on the specific optimisation criterion employed,
Fk may have different realisations. Specifically, our goal is
to determine that particular matrix Fk, which maximises the
achievable system capacity.

4 Optimal linear weighting matrix

The optimal linear weighting matrix, which maximises the
achievable capacity has been provided in [7] for a single-
user MIMO aided relay system. However, the solution of
[7] is limited to a square-shaped linear weighting matrix. In
this section, we derive the canonical form of the linear
weighting matrix for arbitrary dimensions.

Based on (16), the achievable capacity Ck of the kth MS for
a given power Pk allocated to the signal x̃k transmitted by the

RS is formulated as [7]

Ck = log2|IMk
+ P1

M
(Hk2FkHk1)HR−1

k (Hk2FkHk1)| (24)

Upon invoking (18), the power constraint may be formulated
as

trace(x̃k x̃H
k )=s2

1trace[(Fk(ILk
+r1Hk1HH

k1)FH
k )]≤Pk (25)

where r1 =P1/Ms2
1.

As usual, the eigenvalue decomposition of Hk1
HH

k1
and

HH
k2Hk2 can be expressed, respectively, as

Hk1HH
k1 = U k1Lk1UH

k1 (26)

HH
k2Hk2 = V k2Lk2V H

k2 (27)

where Lk1 = diag[ak1, . . . , akLk
] hosts the eigenvalues of

Hk1HH
k1 arranged in non-increasing order, while

Lk2 = diag[bk1, . . . , bkJk
] represents the eigenvalues of

HH
k2Hk2, also arranged in non-increasing order.
Assuming that the ( Jk × Lk)-dimensional matrix Gk is

formulated as

Gk = s1

s2

Fk = V k2X k(ILk
+ r1Lk1)−1/2UH

k1 (28)

where Xk is an arbitrary ( Jk × Lk)-dimensional matrix, we
can see that the optimum Xk must turn XH

k Lk2X k into a
diagonal matrix [7], yielding

XH
k Lk2X k = LkT (29)

Based on (29), we have rank(LkT ) = lkT ≤ rank
(Lk2) = lk ≤ min(Jk , Nk). Next we will discuss two
different scenarios.

Scenario 1: Firstly, if Lk ≥ lk is satisfied, we can partition
Lk2, Xk and LkT to ensure that

XH
k1 XH

k2

[ ] L̃k2 0
0 0

[ ]
X k1

X k2

[ ]
= L̃kT 0

0 0

[ ]
(30)

where L̃k2 and L̃kT are both (lk × lk)-dimensional matrices,
and L̃k2 has a full rank, while L̃kT does not necessarily
have a full rank. Furthermore, Xk1 is a (lk × Lk)-
dimensional matrix, while Xk2 is a [( Jk 2 lk) × Lk]

Fig. 2 Schematic representation of the effective single-user MIMO relay system with linear processing at RS and multiple antenna at each
mobile
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-dimensional matrix. Based on (30), we have

X k = X k1

X k2

[ ]
= L̃

−1/2

k2 QkL̃
1/2

kT

X k2

[ ]
(31)

where Qk is an (lk × lk)-dimensional unitary matrix, and L̂1/2
kT

is an (lk × Lk)-dimensional matrix given by

L̂1/2
kT = [L̂1/2

kT 0] (32)

Since Xk2 has no impact on LkT , we set Xk2 ¼ 0 to save
power, which results in

trace(XH
k1X k1) = trace((L̂1/2

kT )HQH
k L̃

−1

k2 QkL̂
1/2
kT )

= trace(QH
k L̃

−1

k2 QkL̃kT ) ≥ trace(L̃
−1

k2 L̃kT )

(33)

where the equality is achieved for Qk ¼ I. In (33), we
exploited the facts that given any two (N × N )-element
positive semi-definite Hermitian matrices A and B with
eigenvalues of li(A) and li(B) arranged in non-increasing
order, respectively, we have [13]

