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Abstract: In this study, the authors investigate the benefits of phase-rotation-assisted precoding (PRP) technique in spatial
modulation (SM) systems, which are based on maximum free distance dmin. First, a closed-form solution of the maximum-
dmin PRP matrix is derived for the scenario of having two transmit antennas (Nt = 2). Moreover, two numerical methods are
proposed for dealing with the case of Nt > 2. The complexity of the proposed algorithms is presented. The authors
simulation results show that the proposed PRP algorithms provide beneficial bit error ratio performance improvements
compared with both the conventional SM and with the existing adaptive SM.
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1 Introduction

Spatial modulation (SM) is capable of exploiting the indices of
transmit antennas (TAs) as an additional dimension for data
transmission besides the traditional amplitude and phase
modulations (APMs) [1–5]. Specifically, in this modulation
technique, only one of the available TAs is activated during each
transmission slot and the information is implicitly conveyed by the
index of the activated TA [1]. SM only needs a
single-radio-frequency (RF) chain, which is a substantial benefit.
As a further advantage, it is capable of relaxing the inter-antenna
synchronisation (IAS) specifications, while mitigating the
inter-antenna interference (IAI) at the transmitter [6]. Moreover,
the single-RF design is capable of employing a low-complexity
single-stream maximum-likelihood (ML) detector and offering an
increased energy efficiency compared with multiple-
RF-chain-based schemes. As a result, SM constitutes a promising
transmission candidate for multiple-input–multiple-output (MIMO)
design [7–9]. It is found that the performances (i.e. bit error ratio
(BER) and energy efficiency) of SM-MIMOs are highly dependent
on the specific type of the APM scheme [10] used. It has been
shown in [11] that phase shift keying (PSK) schemes are good
selections for SM systems.

The conventional open-loop SM schemes [11] only offer received
diversity gains. Hence, there is also a paucity of SM-MIMO
literature on how to increase the system’s robustness to
time-varying channel conditions [12–15]. Specifically, the effects
of power imbalance [12, 14], the issues of achieving transmit
diversity [13], as well as the impact of cooperation have been
researched [15]. However, most of the above-mentioned link
adaptive (LA) schemes considered only a special case of SM,
namely space shift keying (SSK), which exclusively employs the
antenna indices for data modulation. In [16–18], we proposed an
adaptive SM (ASM) scheme for improving the achievable BER,
while maintaining the target throughput. However, ASM transmits
a channel-quality-dependent number of bits per time slot and
hence it has a complex detector. More recently, in [19], Maleki
et al. first proposed a novel constellation design technique for
minimising the symbol error ratio (SER) of the multi-antenna
activated SSK scheme, which employs all the TAs to send the
same APM symbol. Then, this technique was further developed
for the single-RF-aided SSK scheme in [19]. More recently, in
[20] the optimal number of bits to be mapped to the TAs and to
the APM constellation was investigated under the constraint of a
fixed total throughput by the same authors based on a novel tight
upper SER bound. However, these LA techniques suffer from
symbol-to-symbol transmit power variation, which may cause
signal distortion because of the amplifier non-linearity.

To find a high energy-efficiency LA algorithm for SM
transmission, the phase-rotation-aided precoding (PRP) technique
has also been extended to SM-PSK, in order to increase the
minimum Euclidean distance (dmin) (termed as free distance (FD))
of the received constellation points [21]. However, the proposed
PRP may only be suitable for the multiple-input–single-output
(MISO) systems. Against this background, we introduce a new
PRP scheme based on the maximum-FD (max-FD) dmin for
SM-PSK systems, which is capable of improving the attainable
BER. More important, the symbol-to-symbol transmit power can
be constant, which facilities the employment of a high
energy-efficiency RF. To retain the benefits of SM, such as its
low-complexity single-stream detector and its single-RF chain, we
design its PRP matrix to be diagonal. A closed-form solution of
the max-FD PRP matrix is derived in the case of two TAs (Nt = 2).
To deal with the case of (Nt > 2), we propose two numerical PRP
algorithms. We demonstrate that the BER gains achieved by the
proposed PRP-aided SM schemes are attractive for high
energy-efficiency SM transmission.

