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Abstract - Clouds represent a major paradigm shift from contemporary systems, inspiring the contemporary approach to computing. They present fascinating opportunities to address dynamic user requirements with the provision of flexible computing infrastructures that are available on demand. Clouds, however, introduce novel challenges particularly with respect to security that require dedicated efforts to address them. This paper is focused at one such challenge i.e. determining the extent of damage caused by an intrusion for a victim virtual machine. It has significant implications especially with respect to effective response to the intrusion. The paper presents our efforts to address this challenge for Clouds in the form of a novel scheme for intrusion damage assessment for Clouds. In addition to its context-aware operation, the scheme facilitates protection against multi-stage attacks. The paper also includes the formal specification and evaluation of the scheme which successfully demonstrate its effectiveness to achieve rigorous damage assessment for Clouds.
1. Introduction
Cloud computing presents exciting opportunities to establish large-scale, flexible computing systems that are available on-demand to fulfil dynamic user requirements. Virtual machine (VM) technology [1] has a profound role in this. Live migration, isolation, flexibility and customization represent compelling characteristics of Clouds. Amazon EC2 [2] and GoGrid [3] represent the leading examples of commercial Cloud providers whereas Nimbus [4] and OpenNebula [5] represent academic efforts to achieve Cloud computing systems. A number of different models of Clouds have been proposed such as Infrastructure as a Service (IaaS), Software as a Service (SaaS) and Platform as a Service (PaaS) [6] where each of these present different benefits for different application models. With regards to these models, the Cloud computing system referred to in this paper is the IaaS and therefore inherits the characteristics of this model. However, recent research has identified a number of potential threats to the security of different models of Clouds including IaaS emphasizing the importance of security. 
In relation to this, security underpins the extensive adoption of Cloud computing as highlighted by [7]. Related to this, Clouds introduce novel challenges for the development of enabling mechanisms in general and security in particular which require dedicated efforts for their solution [8]. The emphasis of our research is to investigate security issues due to the use of virtualization in Clouds to achieve multi-tenancy with maximum isolation, and flexibility of the resultant computing infrastructures. This has significant implications for the overall security of the Clouds in general and intrusion response in particular. Due to the multi-tenancy provided by VMs, an intrusion detection and response system, residing in the most privileged domain, is required to monitor multiple VMs with diverse security requirements. Furthermore, depending on the security requirements of a VM, the overall damage caused by a particular malicious attempt can be different for individual VMs. As described by [9], an effective response to an intrusion is representative of the overall damage caused by an intrusion for the victim. Therefore, the above considerations have significant implications with respect to the invocation of an appropriate response mechanism for an intrusion. To the best of our knowledge, we pioneer efforts to identify the significance and application of this concept for Clouds, building on the previous work described in [10].  

The emphasis of this paper is to describe our efforts to develop a novel scheme to assess the extent of damage caused by an intrusion for a victim VM within Clouds. The efforts described in this paper are a part of the system described in [10] with the overall objective to establish an intrusion severity analysis method as part of the overall system architecture. The scheme developed to assess the extent of damage caused by an intrusion is inspired by standard clinical procedures by drawing similarities between the two processes. Additionally, the scheme identifies and envisages using the dependencies between different malicious events to provide protection against multi-stage attacks. The parameters used for this scheme include security requirements for guest virtual machines along with Service Level Agreement (SLA) state and the frequency of attack on a particular security requirement. Furthermore, the output from an intrusion impact analysis scheme is used as part of the damage assessment scheme to achieve effective assessment of the extent of damage of an intrusion for a VM.
The rest of this paper is organized as follows. The next section describes the research context for the work presented in this paper followed by a comprehensive review of the existing efforts related to damage assessment in section 3. The paper then presents the fault model for this research in section 4 including a discussion of the various types of faults affecting the proposed system. This is followed by the description of the methodology devised to achieve comprehensive damage assessment for Clouds in section 5. The proposed damage assessment scheme is presented in detail in section 6 followed by the formal specification of the scheme in section 7. The paper concludes with the section 8 which presents the formal evaluation of the scheme including a discussion of the outcome of this evaluation followed by brief description of the conclusions and the future work in section 9. 
2. Research Context

Multi-stage attacks represent a growing category of internet based attacks [11]. They represent category of intrusions whereby an attacker attempts to conceal the attack by dividing it into multiple steps. Although each of these steps represents a malicious activity, the damage caused by individual steps is relatively small as compared to the overall damage caused by the attack. Therefore, if a system is agnostic of such malicious attempts, the attacker can be successful in achieving their objectives by simply dividing the malicious activity into simpler, seemingly less-malicious events. There have been considerable efforts for detection of multi-stage attacks such as [11, 12]. However extensive exploration of existing literature with respect to Clouds revealed no scheme to incorporate this type of attacks for damage assessment. 