∑N

i=1

li(A)lN+1−i(B) ≤ trace(AB) ≤
∑N

i=1

li(A)li(B) (34)

Hence the optimal Xk of Scenario 1 is given by

X k = L̃
−1/2

k2 L̃
1/2

kT 0
0 0

[ ]
(35)

In summary, the optimal ( Jk × Lk)-dimensional matrix of Xk

has the form

X k = X̂k 0
0 0

[ ]
(36)

where X̂k is an (lk × lk)-dimensional diagonal matrix, given
by X̂k = diag[x̂k1, . . . , x̂klk

].
Scenario 2: By contrast, if Lk , lk , we can partition Lk2,

Xk and LkT to ensure that

XH
k1 XH

2k

[ ] L̃k2 0
0 0

[ ]
X k1

X k2

[ ]
= L̃kT 0

0 0

[ ]
(37)

where L̃k2 and L̃kT are (lk × lk)-dimensional and (lkT × lkT)-
dimensional matrices, respectively, and both L̃k2 and L̃kT
have a full rank. Furthermore, Xk1 is an (lk × Lk)-
dimensional matrix, while Xk2 is a [( Jk 2 lk) × Lk]-
dimensional matrix. Based on (37), we have

X k = X k1

X k2

[ ]
= L̃

−1/2

k2 QkL̃
1/2

kT

X k2

[ ]
(38)

where QH
k is an (lkT × lk)-dimensional semi-unitary matrix,

and L̂1/2
kT is an (lkT × Lk)-dimensional matrix given by

L̂1/2
kT = [L̂1/2

kT 0] (39)

Similarly, we set Xk2 ¼ 0 to save power and hence we have

trace(XH
k1X k1) = trace(L̃

−1

k2 QkL̃kT QH
k )

≥ trace(L
^

k2L̃kT ) (40)

where L
^

k2 is an (lkT × lkT)-dimensional submatrix of L̃
−1

k2 ,

composed of the first lkT rows and lkT columns of L̃
−1

k2 and
the equality in (40) is achieved, when Qk equals the first lkT

columns of I lk
according to (34).

Hence the optimal Xk of Scenario 2 is given by

X k = L
^

k2L̃
1/2

kT 0
0 0

[ ]
(41)

In summary, the optimal ( Jk × Lk)-dimensional matrix of Xk

has the form

X k = X̂k

0

[ ]
(42)

where X̂k is an (Lk × Lk)-element diagonal matrix, which is
given by X̂k = diag[x̂k1, . . . , x̂kLk

].
By combining Scenarios 1 and 2 discussed above, we

conclude that the optimal ( Jk × Lk)-dimensional matrix Xk

has the form

X k = X̂k 0
0 0

[ ]
(43)

where X̂k is an (l′k × l′k )-dimensional diagonal matrix, and
l′k = min{Lk , lk}, which is given by X̂k = diag[x̂k1, . . . , x̂kl′

k
].

Based on (25), the optimal weighting matrix Fk is given by

Fk = V k2LkFUH
k1 = V k2

L̃k 0
0 0

[ ]
UH

k1 (44)

where we have LkF = L̃k 0
0 0

[ ]
, and L̃k is an (l′k × l′k )-

dimensional diagonal matrix, given by L̃k = diag[l̃k1, . . . ,
l̃kl′

k
], where the powerq allocation coefficients l̃ki are given

by [7] (see (45))

Furthermore, in (45), v should be chosen to meet [7]

∑K

k=1

s2
2

∑l′k

i=1

x̂2
ki − Pr ≤ 0 (46)

5 Simulation results

In this section, our simulation results are provided. The
notation of (M 2 R 2 Nk 2 K ) is used in the figures to

l̃ki =
s2

s1

�������������������������������������������������������������������
1

2bki(1 + r1aki)

[ ������������������������������
(r1aki)

