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Abstract 

In previous studies on the capacity of orthogonal frequency division multiple access (OFDMA) systems, it is 

usually assumed that co-channel interference (CCI) from adjacent cells is a Gaussian-distributed random variable.  

However, very-little work shows that the Gaussian assumption does not hold true in OFDMA systems.  In this 

paper, the statistical property of CCI in downlink OFDMA systems is studied, and spectral efficiency of downlink 

OFDMA system is analyzed based on the derived statistical model.  First, the probability density function (PDF) of 

CCI in downlink OFDMA cellular systems is studied with the considerations of path loss, multipath fading and 

Gaussian-like transmit signals.  Moreover, some closed-form expressions of the PDF are obtained for special cases.  

The derived results show that the PDFs of CCI are with a heavy tail, and significantly deviate from the Gaussian 

distribution.  Then, based on the derived statistical properties of CCI, the downlink spectral efficiency is derived.  

Numerical and simulation results justify the derived statistical CCI model and spectral efficiency.  
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Cellular system, co-channel interference, orthogonal frequency division multiplexing (OFDM), spectral 
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I. INTRODUCTION 

Owing to the scarceness of wireless spectrum, frequency reuse is one of the fundamental 

approaches to achieve high capacity in cellular systems [1].  Recently, utilizing frequency reuse 

scheme with a smaller frequency reuse factor has been known as an attractive technique in 

orthogonal frequency division multiple access (OFDMA)-based fourth generation (4G) systems 

because of its high spectral efficiency [2].  In this case, the performance in downlink 

transmission, especially when the mobile station (MS) receiver is near to the edge of a cell, is 

mainly limited by the amount of co-channel interference (CCI) [3].  

In previous studies, CCI is usually modeled as a Gaussian variable.  In [4]–[7], it is 

assumed that CCI from adjacent cells is a Gaussian-distributed random variable.  The 

theoretical foundation of the Gaussian assumption is the Central Limit Theorem, which can be 

satisfied for a large number of independent interferences, however, may does not hold true in 

practice.  In [8]–[12], based on a condition that the receiver has full instantaneous channel-state 

information (CSI) of all the CCI channels, the distribution of CCI is also Gaussian-like, because 

that the transmit signal is Gaussian-distributed and the channel fading coefficient is a constant 

for the receiver.  However, to estimate all the CCI channels will lead to extra pilot overhead and 

complexity at the receiver. 

Very-little work shows that downlink CCI is non-Gaussian [13], [14].  In [13], the authors 

study the CCI powers for a downlink cellular communication with full loading by using a 

simulation approach, and simulation results show that the Gaussian assumption of CCI is a poor 

approximation in the realistic environments and thus a more precise non-Gaussian distributed 

interference model is needed.  In [14], the authors study the statistical model of inter-cell 

interference for downlink OFDMA cellular networks, and simulation results show that as the cell 

loading decreases, the distribution of the interference signal deviates significantly from the 

Gaussian distribution. 
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The studies on spectral efficiency for orthogonal frequency division multiplexing (OFDM) 

system are mostly based on the Gaussian interference model so far.  In [4]–[7], the authors 

analyze the spectral efficiency with the Gaussian approximation of CCI.  In [8]–[12], the 

studies on the spectral efficiency are with the assumption of full instantaneous CSIs of all the 

CCI channels at the receiver.   

In this paper, we study the spectral efficiency of downlink cellular systems.  First, the 

probability density function (PDF) of CCI is derived using the characteristic function (CF) with 

the considerations of path loss, multipath fading and Gaussian-like transmit signals.  The 

derived PDF is observed to highly deviate from the Gaussian distribution and possesses a heavier 

tail.  Based on the derived statistical model of CCI, the spectral efficiency is analyzed.  

Simulation results justify our derived statistical CCI model and the spectral efficiency evaluation.  

The rest of the paper is organized as follows.  In Section II, The system model is described.  

The statistical model of CCI in downlink OFDMA cellular systems is presented in Section III.  

In Section IV, the spectral efficiency is analyzed based on the derived statistical model. 

Simulation results are presented in Section V.  Section VI concludes the paper.  

Notations:  Pr   and  E   denote probability and expectation, respectively.  The 

universal quantifier symbol   is used to indicate universal quantification.   