Intrusion response is an established research domain with a number of proactive and reactive schemes. The significance of intrusion response systems for the overall security of a system is paramount depending mainly on the timeliness and the effectiveness of the response. In relation to this, a three point criteria for effective intrusion response has been presented in [9]. This mandates a response to an intrusion to be i) in-line with the impact of the intrusion for the victim, ii) take into account the extent of damage caused by an intrusion, and iii) to execute a response with minimal delay. Within our research, we are focused at developing a method to take into account these three factors to achieve effective intrusion response for Clouds. In particular, we define the impact of an intrusion and the damage caused by it for a victim VM as a composite attribute called the severity of an intrusion. The term severity is not novel and has been used in existing literature to describe intrusion impact such as [13]. However, the motivation to define it as a compound attribute is primarily due to its significance to facilitate rigorous analysis of the overall damage caused by an intrusion for a victim as illustrated by [9]. Furthermore, both intrusion impact and extent of damage share significant reliance on the security characteristics of the victim as described by [14, 15]. This is particularly significant for Clouds as depending on the security characteristics of the victim VM, an intrusion can have different severity for individual victim machines.  

With respect to the three-point criteria of effective response described earlier, our effort to develop a scheme for effective intrusion impact analysis along with its rigorous evaluation has been presented in [16]. Furthermore, an evaluation of the impact analysis scheme with respect to overall intrusion response time has been presented in [17]. This paper is focused at the challenge of developing a scheme to assess the extent of damage caused by an intrusion for a victim VM. Additionally, the scheme is envisaged to provide protection against multi-stage attacks.

3. Related Work

Within the context of this paper, damage assessment refers to the process of determination of the extent of damage caused by an intrusion on the victim VM. Extensive review of literature has identified no existing damage assessment techniques for Clouds however there has been considerable efforts to achieve this for traditional systems. This section therefore presents a critical review of efforts from traditional computing systems to achieve damage assessment along with their limitations to address damage assessment for Clouds.

Authors present a reference model and an algorithm [18] to perform damage assessment for cyber-based missions. As part of the reference model, the damage assessment process is proposed to take into account critical assets and services within an infrastructure, vulnerabilities within these assets and services, and the attack models. These components suggest an offline risk assessment process accompanied by in-depth knowledge of the services and assets of the system, the vulnerabilities for these assets and in-depth knowledge of the attacks that can exploit these vulnerabilities. However, an offline risk assessment at the VM level is extremely difficult if not impossible for Clouds. This is primarily because of the extraordinary scale and diversity of the VMs within a Cloud as highlighted by [32, 33]. Also, the assumption of in-depth knowledge of the critical assets and their vulnerabilities is extremely difficult. For instance, the proposed algorithm for damage assessment uses parameters such as exploit_liklihood, reliability_liklihood, and liklihood_of_impact require expert knowledge of the system and the attacks as part of rigorous risk assessment exercises. Furthermore, the unit of damage assessment is a number which varies between 0 and 1with 1 being the maximum. Finally, it is extremely difficult if not impossible to establish a perfect attack model and there is always a risk of (zero-day) unknown attacks being neglected. 

A game theory based approach for damage assessment for network services is presented in [15]. The scheme presented in [15] uses expert knowledge about the victim asset, the significance of the victim asset for the organization and the capabilities of administrator and the attacker to measure the overall damage caused by an intrusion. It is different from the above described techniques in that it also takes into account multi-stage attacks. Furthermore, it also proposes to mitigate with attacks on network resources such as routers and switches in addition to hosts over a network. For single stage attacks, the damage is calculated as a function of the nodes affected by the attack, the defence mechanisms installed on the victim, the significance of the victim and the topology of the network. As the scheme is intended to facilitate a human administrator, the values for these attributes are envisaged to be evaluated by the administrator using appropriate risk assessment. However, this requires in-depth knowledge about the nodes, their vulnerabilities and the network topology as well. Within our system model, it is extremely difficult to predict this information as has been explained earlier. The scheme treats a multi-stage attack as a non-cooperative zero-sum multi-stage game where the actions of both the attacker and the system administrator are modelled within a tree. The major assumption in this case is that both the attacker and the administrator can execute one step at a time allowing the other party to respond to their respective actions. Although it is interesting and can be used to model attack strategies, it is extremely difficult to realize this situation at a VM level within a Cloud. However, the application of this scheme can be possible at the global level. This is primarily because the scheme is focused on network based attacks rather than attacks affecting individual VMs. Additionally, due to the extraordinary scale and diversity of the Clouds, it is impossible to realize this scheme within our system model presented in figure 2. 