Notations: (·)*, (·)T and (·)H denote conjugate, transpose and
Hermitian transpose, respectively. The probability of an event is
represented by P(·). Furthermore, ‖·‖ stands for the Frobenius
norm and all logarithms are base of 2.
2 System model of minimum Euclidean
distance-based PRP for SM-PSK

2.1 Transceiver

The PSK-modulated SM scheme has an attractive BER performance
compared with quadrature amplitude modulation (QAM)-modulated
SM, as shown in Fig. 1 and it has implementational benefits as well,
such as a high-power-amplifier energy efficiency owing to its
constant-modulus nature. However, this fixed-mode SM-based
scheme only achieves received diversity [6]. For the sake of
overcoming this problem, while retaining all the benefits of
1
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Fig. 1 BER comparison of the PSK-modulatedQ4 SM and the QAM-modulated SM schemes

a 2 × 2 SM
b 4 × 2 SM

135

140

145

150

155

160

165

170

175

180

185

190

195

200

205

210

215

220

225

230

235

240

245

250

255

260
SM-PSK, a PRP-aided SM system is proposed, with the goal of
maximising the FD, hence improving the BER performance.

Consider a MIMO system having Nt TAs and Nr RAs. The
(Nt × 1)-element transmit symbol vector x is assumed to satisfy
E[xxH] = INt

, where INt
denotes an (Nt × Nt)-element identity

matrix. Let C denote the field of complex numbers. Then, the
conventional SM symbol x [ C

Nt×1 is given by x = sq
l
zq, where

sq
l

is the complex-valued symbol of the APM scheme. For
example, L-ary PSK (L-PSK)/QAM is associated with mAPM = log
(L) input bits, whereas zq(1≤ q≤Nt) is selected from the
Nt-dimensional standard basis vectors (i.e. z1 = [1, 0, …, 0]T),
according to log(Nt) input bits. Hence, a total of mall = log(L·Nt)
bits are transmitted in each SM symbol.

Let us express the transmitted PRP-aided SM-PSK symbol as
�x = e juqx = e juq sq

l
zq, where θq is the PRP factor at the qth

antenna. At the receiver, the corresponding (Nr × 1)-element
received signal vector is given by

y = HQx+ n (1)

where the diagonal matrix Θ allocates the specific PRP factors to the
different TAs, where we have

Q = diag{1, eju1 , . . . , ejuq , . . . , ejuNt−1} (2)

Given the channel matrix H, the PEP between the pair of arbitrary
transmit vectors xi and xj (xi≠ xj) may be estimated as [22]

P(xi � xj|H) ≃ l · Q
������������������
1

2N0
d2min H , Q( )

√( )
(3)

where Q(x) = (1/
����
2p

√
)
�1
x e−y2/2 dy and l is the number of adjacent

constellation points [22], with the FD dmin(H, Θ) defined as

dmin H , Q( ) = min
xi , xj[X,
xi=xj

HQ(xi − xj)
∥∥∥ ∥∥∥

F

= min
eij[E

HQeij

∥∥∥ ∥∥∥
F

(4)
2

where X is the set of legitimate transmit symbols, while eij = xi− xj,
i≠ j denotes the error vector and E is a set of error vectors.

2.2 PRP design criterion

In (4), the conditioned PEP is a monotonically decreasing function of
dmin(H,Θ). Hence, the system’s BER performance may be improved
by maximising the distance dmin(H, Θ) on carefully adapting the
transmit parameters. The proposed PRP-aided SM-PSK is
designed by appropriately controlling the PRP matrix Θ for the
sake of maximising the FD based on the following cost function

Qopt = argmax
Q

dmin H , Q( )
s. t.: 0 ≤ uq ≤ 2p, q = 1, . . . , Nt − 1

{
(5)

Compared with other existing schemes, the advantages of the
proposed PRP scheme are as follows:

(1) In contrast to the traditional transmit precoding conceived for
conventional MIMO systems [23, 24], the introduction of
single-RF-aided PRP in SM-MIMO does not jeopardise the
advantages of SM, such as the avoidance of the IAI and the
relaxation of the IAS [1, 6].
(2) Compared with the ASM scheme of [16–18] and to the power
allocation (PA)-aided SM of [25], the PRP-aided SM only adapts
the phases of the SM symbols in order to maximise the FD and
hence to improve the attainable BER. As a result, when it is
combined with the classic PSK modulation, the moduli of the
transmitted signals are constant, which facilitates the employment
of a low-cost high-efficiency class-C power amplifier.