 

II. SYSTEM MODEL 

In this paper, we consider a synchronous, downlink, hexagonal OFDMA cellular system 

consisting of 1M   base stations (BSs) and one MS.  An example of cellular system with 

6M   is illustrated in Fig. 1.  We should emphasize that our analysis in this paper holds for 

arbitrary M , and let BS0 denote the desired BS and the other M  BSs are interfering BSs.  It 

is assumed that the received signal at each MS in a cell is interfered by the active BSs in other 

cells.  
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As the real and imaginary part of the received signal are two independent and identically 

distributed random variables (i.i.d. RVs), for the sake of simplicity, we only consider the real 

part of the signal in the following analysis.  Thus we can assume that the BSs transmit 

real-valued Gaussian-like signals in the available subcarriers in each OFDM symbol [4], [11], 

[12] and the fading coefficients are also real-valued and Gaussian-like.  As commonly assumed, 

the length of the cyclic prefix (CP) of an OFDM symbol is larger than the maximum multi-path 

delay, and thus no inter-symbol interference (ISI) occurs during the demodulation of the OFDM 

symbols [15], [16].  Also, it is assumed that the Doppler spread is negligible, which is usually 

valid in the cases of relatively slowly moving MSs, and thus the channel remains constant during 

one frame [1].  Finally, the desired MS is assumed to be perfectly synchronized with the target 

BS, and the frequency reuse factor is equal to one in this paper.  In the following section, the 

statistical model of CCI is studied, and then the spectral efficiency is analyzed using the derived 

statistical CCI model. 

As in our analysis, the signals and channel parameters on different subcarriers and time slots 

follow the same statistical properties, the indices of both subcarrier and time slot are ignored.  

Let Y  stand for the received signal at the desired MS in cell 0.  The received signal of the 

desired MS on a specific subcarrier is given by 

1

M

m
m

Y S I N S Z


     , (1) 

where 0 0 0S E H X  denotes the received desired signal from BS0, m m m m mI E H X  

denotes the CCI from the mth interfering BS, N  denotes the additive white Gaussian noise 

(AWGN) with zero mean and variance 2
N .  

1 1

M M

m m m m m
m m

Z I N E H X N
 

       

represents the effect of CCI and AWGN, where mE  represents the average received signal 

power at the MS from the mth BS, mH  denotes the fading coefficient between the mth BS and 

the desired MS, and mX  represents the transmit symbol from the mth BS, respectively.  It is 
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assumed that mH  is stationary, ergodic random process with 2E 1mH    . Let mX , 

0,1, ,m M   are  i.i.d. RVs with 2E 1mX    .  m  is equal to 1 if the corresponding 

subcarrier is occupied by the mth BS and 0 otherwise.  In this paper, we assume that the 

subcarriers are assigned to the users with equal probability and equal transmit power.  The 

loading rate of the subcarriers is denoted by mp  for the mth BS, i.e., Pr 1m mp      and 

Pr 0 1m mp      , and mP  represents the transmit power of the mth BS, and m
m md    

denotes the effect of the path loss between the mth BS and the desired MS, where md  is the 

distance between the mth BS and the MS, and m  denote the corresponding path loss exponent.  

Thus the average received signal power, mE , can be represented as m m mE P  .   

 

III.  STATISTICAL MODELS OF CCI AND RECEIVED SIGNAL  

In this section, the statistical models of CCI and received signal are derived.  Firstly, in 

Subsection III-A, generalized expressions of the PDFs of received CCI and total received  

signal are derived by using the CF.  Secondly, closed-form expressions of the CCI’s PDFs are 

presented for some special cases in Subsection III-B.  Finally, some numerical and analytical 

results of the distributions of CCI are presented in Subsection III-C.  

A. Generalized PDFs of CCI and Total Received Signal 

The PDF and the corresponding CF of the CCI from mth BS, i.e., mI , are derived in 

Appendix A as 

     0 1
m

m
I m

m m

xp
f x K p x

E E




 
    

 
, (2) 

and  

   
1/2

2

1
1

1mI m m
m

w p p
E w

 
     

, (3) 
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respectively, where 1, ,m M   is the BS index,  0K x  is the modified Bessel function of 

the second kind [17, Sec 10.25], and  x  is the Dirac delta function [18, Sec 19.1.3]. 