A scheme for network based intrusion detection, damage assessment and prevention is presented in [19]. This is particularly focused at distributed intrusions that aim to affect multiple different nodes on a network. Examples of such intrusions include internet worms which aim to infect as many machines as possible over the Internet. In order to take into account the damage caused by an attack on multiple hosts, it introduces the concept of Security Dependency Relationships (SDR). SDR is envisaged to represent dependencies between different nodes on a network. This is an interesting concept however the authors propose it to be implemented using in-depth knowledge of the nodes within a network. Due to this, it is usually rendered the responsibility of a security administrator. Once the dependencies have been established, it uses historical audit data to calculate the probability of intrusion for each host. These probability values are then used to evaluate threshold values i.e. minimum and maximum probability values. A malicious event with probability exceeding maximum threshold is regarded as an intrusion. Finally, the damage assessment is performed by aggregating the probabilities for all intrusive events. The concept of SDR is interesting and has inspired our scheme for damage assessment to take into account multi-stage attacks however the involvement of human administrator makes it extremely difficult to realize this within our system model. Furthermore, the use of historical data to evaluate probabilistic damage caused by an attack has limitations similar to those identified for the schemes described earlier.  
A probabilistic scheme based on a Markov decision process to enable IDS to assess the damage caused by an attack on the monitored resources is presented [20]. As most of the schemes described in this section, this scheme is also focused on network based systems and the attacks targeting networks. In order to assess the overall damage caused by an attack, it takes into account both the cost of security failure and also the cost of maintenance due to a response to the intrusion. Within this paper, we are focused at the cost of security failure. The cost of security failure is proposed to be calculated as a product of the significance of the victim component within the network and the threat degree of potential attack. In case of a multi-stage attack, the authors propose to aggregate the cost for each individual step along with two additional metrics i.e. α as weight denoting threat degree of each attack step, and β to trade-off the balance between failure cost and maintenance cost. The respective values of these parameters are adjusted by a human administrator in accordance with the significance of the victim asset and the attack scenario. The formal specification presented as part of this scheme provides interesting insight into the relationship between different entities involved in the process of damage assessment however this scheme requires intensive involvement of a human administrator. We term this involvement intensive as the human administrator is not only responsible to perform an effective risk assessment offline, they are also expected to interact and respond with an attack scenario at runtime and devise response mechanisms in-line with the outputs of the proposed cost functions. These limitations render is extremely difficult to implement this scheme within our system model.  

A scheme to evaluate the damage caused by DoS attacks 3rd Generation Partnership Program (3GPP) communication networks is presented in [34]. The proposed scheme is from the perspective of communication networks as it is focused at the extent of damage on the QoS delivered by the network. In order to achieve this, the scheme uses QoS guarantees and the damage caused by an attack on these guarantees as the measure of the damage assessment. The individual damage caused by an attack on a service is defined as a function of the weight of the service and the QoS guarantees committed by it. The weight of a service is assumed to be assigned based on the criticality or significance of the service to achieve system-level objectives. The results of experimentation are presented in the unit of seconds of delay due to a DoS attack which approve of the fact that the focus of the scheme is to evaluate the effect of a DoS on the QoS delivered by communication networks. Related to this, [35] is another scheme that represents a scheme to perform application specific damage assessment. This scheme is proposed to perform damage assessment for supervisory control systems which are critical to loss of electric power. The authors perform a rigorous vulnerability assessment for supervisory control systems and list most significant threats for these systems. The damage assessment is a probabilistic function based on the vulnerability of a system and the significance of the threat for the system. The scheme is related to [34] as it is aimed at deriving the total loss of power for a victim system. The scheme shares limitations with the approaches described earlier as it is based on a rigorous offline risk assessment procedure which requires in-depth knowledge about the victim and the potential threats.   