3 Phase rotation-based transmit precoding
algorithm

In this section, we first introduce the conventional PRP algorithm of
SM-PSK. Then, we derive a closed-form solution based on the cost
function of (5) for binary PSK (BPSK)-modulated (2 ×Nr)-element
SM and then extend this method to the more general
M-PSK-modulated (2 ×Nr)-element PRP-aided SM scenario. In the
case of a large number of TAs and a high modulation order, two
IET Commun., pp. 1–9
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numerical search methods are proposed for finding a near-optimal
max-FD solution.
Fig. 2 Max-FD-aided PRP for the BPSK-modulated (2 × 1)-element SM
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3.1 Conventional PRP algorithm for MISO channels

In [21], a low-complexity PRP algorithm was proposed for
improving the diversity gain of SM in MISO channels, which
align the phases of the received constellation points so that they
become equi-spaced in [0, 2π]. To be specific, let the MISO
channel vector of h = [h1, . . . , hq, . . . , hNt

], where hq denotes
the complex-valued channel coefficient between the qth TA and
the receiver, the phase θq assigned to the qth antenna is given by

uq = fn − nq (6)

where nq is the phase of the channel coefficient hq and fn is the nth
angle taken from an equi-spaced angle arrangement within [0, 2π],
which is given by [21]

fn =
2p

NtL
(n− 1), n [ {1, . . . , Nt} (7)

The principle of this equally spaced angle arrangement method was
detailed, for example, in [21]. As noted in [21], the PRP algorithm of
(6) and (7) shapes the received SM symbols so that the angles of the
constellation points are uniformly spaced. This is capable of
statistically enhancing the minimum FD and hence improving the
achievable BER performance. However, this PRP algorithm is
only suitable for the family of MISO channels. To circumvent this
problem, we proposed a new PRP algorithm as given in (5). Next,
we will drive the solution for this optimisation problem under
different SM parameters.
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3.2 Max-FD-aided PRP for BPSK-modulated SM with
Nt = 2

In the case of Nt = 2, the diagonal PRP matrix is formed as
Q = diag{1, eju1}. Hence, we only have to optimise the phase θ1.

For BPSK-modulated SM associated with Nt = 2, the symbols
belong to the set {1, −1}, and all possible error vectors eij = xi−
xj, i≠ j are listed as follows: {[−2, 0]T, [2, 0]T, [0, −2]T, [0, 2]T,
[−1, 1]T, [−1, −1]T, [1, −1]T, [1, 1]T}. Since some of the vectors
are collinear, the set to be studied is reduced to {e1, e2, e3, e4} =
{[2, 0]T, [0, 2]T, [1, −1]T, [1, 1]T}. Given the channel matrix
H = [h1, h2], the constellation point distances at the receiver are
given by

d1 = HQe1
∥∥ ∥∥2 = 4 h1

∥∥ ∥∥2
d2 = HQe2

∥∥ ∥∥2 = 4 h2
∥∥ ∥∥2

d3 = HQe3
∥∥ ∥∥2 = h1 − eju1h2

∥∥ ∥∥2
d4 = HQe4

∥∥ ∥∥2 = h1 + eju1h2
∥∥ ∥∥2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(8)

On the basis of (8), the optimisation problem of (5) can be simplified
to

Qopt = argmax
Q

{min {d1, d2, d3, d4}}

s.t. 0 ≤ u1 ≤ 2p
(9)

To find the optimal PRP solution, we can first obtain the phases
assigned to the TAs by finding the intersections of the lines and of
the sinusoidal curves in Fig. 2, and then continue by selecting the
particular phase resulting in the maximum FD as the final solution.
Note that the phase rotation cannot change the values of d1 and d2,
hence only the intersections of the sinusoidal curves have to be
calculated. Specifically, in (9) and Fig. 2, we only have to
IET Commun., pp. 1–9
& The Institution of Engineering and Technology 2015
consider the intersection of d3 = d4, which satisfies

d3 = h1 − eju1h2
∥∥ ∥∥2= d4 = h1 + eju1h2

∥∥ ∥∥2 (10)

leading to

Re{hH1 h2e
ju1} = 0 (11)