    Since the transmit signal and channel coefficient of each BS are independent with each 

other, the CF of the PDF of the total CCIs, denoted by 
1

M

m
m

I I


 , is equal to the product of the 

CF of each independent interference [19, Sec 7.2], and can be expressed as  

     
1/2

I 2
1 1

1
1

1m

M M

I m m
m m m

w w p p
E w 

  
          

  . (4) 

Therefore, the PDF of the total interference, I , can be expressed using the inverse CF transform 

[19, Sec 7.2, Eq. (5.66)] as  

   

 
1/2

2
1

1
d

2

1 1
        1 d

2 1

jwx
I I

M
jwx

m m
m m

f x w e w

p p e w
E w





 



 




 

  
       




. (5) 

As the thermal noise is a Gaussian RV with zero mean and variance 2 2E NN     , and the 

corresponding CF of the Gaussian noise can be expressed as  
2 2

exp  
2

N
N

w
w

 
   

 
[19, Sec 

5.5, Eq. (5.65)].  Thus, the CF of the sum of CCIs and AWGN is expressed as 

       
1/22 2

2
1

1
exp  1

2 1

M
N

Z N I m m
m m

w
w w w p p

E w




   
                

 , (6) 

and the corresponding PDF is given by  

   

 
1/22 2

2
1

1
d

2

1 1
         exp  1 d

2 2 1

jwx
Z Z

M
jwxN

m m
m m

f x w e w

w
p p e w

E w






 



 




 

   
            




. (7) 

Noting that for a given 0E  and 0H , S N  is a zero-mean Gaussian RV with variance  

2 2
0 0 NE H  , we can derive the CF and PDF of the total received signal Y S I N    by 



 7

simply replacing 2
N  with 

2 2
0 0 NE H   in the expressions of Z I N  , i.e., in Eq. (6) and 

Eq. (7). The CF and PDF of the received signals, Y , conditioned on 0E  and 0H  are derived 

as 

   
 

0

2 2 2 1/2
0 0

0 2
1

1
exp  1

2 1

MN

m mY H
m m

E H w
w H p p

E w





                    
 , (8) 

and  

   

 
 

0 00 0

2 2 2 1/2
0 0

2
1

1
d

2

1 1
         exp  1 d

2 2 1

jwx
Y H Y H

MN jwx
m m

m m

f x H w H e w

E H w
p p e w

E w







 



 




 

                   




, (9) 

respectively. 

According to the derived PDF expressions in Eq. (5), Eq. (7), and Eq. (9), one can calculate 

the derived PDFs by using computational software.   

B. Closed-form expressions of CCI’s PDFs 

In this subsection, some closed-form expressions of the CCI’s PDFs are derived for some 

special cases.  For analysis simplicity, we only consider the case of full loading rate, i.e., 

1mp  , for m  in this subsection.  

First, we consider a simple case of only one interfering BS, i.e., M = 1.  The practical 

scenario of this case is that when the MS is at the edge of two cells, the received interference 

from the adjacent BS is much stronger than the interferences from other BSs, thus the other 

interferences can be ignored.  Another potential scenario is that there is only one active 

interfereing BS adjacent to the MS.  

Substituting 1mp   into Eq. (2), the PDF of the single CCI signal is given as 

 1 0

1
K

m m

x
f x

E E

 
   

 
. (10) 
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Note that    0K ~ lnx x  when 0x   and thus  
0

lim I
x

f x


  [17, Sec. 10.3.3].  It indicates 

that the distribution of single CCI signal is more centralized than the Gaussian distribution 

around the mean value.  

In the case of two CCI signals with the same average received power, i.e., 1 2E E , the 

PDF of 1 2I I I   is derived in Appendix B as 

 2

1 1

1
exp

2

x
f x

E E

 
   

 
. (11) 

Similarly, for the case of four interference signals with the same average received power, 

i.e., 1 mE E  and 2,3, 4m  , the PDF of 
4

1
m

m

I I


  is given in Appendix B as 

 3
11 1

1
exp

4 4

x x
f x

EE E

  
      

  
. (12) 

In the case of six interference signals with the same average received power, i.e., 1 mE E  

and 2, ,6m   , then the PDF of 
6

1
m

m

I I


  is given in Appendix B as 

 
2

4
11 1 1 1

3 3
exp

1616 16

x x x
f x

EE E E E

  
          

. (13) 

Thus, we derived the closed-form expressions for the cases when the MS is interfered by the 

adjacent M = 1, 2, 4 or 6 active BSs with equal power as shown in Eq. (10), (11), (12) and (13), 

respectively.  