In addition to the above described schemes, the term damage assessment is also used in fault tolerant computing by transactional systems. As the focus of these approaches is on transactional systems, we regard them as out of scope of the research presented in this paper. The following section presents the discussion regarding faults that can potentially affected the Cloud system in focus in this research.  
4. Fault Model

The fault model of a system is significant in describing the type of faults handled by the system. In order to devise a fault model for the research presented in this paper, extensive study of existing literature regarding fault models for Clouds was conducted which revealed no such efforts for Clouds. However, there has been significant research with respect to fault models for traditional distributed systems and Grids. [21] describes a general fault model for distributed systems whereas [22] describes a fault model for Grids. Although Clouds share similarities with these computing paradigms and an overlap can be found with respect to faults that can influence all these computing paradigms, the fault model for this research is essentially different. This is primarily because the faults considered in this research are those that can affect a system residing within the domain 0 whereas the primary focus of fault models for traditional HPC research is from the perspective of a middleware system or the guest application. For instance, [21] describes network errors and response faults as part of the fault model for a distributed system. However, these represent errors which can be monitored at the middleware or application level. Furthermore, faults exploiting the vulnerabilities of the VM technology, and those targeting the misuse of allocated resources for a VM are not covered by the traditional fault models. 
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Figure 1: Fault model for the proposed system

The faults included as part of the fault model for this research have been identified as significant from the perspective of a compute intensive workload in a Cloud. Additionally, the proposed system has to deal with system calls from within the domain 0. Therefore, this fault model takes into account faults that can be dealt with at the system call level within the domain 0. Figure 1 presents the fault model for this research whereas figure 2 presents a high level diagram of the proposed system. In this system model, the damage assessment scheme is a part of the severity analysis module. 

The faults considered for the proposed system are external software faults as categorized by [23] and hardware is assumed to be error free. These faults include malicious faults executed by human and therefore exclude any natural faults such as natural disasters causing shutdown of a data centre. The source of faults for this research is considered to be application-specific vulnerabilities that allow an intruder to compromise a VM and possibly use the resources allocated to the victim VM to accomplish malicious motives, and operational mistakes i.e. mistakes in configuration of VMs which can be exploited to enable a VM to infect a neighbour VM.
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Figure 2: Model for the proposed system
Timing faults are said to occur when a process or a service is not delivered within a specified time interval. For the proposed system, timing faults represent DoS attack attempts which cause unavailability of the victim. The timing faults considered in this fault model represent connection faults and DoS attack attempts. Connection faults encompass malicious attempts to initiate illegitimate network connections having a malicious objective. These include opening a backdoor channel with the attacker’s machine, opening network connection with attacker’s machine to transport vital data and also to connect with arbitrary locations over the internet to use the victim as a zombie to launch a DDoS attack. 

DoS faults represent malicious attempts to exhaust network or local resources. DoS attack attempts at network resources intend to initiate enormous volume of illegitimate network connections at the victim VM consuming the buffer memory. This could lead to a situation where the victim VM runs out of memory and cannot host any more network connections. DoS attack attempts to exhaust local resource, represent malicious attempts to consume the available resources such as processor, memory and disk space. These attacks are explicitly targeted at exhausting local resources so as to deny the legitimate processes to be executed. 

Content faults occur when an undesired change is made to the information delivered or its state by a service. With regards to the proposed system, these encompass malicious attempts targeted to compromise the integrity and confidentiality of the data used by a workload. Workload bound content faults refer to malicious attempts to compromise the integrity of the data used and generated by the workload. OS bound content faults include malicious attempts targeted at compromising the sensitive data or memory locations for the operating system hosting the workload. These can include attacks such as buffer overflow attacks. VM-specific attacks incorporate malicious attempts specific to VMs. These include attack attempts to break the isolation between GVMs and attempts to use virtualization for malicious purposes. Passive attacks include malicious attempts to sabotage a workload without being visible to normal system user. These include sniffer attacks which are only meant to record data of interest to the malicious user and, malicious backdoor channels. Among other possible threats, a backdoor channel can be used to control use of victim’s resources and potential use of victim as zombie in a DDoS attack attempt. 
5. Methodology

The damage assessment scheme is a part of the overall intrusion severity analysis method described by [9] and the system model in figure 2. Related to this, the intrusion impact analysis scheme is presented in our previous work [16]. This section presents a description of the methodology used to develop the damage assessment scheme. The proposed scheme makes use of VM specific parameters to achieve context-aware operation. These parameters include security characteristics of the victim VM, the state of the SLA, the frequency of the attack, and the degree of impact of the intrusion for the victim VM. The degree of impact is determined as an output of the intrusion impact analysis scheme whereas quantification of security requirements has been performed to achieve a representation of the security characteristics of a victim VM. 