On introducing the shorthand of A = 2 · Re{hH1 h2} and
B = 2 · Im{hH1 h2} for a given channel matrix H, (11) can be
solved as

A cos u1 − B sin u1 = 0

⇔ tan u1 =
A

B

(12)

Finally, the phase θ1 associated with the intersection of d3 = d4 in
Fig. 2 is given by

u1 = kp+ tan−1 A

B

( )
k [ Z, 0 ≤ u1 ≤ 2p

⎧⎨
⎩ (13)

Note that there may be multiple optimal solutions for (13), as
indicated in Fig. 2. Since these solutions result in the same FD
dmin, we only consider one of them. According to (10) and (13),
the distances d3 and d4 can be expressed as d3 = d4 = ‖h1‖2
+ ‖h2‖2, then the FD dmin is given by

dmin = min {d1, d2, d3, d4}

= min 4 h1
∥∥ ∥∥2, 4 h2

∥∥ ∥∥2, h1
∥∥ ∥∥2+ h2

∥∥ ∥∥2{ }

=
h1

∥∥ ∥∥2 + h2
∥∥ ∥∥2, if 3 h1

∥∥ ∥∥2 . h2
∥∥ ∥∥2 . h1

∥∥ ∥∥2
3

4 h2
∥∥ ∥∥2, if h2

∥∥ ∥∥2 ≤ h1
∥∥ ∥∥2
3

4 h1
∥∥ ∥∥2, if h2

∥∥ ∥∥2 ≥ 3 h1
∥∥ ∥∥2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(14)

Remark 2: The conventional PRP algorithm of [21] relying on
equi-spaced phases for a (2 × 1)-element SM using BPSK is
3



400

405

410

415

420

425

430

435

440

445

450

455

460

465

470

475

480

485

490

495

500

505
equivalent to the proposed max-dmin-based PRP in terms of
maximising the FD.

Proof: Let H = [h1, h2] be the MIMO channel matrix. For BPSK, the
SM system only has four received constellation points corresponding
to h1, −h1, h2 and −h2. In the conventional equi-spaced phase-based
PRP algorithm, a constant phase difference of π/2 is assigned
between the adjacent constellation points. Hence, the legitimate
received distances are the following three values 4‖h1‖2, 4‖h2‖2,
‖h1‖2 + ‖h2‖2, which are the same in (14) associated with Nr = 1.
Hence, this method is equivalent to our max-FD-based PRP in this
specific SM setup, which will be shown in Fig. 4. □

3.3 Max-FD-aided PRP for L-PSK-modulated SM using
Nt = 2

In this section, we consider the more general case of a
(2 × Nr)-element SM using L-PSK modulation. Given the channel
matrix H = [h1, h2], we first classify these received distances into
three subsets, as follows

D1 = { h1
∥∥ ∥∥2(sl − sl̂), l = l̂}

D2 = { h2
∥∥ ∥∥2(sl − sl̂), l = l̂}

D3 = { h1sl − h2sl̂e
ju1

∥∥ ∥∥2, l, l̂ [ {1, . . . , L}}

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(15)

where sl = ej(2lp/L) and sl̂ = ej(2l̂p/L) represent a pair of L-PSK
symbols. Hence, the optimisation problem of (5) is equivalent to

Qopt = argmax
Q

{min {D1, D2, D3}}

s.t. 0 ≤ u1 ≤ 2p
. (16)

Similarly to the BPSK case of Section 3.2, the distances in the sets
D1 and D2 are independent of the phase θ1. As a result, we only have
to consider the intersections of the sinusoidal functions in set D3.
When the phase difference of the PSK symbols sl = ej(2lp/L) and

sl̂ = ej(2l̂p/L) is considered, the set D3 can be represented by D̂3 as

D̂3 = h1e
j(2lp/L) − h2e

j(2l̂p/L)eju1
∥∥∥ ∥∥∥2, l, l̂ = 1, . . . , L

{ }

= h1e
j(2(l−l̂)p/L) − h2e

ju1
∥∥∥ ∥∥∥2, l, l̂ = 1, . . . , L

{ }

= h1e
j(2kp/L) − h2e

ju1
∥∥ ∥∥2, k = 1− L, . . . , L− 1

{ }
(17)
Fig. 3 Distribution of FD dmin of the conventional SM and the proposed
optimal max-FD-aided PRP-based SM

4

where the phase differences are k = l − l̂. The set D̂3 has (2L− 1)
elements and we use the phase difference factors k1 and k2 for
representing two elements in the set D̂3. If the constraint 2k1π/L =
2k2π/L + 2π, k1, k2∈(1− L, …, L− 1) is satisfied, these two
elements achieve the same received distance. Hence, we only have
to consider one of them. On the basis of this result, the number of
elements in the set D̂3 is further reduced to L. To be specific, only
the specific elements of D̂3 associated with k = 0, …, L− 1 have to
be considered.