Then, we consider the case when the MS moves toward the edge of three cells as shown in 

Fig. 1 (see the dashed line).  Considering the first tier of interfering BSs, we have 7m mE E   

for 1, 2,3m  .  The PDF of 
6

1
m

m

I I


  is derived in Appendix B as 
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 
3

1

exp
2

m
I

m m m

xa
f x

E E

 
   

 
 , (14) 

where 
  

2
1

1
1 2 1 3

E
a

E E E E


 
, 

  
2
2

2
2 1 2 3

E
a

E E E E


 
 and 

  
2
3

3
3 1 3 2

E
a

E E E E


 
.  

Eq. (11)–(13) can be seen as three special cases of Eq. (14).  For example, Eq. (14) reduces to 

Eq. (11) when 2 3 0E E  , and reduces to Eq. (12) when 3 0E   and 2 1E E , and reduces to 

Eq. (13) when 2 1E E  and 3 1E E . 

C. Numerical and Analytical Results 

As we mainly focus on the distribution, instead of the power of interference, in the 

following numerical, analytical and simulated results, all the variables are normalized to unity 

variance.  

We consider a downlink OFDMA cellular network with the first tier of interfering BSs as 

shown in Fig. 1. We assume that the corresponding path loss exponent is equal to 4, i.e., 

4m   , m , and the transmit power of the BSs is assumed to be equal, i.e., mP P , m , 

and the loading rates of each cell are identical, i.e., mp p , m .  The PDF can be obtained 

by calculating Eq. (5) or the derived closed-form expression, i.e., Eq. (14), for some special cases.  

Another method to obtain the CCI’s PDF is the Monte Carlo simulation.  In each Monte Carlo 

simulation, we generate the interference signals and channel coefficients randomly, and sum up 

the M independent interference signals to obtain the received interference signal.  After many 

times of simulations, we calculate the distribution of the received interference signals, and thus 

can derive the CCI’s PDF.  If the MS is at point A, as illustrated in Fig. 1, and the loading rate 

is 0.5p  , we can obtain the numerical results of the CCI’s PDF by calculating Eq. (5) 

numerically.  The numerical and simulation results are shown in Fig. 2. One can find that the 

numerical result of Eq. (5) matches well with the simulation results.  If the MS is at point B, i.e., 

at the edge of three cells, and the loading rate is 1p  , the CCI’s PDF is derived as Eq. (14). 

The analytical and simulated results are shown in Fig. 3. It is shown that the theoretical results 
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obtained by Eq. (14) also match well with the simulation results.  For comparison, the Gaussian 

PDF is also plotted in both Fig. 2 and Fig. 3, and one can find that the distributions of CCI 

deviate significantly from the Gaussian distribution and possess a heavier tail.  

Next, we consider the case with M = 1, 2, 4 and 6 CCIs and each CCI has the same power. 

From Fig. 4, it can be observed that the analytical theoretical curves obtained by Eq. (10)–(13) 

match well with the simulated results.  Also, from Fig. 4, one can find that while the number of 

CCIs decreases, the distribution of total CCI deviates seriously from the Gaussian distribution.  

Even in the case of six CCIs, the distribution of total CCI is still found to significantly deviate 

from the Gaussian distribution.  This is because that in a cellular system, the number of adjacent 

active BSs is small, and the sum of a small number of independent interference does not 

converge to the Gaussian distribution.  The results in Fig. 4 also reveal that the spectral 

efficiency in downlink OFDM cellular systems would deviate from the Gaussian channel 

capacity too.   