With respect to damage assessment, a scheme inspired by clinical procedures is established which takes into account parameters such as security characteristics,  and the impact determined for individual malicious system call events to evaluate damage for individual malicious system call events. However, such simplistic scheme will be compromised in the event of multi stage attacks. This is extremely important as multi stage attack represent a growing class of internet based attacks where an attack attempts to conceal the attack by dividing it into multiple steps as illustrated in [11, 12]. Although each of these steps represent a malicious activity, the damage caused by individual steps is insignificant as compared to the overall damage caused by the attack. Therefore, if a system is agnostic of such malicious attempts, the attacker can be successful in achieving their objectives by simply dividing the malicious activity into simpler seemingly less-malicious events. In order to mitigate with such attacks, the proposed damage assessment scheme is envisaged to take into account historical system call data for a victim VM. The scheme is inspired by the concept of SDR proposed by [19] to identify relationships between different malicious events to discover different stages of an attack. The damage assessment process includes aggregation of damage across these stages to determine the precise extent of damage for a malicious system call event. 

With respect to VM specific security requirements, one approach can be to render the security policy definition and management a responsibility of the VM itself. This can be achieved by implementing a policy engine within each VM, which will coordinate with detection and severity analysis modules in the privileged VM. This approach is attractive due to the ease of implementation and simplicity of the resultant system. However, it breaks the isolation property as, in the event of a successful attack, an attacker can modify the security policies to facilitate its malicious objectives. Furthermore, a VM needs to be trustworthy to be delegated such responsibility which is contradictory to our assumption that all VMs are treated as compromised. Due to these limitations, an approach has been adopted that guarantees isolation while ensuring customization with respect to security policies. More specifically, the use of SLAs to negotiate security requirements for a VM has been proposed. Therefore, a user is envisaged to specify security requirements as part of the SLA at the resource acquisition phase. In order to accomplish this, quantification of security is required. The proposed security quantification is not presented in this paper to preserve its focus and is explained in detail in our previous work [24].   

With respect to the SLA state, the time remaining for completion of a job has been designated as the SLA state. This is because of the fact that the severity of an intrusion is also affected by the time available for response. Ideally, the SLA state would be calculated by using different parameters such as QoS metrics and available resources. This requires the establishment of a monitoring infrastructure to monitor the status of these parameters and calculate aggregate SLA state. Due to these complexities, this is rendered out of the scope of this paper. However, it is assumed that the SLA state is available as an aggregate metric to be used for further analysis such as the one described in this paper. Finally, the frequency of attack attempts on a particular security requirement depicts the value of the target or likelihood of success of the attack attempt against the security requirement under attack. This therefore requires relatively immediate and more effective response mechanisms to avoid recurrence of such attack attempts. For this reason, the frequency of attacks has been characterised as an important factor to determine the severity of an intrusion.

6. The Damage Assessment Scheme 
The proposed damage assessment scheme, uses clinical procedures in determining extent of damages to a victim VM caused by an intrusion. In addition to this, the degree of impact calculated by intrusion impact analysis scheme is included to the parameters. More that, the scheme identifies and takes into account dependencies between individual system call to mitigate with multi-stage attacks. The algorithm for the scheme is presented in figure 3 whereas figure 4 presents an activity diagram for the scheme.
In the algorithm presented in figure 3, the term CPi  represents a stable checkpoint, SC represents the set of system calls since CPi , SP represents the security profile of a virtual machine, and PE represents the profile engine which stores the security profiles of all the virtual machine within a node. Furthermore, the keyword SCP represents the set of system calls since last checkpoint, SDP represents the set of dependencies for a given system call i.e. si. The definition of dependencies is presented later in this section and a description of the method used to calculate dependencies is presented in the next section.  
As is evident from the algorithm presented above, the emphasis of damage assessment scheme is to perform more comprehensive analysis of the extent of damage caused by an intrusion. This is particularly achieved by taking into account dependencies between individual system call events. 
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Figure 3: Algorithm for the damage assessment scheme

In order to illustrate the significance of the dependencies between different malicious events consider the following example from [25]. 
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=SadmindBufferOverflow: ({VictimIP, VictimPort}, ExistsHost(VictimIP) ∧ VulnerableSadmind(VictimIP), {GainrootAccess(VictimIP)}). 
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 pre_cond can be described as ({VictimIP, VictimPort}, ExistsHost(VictimIP)) which means that it requires a valid VictimIP and VictimPort to be successful in its operation i.e. ping. The post_cond for the same event can be described as {VulnerableSadmind(VictimIP)} which means that a successful ping can result in the discovery of a vulnerable service for the victim host represented by VictimIP. For [image: image9.png]ME,



, pre_cond can be described as {VictimIP, VictimPort}, ExistsHost(VictimIP) ∧ VulnerableSadmind(VictimIP) which means that it requires a valid VictimIP, VictimPort and availability of a vulnerable victim service. The post_cond for this event is described as {GainrootAccess(VictimIP)} which means that a successful buffer overflow in this case can result in gaining root access for the victim. 