On the basis of the above-mentioned process, the problem of (16)
is simplified to

Qopt = argmax
Q

{min {D̂3}}

s.t. 0 ≤ u1 ≤ 2p
(18)

Moreover, let c1 = 2k1π/L and c2 = 2k2π/L. Then, the interactions
between two arbitrary received distances h1e

j2k1p/L − h2e
ju1

∥∥ ∥∥2
and h1e

j(2k2p/L) − h2e
ju1

∥∥ ∥∥2 of D̂3 in (17) should satisfy

h1e
jc1 − h2e

ju1
∥∥ ∥∥2= h1e

jc2 − h2e
ju1

∥∥ ∥∥2 (19)

When we have c1≠ c2, (19) can be solved as

A cos(c1+u1)−B sin(c1+u1)=−A cos(c2+u1)+B sin(c2+u1)

⇔ tanu1=−A cos(c1)−B sin(c1)−A cos(c2)+B sin(c2)

A sin(c1)+B cos(c1)−A sin(c2)−B cos(c2)

(20)

Since c1 and c2 have L different values in (17), we arrive at a total of

L
2

( )
= L2 − L

2

phase candidates θ1 in (20). As a result, the number of legitimate
PRP matrices Θ becomes L2− L/2. Finally, the FDs of these PRP
matrices are generated and then we select the one having the
largest FD as our final result.

In Fig. 3, we investigate the FD gain of the proposed PRP-based
SM schemes. Specifically, Fig. 3 portrays the complementary
cumulative distribution functions of the FD recorded both for
conventional SM and for the proposed PRP-aided SM schemes in
(2 × 2)-element MIMO channels for different PSK schemes.
Fig. 4 BER comparison of various SM schemes in (2 × 1)-element MISO
and (2 × 2)-element MIMO channels, where BPSK modulation is considered

IET Commun., pp. 1–9
& The Institution of Engineering and Technology 2015

510

515

520

525



530

535

540

545

550

555

560

565

570

575

580

585

590

595
Observed in Fig. 3 that the PRP-aided SM schemes are capable of
beneficially increasing the FD, hence improving the attainable
BER performance according to (3).
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3.4 Exhaustive-based numerical max-FD PRP algorithm
for Nt > 2

Since it is complex to jointly optimise the entire set of phase-rotation
values θq, q = 1, …, Nt− 1 for the case of Nt > 2 and for high
modulation orders, we simplify this joint optimisation problem by
maximising the angular separation of the most likely error-events
constituted by the nearest-neighbour TA pair (m, n) associated
with the FD. Note that the phase values of the remaining TAs
remain unchanged with respect to their initial value. Then, a
simplified method of FD calculation may be conceived by
exploiting the PRP-SM-specific signal structure.

More specifically, if the TA pair (m, n) is associated with the
minimum FD according to (4), then problem (5) may be simplified as

Qopt = argmax
Q

dmin H , Q( )
s.t.: 0 ≤ um ≤ 2p, m [ {1, . . . , Nt}
ejui = 1 for all i = m
the pair (m, n) has the minimum FD

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(21)

when we consider the nearest-neighbour TAs m and n, we only have
to rotate one of these antennas, which leads to an improved BER.

More specifically, for a given channel matrix H, the dmin(H, Θ)
value of the initial PR matrix Q = INt

is calculated as d1
min
. Then,

the indices of the TA pair (m, n) associated with d1
min

are obtained.