In order to quantitatively analyze the difference between the distribution of CCI signals and 

the Gaussian distribution, the well-known mean, i.e., Kullback-Leibler distance, can be applied, 

which is defined as [20]  

        
 

log dZ
Z Z

f x
D f x g x f x x

g x
  , (15) 

where  Zf x  and  g x  denote the PDF of  CCI and Gaussian RV, respectively.  The 

Kullback-Leibler distance of the PDF of CCI and Gaussian RV is plotted in Fig. 5 with different 

loading rates and MS positions.  The MS moves along the solid line in Fig. 1. It can be seen that 

as the loading rate decreases, the distribution of CCI signal deviates significantly from the 

Gaussian signal.  For a given loading rate, the Kullback-Leibler distance increase as the 

distance between the MS and the desired BS increases, which means that the deviation from 

Gaussian distribution increases when the MS moves towards the cell edge.  
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IV. SPECTRAL EFFICIENCY ANALYSIS 

In this section, the maximum achievable rates of reliable communication with Gaussian-like 

transmit signals are presented based on the above-derived statistical models of CCI signals and 

total received signals in Section III.-A.  For notational clarity, we denote the channel occupancy 

vector by  1 2, , , M   Φ  , the average received power vector by  1 2, , , ME E EE   and 

the fading coefficient vector by  1 2, , , MH H HH  , respectively. 

If the MS receiver has full CSI of all the desired transmission channels and the interference 

channels, i.e., 0E , 0H , Φ , E  and H  are perfectly known at the receiver, the spectral 

efficiency is [11], [12]  

 
, ,0

2

0 0
CSI 0 0 0 2 2

1
; , , , , , E log 1

2H

m m m N
m

E H
I I X Y E H

E H 

  
         

  
Φ H

Φ E H . (16) 

If the MS receiver has no CSI of the interference channels, but only the CSI of the desired 

transmission channel, a conventional spectral efficiency estimation method based on the 

Gaussian interference assumption is [5]-[7] 

 
0

2

0 0
GA GA 0 0 0 2

1
; , , E log 1

2H
m m N

m

E H
I I X Y E H

p E 

  
          


. (17) 

However, as mentioned above, in this paper, we treat the interference as a non-Gaussian 

variable, therefore, the spectral efficiency should be calculated by using mutual information as  

 
     

 
   

   0 0

0 0 0

P 0 0 0

0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0

, ,
0 0 0,

; , ,  

   ; ; + ; ,

   0+0+ ; ,

   , , ,

1 1
   E log E log

,Y H Y H

Y H Y X H

I I X Y E H

I X E I X H E I X Y E H

I X Y E H

H Y E H H Y X E H

f Y H f Y X H



 



 

   
    
   
   

. 
(18) 
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     According to Eq. (1), we have    0

0 0

,
0 0,

1 1
E log E log

,Y H Z
ZY X H f Zf Y X H

   
         

.  Thus, 

Eq. (18) can be rewritten as 

   

       

         

0

0

0

0 0

0 0

0 0

P ,
0

, 0 0
0,

0 0 0

0

1 1
E log E log

1 1
   , log   log

1 1
   log   log

Y H Z
ZY H

Y H Z
Zy h zY H

H ZY H
Zh y zY H

I
f Zf Y H

f y h dydh f z dz
f zf y h

f h f y h dydh f z dz
f zf y h

   
         

 

 

 

  

, (19) 

where  
0 0Hf h  is the PDF of fading coefficient of the desired signal,  

0 0Y Hf y h  and  Zf z  

are derived in Eq. (7) and Eq. (9), respectively.   

The relationship between CSII  and GAI  can be found by using the Jensen’s inequality [20].   

With the consideration of that log 1
c

x
  
 

 is strictly concave with respect to x , when c  is a 

positive constant, and according to Jensen’s inequality, we have 

, , 00

,

2 2

0 0 0 0
2 2

2 2

1 1
E log 1 E log 1

2 2
E

H H

m m m N
m m m Nm

m

E H E H

E H E H 

                                  
 

Φ H

Φ H

, (20) 

and, which means that CSI GAI I . 

    In order to compare the three spectral efficiencies, we introduce the difference factor of the 

spectral efficiencies, P
CSID  and P

GAD , which are defined as   

P CSIP
CSI

P

100%
I I

D
I


  ， (21) 

and 

P GAP
GA

P

100%
I I

D
I


  , (22) 

respectively. 
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V. SIMULATIONS AND DISCUSSIONS 

In this section, the spectral efficiencies of the downlink OFDMA cellular system are 

analyzed by using Monte Carlo simulations.  We consider a synchronous, hexagonal OFDMA 

cellular network consisting of 7  BSs as illustrated in Fig. 1.  The cell radius is denoted by R .  