The above description of the pre and post conditions for the two malicious events results in the identification of a relationship between the two seemingly distinct events. Therefore, in order to effectively assess the extent of damage caused by a malicious event, the analysis of its dependencies is significant. In view of this, the damage assessment scheme takes into account these dependencies. Furthermore, the total damage caused by a system call is defined as an aggregate function of the individual damages by each system call in the dependency graph. 

7. Formal Specification of the Damage Assessment Scheme 

In order to develop a formal specification of the system, the data models used in the system are extremely significant. This section presents the formal specification of the damage assessment scheme. As part of the formal specification of the damage assessment scheme, the data models involved are first described followed by the formal specification of the system. The data models and the specification of the scheme have been presented using the Z language. Due to the limited space of this manuscript an extended explanation of these data models is not possible. Therefore, a brief description of the data models is presented. 

[SYSCALLS] represents the set of all the possible system calls which can be executed by a VM. 

[M_SYSCALLS] represents the set of malicious system calls identified as malicious by the IDS for a victim VM. 
It is also assumed that an effective checkpoint scheme is applied resulting in a set of stable checkpoints for individual VM. This set of check points is represented by the set [CHECKPOINTS].
In order to address the challenge of multi-stage attacks, it is proposed to identify relationships between different stages of attacks at the system call level. This is envisaged to be achieved by defining system call based policies for intrusion detection. The dependencies are categorised into pre and post conditions which represent the states to achieve malicious objectives of an attacker. It is assumed that these dependencies are established offline and the sets of these dependencies are available for the damage assessment. These sets are represented by [PRE_COND], [POST_COND] in the system specification.

For a given system call [image: image11.png]


, the damage assessment scheme takes into account dependencies among recent system calls to mitigate with multi-stage attacks. In order to define the scope of operation with respect to system calls, the scheme uses most recent checkpoint and restricts analysis to the set of malicious system calls executed since the last checkpoint. This set of system calls is represented by [CP_SYSCALLS] in the formal system specification. 
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Figure 4: Activity diagram for damage assessment scheme

Using the set of system calls since the last stable checkpoint [CP_SYSCALLS], and the pre and post conditions represented by [PRE_COND] and [POST_COND], the damage assessment scheme populates a directed graph using the dependencies identified among the malicious system calls. The set of these system calls is represented by [DEPEND] in the formal system specification. 
The principle followed to establish this set is borrowed from the domain of alert correlation [27] and is as follows. In order to establish these dependencies, each malicious system call event is considered as a tuple represented as ME = (system_call, pre_cond, post_cond). As described earlier, the parameters pre_cond and post_cond are established at the policy definition stage for intrusion detection using system call based policies. Now, for each malicious event[image: image14.png]
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. This establishes a directed acyclic graph where the nodes represent system calls and the edges represent the relationship between these system calls.

As the damage assessment scheme includes significance of the affected security requirement for the victim VM as one of its parameters, it is defined as the set PRIORITY as under.

PRIORITY ::= LOW | MEDIUM | HIGH

Also, the damage assessment includes impact of the system call for the victim VM as one of the parameters. In-line with the levels of impact described in [16], the set IMPACT is defined as under. 

IMPACT ::= MINIMAL | MEDIUM | SERIOUS | CRITICAL 

Selected parts of the formal specification of the damage assessment scheme have been presented in figures 5, 6 and 7. The specification presented in figure 5 presents a formal description of the damage assessment system. It includes specification of different parameters envisaged to be used by the damage assessment scheme along with the description of the operations performed by it. The parameters include [image: image26.png]


 as frequency of attack, [image: image28.png]
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 as the priority of the affected security requirement, [image: image32.png]


 as the degree of impact evaluated by the impact analysis scheme, and β as the response capabilities of the victim VM. The operations include initialization of the system call dataset since the last checkpoint, evaluation of the dependencies for each system call in the dataset, evaluation of individual damage, and aggregation of individual damage to determine the total damage caused by the intrusion for a victim VM. The formal specification of one of these operations i.e. dependency evaluation is presented below. 
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m_sys_call : M_SYSCALLS

cp : CHECKPOINTS
sys_call_dataset : (m_sys_call, cp) ⇸ ℙ CP_SYSCALLS
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Figure 5: Formal specification for the overall damage assessment system

The specification presented in figure 6 presents a formal description of the function to retrieve the dependencies between a given system call and the system calls since the last stable checkpoint. The major contribution of this function the comparison between the pre and post conditions of the system calls under consideration. A dependency is created for each system call pair where the post_cond for current system call matches the pre_cond for the system call occurring after it. The output of this function is a set of dependencies created for a given system call. 