2 + 4r1akibki

1

vs2
2ln2

√
− r1aki − 2

]+
√√√√ (45)
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characterise the antenna configurations. Furthermore, for a
given M, Mk ¼ M/K is used. Moreover, we define the
parameters SNR1 and SNR2, respectively, as

SNR1 = Ps/M

s2
1

= 1

s2
1

(47)

where we exploited the property of Ps ¼ E[xxH] ¼ M and

SNR2 = Pr/R

s2
2

= 1

s2
2

(48)

assuming that Pr ¼ R. Furthermore, the entries in H and H̃ k
are assumed to be i.i.d. complex Gaussian variables with
zero means and unity covariance.

Moreover, the so-called naive weighting matrix is used as
the benchmark. Specifically, for naive weighting matrix, Fk

is chosen to be Fk = bI (Jk ,Lk ), where I (Jk ,Lk ) is a ( Jk × Lk)-
dimensional matrix with 1 s on its diagonal and zeros
elsewhere. Additionally, the b is the power control factor,
which can be determined by Tr(xrx

H
r ) = Pr.

In Fig. 3, the average capacity against the average SNR2 is
plotted, when SNR1 was fixed at 20 dB. Furthermore, the
number of DL transmit antennas at the BS is set to M ¼ 4
and the number of MSs is set to K ¼ 2, each equipped with
Nk ¼ 2 antennas. In this case, the matrix Fk is a square one.
As we can see from Fig. 3 that our optimal weighting
matrix substantially outperforms the naive one for any
system configurations. A similar conclusion may be inferred
from Fig. 4, when the role of SNR1 and SNR2 was
swapped, that is, we had SNR2 ¼ 20 dB.

In Fig. 5, the average capacity against the average SNR2 is
quantified, when SNR1 is fixed at 20 dB. Furthermore, the
number of DL transmit antennas at the BS is set to M ¼ 4
and the number of receive antennas at the RS is assumed to
take the values of R ¼ 4, 5, 6. Moreover, the number of
MSs is set to K ¼ 2, each equipped with Nk ¼ 3 receive
antennas. In this case, the matrix Fk is a non-square one.
As we can see from Fig. 5, for a given antenna
configuration at the BS and RS, the capacity achieved by
the optimal weighting matrix substantially outperforms that
by naive one. Again, similar trends may also be observed
from Fig. 6, where the role of SNR1 and SNR2 was
swapped, that is, we had SNR2 ¼ 20 dB.

6 Conclusions

In this paper, we proposed a block-diagonalisation based
multiuser MIMO-aided relaying scheme using linear
processing at the RS. The proposed algorithm decomposes
a multiuser MIMO-aided relay scheme into several parallel
single-user MIMO relay schemes without imposing any
requirements at the BS. Furthermore, the optimal linear
matrix designed for maximum capacity is also derived in
this paper, which significantly outperforms the so-called
naive weighting matrix.

Fig. 3 Average capacity against the average SNR2 when SNR1 is
fixed at 20 dB for two MSs

Notation of (M 2 R 2 Nk 2 K ) is used in the figures to characterise the
antenna configurations. Furthermore, for a given M, Mk ¼ M/K is used

Fig. 4 Average capacity against the average SNR1 when SNR2 is
fixed at 20 dB

Notation of (M 2 R 2 Nk 2 K ) is used in the figures to characterise the
antenna configurations. Furthermore, for a given M, Mk ¼ M/K is used

Fig. 5 Average capacity against the average SNR2 when SNR1 is
fixed at 20 dB for three MSs

Notation of (M 2 R 2 Nk 2 K ) is used in the figures to characterise the
antenna configurations. Furthermore, for a given M, Mk ¼ M/K is used

Fig. 6 Average capacity against the average SNR1 when SNR2 is
fixed at 20 dB

Notation of (M 2 R 2 Nk 2 K ) is used in the figures to characterise the
antenna configurations. Furthermore, for a given M, Mk ¼ M/K is used
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