The MS moves along the solid line in Fig. 1.  The corresponding path loss exponent is equal to 

4, i.e., 4m   , m .  The transmit power of the BSs is assumed to be equal, i.e., mP P , 

m , and it is assumed that the signal-to-noise ratio (SNR) is at 30 dB when the MS is at the 

cell-edge, i.e., 2
30 dBm

N

PR 






  .  The transmit signal on each subcarrier is real-valued and 

Gaussian-like, and the fading coefficients on each subcarrier are also real-valued and 

Gaussian-like.  Finally, we assume the loading rates are identical in the system, i.e., mp p , 

m .  

Figure 6 shows the spectral efficiency, PI , when the MS receiver has no CSI of the 

interference channels for 0.5p  .  For comparison, we also plot the other two kinds of spectral 

efficiency, which have been introduced in the above section, i.e., CSII  and GAI .  It is shown 

that the three kinds of spectral efficiency are different with each others.  CSII  is the highest one 

among the three spectral efficiencies, as it has full CSI of interference channels.  GAI  is the 

lowest one, because that the Gaussian-distributed interference is the worst case, in other words, 

the Gaussian distribution has maximum entropy, and thus leading to the severest signal distortion.  

It is also shown that when the MS moves toward the cell edge, the gap between PI  and GAI  

increases.  It is because when the MS receiver is at the center of the cell, the CCIs from adjacent 

BSs almost have equal power, thus the distribution of received total CCI is close to the Gaussian 

distribution.  However, when the MS receiver is at the cell edge, the CCIs’ powers are different, 

only few CCIs with higher power dominate the distribution.  As we can see from Fig. 4, with 
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the number of CCIs decreases, the deviation from Gaussian distribution increases.  Therefore at 

the cell edge, the gap between pI and GAI  is larger.   

Figure 7 shows the difference factors, P
GAD  and P

CSID , for different loading rates.  It is 

shown that P
GAD  increases significantly when the loading rate is small, or the receiver is near to 

the edge of the cell.  It is because that, from Fig. 5, the distribution of total CCI signals 

significantly deviates from the Gaussian distribution as the loading rate decreasing or the 

distance between the BS and receiver increasing.  For P
CSID , similar trend can also be found in 

Fig. 7.  Another simulation result for LTE Urban macro-cell (UMa) scenario [23] is presented 

in Fig. 8.  The system parameters and channel model are listed in Table I.  It is shown that the 

trends of P
GAD  and P

CSID  in Fig. 8 are similar to that shown in Fig. 7, but still have some slight 

differences from each other.  The slopes of the curves in Fig. 7 are steeper than that in Fig. 8, 

especially when the receiver is near to the edge of the cell.  The explanation of this result is that 

the channel models in the two simulations are different, more specifically, the different channel 

fading model leads to the different receive power of each interference signal from the adjacent 

BSs, and thus leads to the distribution of the summation of the interference signals, i.e., the 

distribution of CCI is also different from each other. 

 

VI. CONCLUSIONS 

In this paper, the statistical properties of CCI and the spectral efficiency have been studied and 

analyzed for the downlink OFDM cellular system.  The PDF of CCI signals has been derived 

with the considerations of path loss and multipath fading, which have been found to highly 

deviate from the Gaussian distribution.  Based on the derived statistical model of CCI, the 

mutual information between the BS and the MS receiver has been derived.  Simulation results 

have shown that the conventional spectral efficiency analysis based on the Gaussian-distributed 
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interference model underestimates the potential capability of the OFDM cellular system, 

especially when the loading rate is small, or the receiver is near to the edge of the cell.  

APPENDIX A 

DERIVATION OF EQ. (2) AND EQ. (3)  

Before deriving the PDF of CCI signal, we first introduce the following lemma. 