The specification presented in figure 7 presents a formal description for the function to calculate individual damage for a given system call. It uses the formula described in the damage assessment system specification in figure 5 to calculate the individual damage for the current system call. As has been illustrated by this specification, the damage is a function of the impact of the malicious event for the victim machine, the state of the SLA, the frequency of the attack and the response ability of the victim machine.  
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CP_SYSCALLS? : 𝔽 M_SYSCALLS

pre_cond? : PRE_COND
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then iff pre_cond? = post_cond? 

dependencies′ = dependencies ∪ {current_sys_call?}
Figure 6: Formal specification of dependency evaluation
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) 
affected_sys_calls′ = affected_sys_calls ∪ {current_sys_call?}

Figure 7: Formal specification for the initial damage assessment 

The formal specification presented in this section is used in the next section to assess the effectiveness of the scheme to assess the extent of damage caused by a given system call for a victim VM. More specifically, the popular technique of Fault Tree Analysis [36] is used facilitated by formal proofs to evaluate different properties of this scheme such as, the ability of the scheme to mitigate with multi-stage attacks. The fault tree analysis along with respective formal proofs is presented in the next section.
8. Formal Assessment of the Damage Assessment Scheme
In order to analyze the proposed damage assessment scheme, formal analysis using fault tree analysis and deductive logic is employed. The fault tree analysis is conducted to evaluate the potential undesired properties of the damage assessment system. This is followed by formal proofs using deductive reasoning to verify that different characteristics of the system prevent occurrence of these undesired properties.

8.1. Fault tree analysis for damage assessment scheme

Fault tree analysis has been historically used to perform system safety analysis and has been adopted in the computer security domain in the form of Attack Trees [28]. The goal of this analysis is to identify the faults that can occur in a system and the events which can cause these faults. Within this context, the set of component failures which will cause a top event to occur is called a cut set. Additionally, the set containing smallest combination of such events is called the minimal cut set. Given these definitions, the aim of a fault tree analysis is to identify all possible cut sets for a system. These are envisaged to be used in informal or formal reasoning process to evaluate the effectiveness of a system to protect against the events within a cut set. The use of fault tree analysis to facilitate formal analysis of a system has been successfully demonstrated by existing effo[image: image241.png]VM;



rts such as [29, 30]. These therefore, provide motivation to adopt this technique for the evaluation of the damage assessment system.
Figure 8: An example fault tree for damage assessment scheme

For the purpose of this research, fault tree analysis has been used to identify the critical properties of the damage assessment scheme and the events that can undermine them. Specifically, rigorous fault tree analysis is performed for the damage assessment scheme with the top node as the undesired properties of the system. In this way the events that can result in this undesired property are represented as faults in the system in the form of child nodes of the fault tree. The objective is to use the cut sets identified as a result of this exercise for formal analysis of the scheme. Figure 8 presents an example fault tree for this exercise where the triangles represent branches which can be produced as separate fault trees. The top node in this tree is Damage inconsistent with intrusion which represents an undesired property as the proposed damage assessment scheme is expected to determine the damage consistent with the threat posed by an intrusion for a VM. This top level property is then divided into sub-faults which represent possible causes of this property. The intention is to facilitate evaluation of the damage assessment scheme by identifying cut sets for each of the branches of the tree presented in figure 8. An example tree for these branches is presented in figure 9. Therefore, if the proposed scheme can prevent at least one of the component failures within a cut set, the top-level undesired property cannot be achieved. 
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Figure 9: Fault tree branch-5 for damage assessment scheme

8.2. Formal proofs for damage assessment scheme

In order to evaluate the effectiveness and feasibility of the proposed damage assessment scheme for Clouds, formal analysis of the cut sets obtained as a result of fault tree analysis has been performed. The formal specification of the damage assessment scheme presented in section 6 has been used as a reference for these proofs. Although there are multiple cut sets and their respective proofs, we present two proofs as an example of the formal reasoning process. 

a. Proof for resilience against multi-stage attacks

This cut set represents the evaluation of the scheme with respect to mitigation against multi-stage attacks. This has been identified as part of the fault tree analysis as the fault node: DA does not take into account multiple stages. It can be formally represented as under. 
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In order to prove this, we can divide this into two parts. For the first part,
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The above analysis proves that the hypothesis (∃1 [image: image162.png]
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 i.e. the damage assessment is performed on isolated system call events, is false. 

Now the second part can be written as under.
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From specification, 
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The above analysis proves the hypothesis (¬ [image: image184.png]Y. Damage(s;)
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 to be false i.e. the extent of damage calculated by the damage assessment scheme does not take into account aggregation of individual damage for each malicious event, to be false. From the above analysis, it can be concluded that the cut set is not valid for the proposed damage assessment scheme. This is proved as both the conditions necessary for the cut set to be true have been found false in accordance with the formal specification of the damage assessment scheme.
b. Proof for faults on system call database

System call database is a critical asset within the system model of the proposed damage assessment scheme as it facilitates protection against multi-stage attacks. The cut sets below represent compromise of the system call database due to software and hardware faults which include both malicious and non-malicious faults.   

The cut set for software fault for system call data can be defined as under:

cut set = ∃ [image: image188.png]s; | softwarefault(s,)



 ⦁ [image: image190.png]s; € M_SYSCALLS




From system specification

∀ [image: image192.png]


 [image: image194.png]| s; € M_SYSCALLS



 [image: image196.png]DamageAssessment: {s; - damage)}




[image: image197.png]A M_SYSCALLS S SYSCALLS




[image: image198.png]A M_SYSCALLS # <>




[image: image199.png]A SYSCALLS # <=




⇔ ¬ (∃ [image: image201.png]s; | softwarefault(s,)



) ⦁ [image: image203.png]s; € M_SYSCALLS




⇔ false

The cut set for hardware fault for system call data can be defined as under:

cut set = ∃ [image: image205.png]s; | hardwarefault(s,)
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The cut set for unavailability of system call data can be defined as under:
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From system specification
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⇔ false

The above proofs conclude the compromise or unavailability of system call data to be false in accordance with the formal specification of the damage assessment scheme. As is evident from these proofs, the formal specification of the damage assessment scheme relies on the assumption for the coverage and stability of the SysCall DB in the system model presented in figure 2.

The formal analysis presented in this section proves the reliance of the proposed damage assessment scheme against faults affecting its expected operation i.e. accurate assessment of the extent of damage caused by an intrusion for a virtual machine. Therefore the effectiveness of the damage assessment scheme to correctly determine the extent of damage of an intrusion whilst taking into account potential multiple stages of the intrusion is validated. However, as has been highlighted by this analysis, the correct operation of the scheme is reliant on the accuracy of the historical system call data and the process of identifying dependencies between the individual system calls. Therefore, in order to ensure correct operation of the damage assessment scheme, these aspects are required to be addressed comprehensively. 

9. Conclusions and Future Work

We hold that security underpins extensive adoption of Clouds. This paper is focused at one specific challenge related to the overall security of Clouds i.e. assessment of the extent of damage caused by an intrusion for a VM in a Cloud. The paper has presented a novel damage assessment scheme to accurately assess the extent of damage caused by an intrusion for a victim virtual machine. This has paramount significance in evaluating and initiating appropriate response mechanism. The implementation and evaluation of the scheme is currently realized by formal specification and evaluation. The results of this evaluation demonstrate the effectiveness of the proposed scheme to successfully determine the extent of damage of an intrusion for a VM. Furthermore, the formal reasoning facilitated by fault tree analysis demonstrates the effectiveness of the scheme to protect against multi-stage attacks. With respect to the implementation of this scheme with a real Cloud system, work is currently in progress to incorporate the scheme with iVIC [26], a real Cloud system. In this respect, implementation of the proposed system is underway with KVM hypervisor. This has involved establishing mechanism for system call interception by the hypervisor for further analysis i.e. detection and damage assessment of the system calls executed by a guest virtual machine. Furthermore, SLA based security requirements acquisition has been established to generate customized security profiles for the guest virtual machine to aid VM-specific damage assessment. The on-going implementation of the proposed scheme is envisaged to open new opportunities for further evaluation of the scheme.
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For a VM � QUOTE � ���, system call � QUOTE � ��� is detected as malicious by the IDS


For � QUOTE � ���, retrieve the security profile � QUOTE � ��� from the � QUOTE � ���


� QUOTE � ���:= set of prioritized security requirements for � QUOTE � ���





For � QUOTE � ���, get the set of system calls � QUOTE � ��� since the last checkpoint � QUOTE � ���


Initialize data structures A, B as A := � QUOTE � ���, and B = {}


For each system call � QUOTE � ���in A


  retrieve the degree of impact for � QUOTE � ���


  calculate individual damage by � QUOTE � ��� for � QUOTE � ���


  Identify dependencies of � QUOTE � ��� with other system         calls in A


  For each dependent system call � QUOTE � ��� from A


  calculate individual damage by � QUOTE � ��� for � QUOTE � ���


  Move � QUOTE � ��� to B


calculate aggregate damage for � QUOTE � ���


output overall severity � QUOTE � ��� for � QUOTE � ���
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