Lemma 1: Let  2
1 1~ 0,X N   and  2

2 2~ 0,X N   be independent Gaussian RVs.  Then 

the product of 1X  and 2X , 1 2X X X , has the following statistical properties with variance of 

2 2 2
1 2    [21, Eq. (6.2) and Eq. (6.4)] 

  0

1
KX

x
f x

 
 

  
 

, (23) 

and 

 
1/2

2 2

1

1X w
w

 
    

. (24) 

    Note that mH  and mX  are two independent Gaussian RVs with unity variance, thus the 

PDF of m m m m mI E H X  conditioned on 1m   and mE  with variance of m mE  is 

given as   0

1
1

m m mI

m m

x
f x K

E E




 
    

 
.  For 0m  , it can be seen that 0mI   and 

the PDF of mI  is    0
m m mIf x x    .  Therefore, the PDF of mI  can be expressed as  

         
     

   0

Pr 1 1 Pr 0 0

          1 1 0

          1

m m m m m

m m m m

I m m m mI I

m m m mI I

m
m

m m

f x f x f x

p f x p f x

xp
K p x

E E

   

 




 

 

     

    

 
    

 

. 
(25) 

With the consideration of that the CF of  x  is   1w   and Lemma 1, thus the CF of mI  

is given as 
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   
1/2

2

1
1

1mI m m
m

w p p
E w

 
     

. (26) 

 

APPENDIX B 

DERIVATION OF EQ. (11), EQ. (12), EQ. (13) AND EQ. (14)  

Substituting 1mp   into Eq. (26) in Appendix A, the CF of one CCI signal can be 

expressed as 

 
1/2

2

1

1mI
m

w
E w

 
    

. (27) 

In the case of M = 1, 4 and 6 CCI signals with the same average received power, the CF are 

given as 
2

1

1 mE w
, 

2

2

1

1 mE w

 
  

 and 

3

2

1

1 mE w

 
  

, respectively.  

    In the following analysis, we consider the generalized CF, i.e., 2

1

1

n

mE w

 
  

 and n  is an 

integer. Using the inverse CF transform, the corresponding PDF can be expressed as 

 
 

 
   

 

2
1

2
1

0
2

1
1

1 1
d

2 1

1 1
        cos sin d

2 1

1 1
        cos d

1

iwx
I n

n

n

n

f x e w
E w

wx i wx w
E w

wx w

E w
E







 












     



 

 
 







. 
(28) 

With the help of [22, Eq. (3.737)], Eq. (28) can be rewritten as  

 
 

 

 
1

1 1

2 1
01

1exp 2 2 ! 2

! 1 !2 1 !

k

n

I n
k

x
n k x

E E
f x

k n kn E






   
      
   

 
 . 

(29) 

Substituting 1, 2n  and3, Eq. (29) reduces to Eq. (11), Eq. (12) and Eq. (13), respectively. 
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For M = 6, and with the constraint of 7m mE E   and 1, 2,3m  , the PDF of 
6

1
m

m

I I


  is 

given as 

     2 2 2
1 2 3

31 2
2 2 2

1 2 3

1

1 1 1

           
1 1 1

I w
E w E w E w

aa a

E w E w E w

 
  

  
  

, (30) 

where, 
  

2
1

1
1 2 1 3

E
a

E E E E


 
, 

  
2
2

2
2 1 2 3

E
a

E E E E


 
 and 

  
2
3

3
3 1 3 2

E
a

E E E E


 
.  With 

consideration of Eq. (29) and Eq. (30), we finally derive Eq. (14). 
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TABLE: 

TABLE I  
PARAMETER OF LTE URBAN MACRO SCENARIO 

Parameter Value 
Deployment scenario Urban macro-cell 
Channel model Urban macro model (LoS) 
Inter-site distance 500 m 
Number of BSs 19 
Carrier frequency  2 GHz 
System bandwidth 10 MHz 
Total BS transmit power  46 dBm 
Inter-site distance 500 m 
Thermal noise level -174 dBm/Hz 

 
FIGURES:  

   

Fig. 1. Downlink, hexagonal, OFDMA cellular network for 6M  .  
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Fig. 2. PDF of CCI in downlink cellular OFDMA systems for 0.5d R  and 0.5p  .  

 

Fig. 3. PDFs of CCI in downlink cellular OFDMA systems for d R  and 1p  . 
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Fig. 4. PDFs of CCI for M = 1, 2, 4 and 6. 

 

Fig. 5. Kullback-Leibler distance of the PDF of CCI and Gaussian distribution.  
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Fig. 6. Comparison of three kinds of spectral efficiency for 0.5p  . 

 

Fig. 7. Comparison of spectral efficiencies with different loading rates.  
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Fig. 8. Comparison of spectral efficiencies with different loading rates in LTE UMa scenario.  
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