If the value of m is the same as n, the distance d1
min

is obtained for
either one of the pair of TAs, which may be formulated as

d1
min

= hm
∥∥ ∥∥

F
�dmin, m [ {1, . . . , Nt} (22)

where hq is the qth column ofH and �dmin is the minimum distance of
the classic signal constellation according to the modulation order.
For example, we have �dmin = 2 for BPSK and �dmin = 2/

��
2

√
for

quadrature PSK (QPSK) [10]. In this case, no PRP is adopted
because it cannot increase the FD of (4). On the other hand, if the
values of m and n are not the same, the value of d1

min
is computed

from different TAs. To increase the spatial separation between
these worst-case TAs having the minimum FD, PRP gradually
rotates the phase of the mth TA by Δθ, whereas the remaining TAs
may retain their original phase values. The specific choice of Δθ is
flexible and a lower value of Δθ may achieve a better performance
at the cost of a higher computational complexity. In practice, the
choice of Δθ should strike a tradeoff between the performance
attained and the complexity imposed. In this paper, Δθ is chosen
as Δθ = 2π/N using N = 20. As a result, the corresponding PRP
matrix candidates are

Qk = diag{1, . . . , ej(kDu), . . . , 1}, k = 0, 1, . . . , N

� mth
(23)
Table 1 Proposed iterative PRP algorithm forNt > 2

Initialise Q = diag{1, eju1 , . . . , ejuNt−1 } = INt
, b = 1.

Calculate the FD dmin(Θ) of the PRP matrix and find the indices of the TA
pair (m, n) that achieved this FD. If m = n, Θopt =Θ; else go to Step 3.
Find the PRP solutions Θall for this TA pair by using (18)–(20) and select
the optimal PRP matrix given by Qopt = argmax

Qall

(dmin{Qall)}.

While dmin(Θopt) < dmin(Θ), let b = b + 1 and find the TA pair with the bth
minimum distance, go to Step 3.

IET Commun., pp. 1–9
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which yields the optimal PR matrix of

Qopt =
�INt

, if m = n
argmax

Q=Qk ,k=1, ...,N
dmin H , Q( ), if m = n

{
(24)

Since the FD dmin(H, Θ) is increased by the PRP algorithm, the
proposed scheme provides a considerable system performance
improvement over the conventional non-precoded SM-PSK.

3.5 Low-complexity iterative PRP algorithm for Nt > 2

In Section 3.4, we propose a numerical approach based on
exhaustive search, which may have an excessive complexity, when
the number of legitimate PRP matrices N is large. Furthermore, it
is quite a challenge to decide about the optimal value N for a
specific MIMO setup. To solve this problem, based on the optimal
solution for provided Nt = 2 in Section 3.3, we propose a
low-complexity iterative PRP algorithm for Nt > 2, which is
summarised in Table 1. To be specific, similar to the
exhaustive-search-based method, we only focus on the specific TA
pair (m, n) associated with the FD and use the result of the
optimal design for the case of Nt = 2, whereas the phases of all
other TAs remain unchanged. Note that any change in the phase
parameters on the TA pair (m, n) may also affect the distances
from other TAs. Hence, in order to guarantee that the FD is
always increased, we select the specific PRP solution associated
with the highest FD by considering all possible TAs. Moreover, if
the FD is not increased in an iteration, we continue with the
particular TA pair that has the second smallest distance among all
TA pairs. In the algorithm of Table 1, we have considered all TA
pair candidates up to the bth minimum distance for finding the
final PRP result.

Note that for conciseness, we denote the proposed
exhaustive-search-based max-FD PRP algorithm as ‘the proposed
PRP Algorithm 1’ and the proposed low-complexity iterative PRP
algorithm as ‘the proposed PRP Algorithm 2’.
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4 Complexity analysis

4.1 Computational complexity-reduction methods

Since we have a closed-form solution for the conventional PRP as
well as for the optimal max-FD PRP methods, their computational
complexity is low. However, for a higher number of TAs, the
near-optimal max-FD-based algorithm in Sections 3.4 and 3.5 is
preferred.

The computational complexity of the numerical PRP algorithm is
dominated by that of the phase rotation required for increasing the
FD dmin(H, Θ) for each legitimate PRP matrix candidate. To
reduce the complexity imposed, below we proposed a range of
efficient methods for its practical implementation.

4.1.1 Shrinking the space of error vectors: It is worth noting
that the collinear error vectors eij = xi− xj, i≠ j generate the same FD
dmin(H,Θ) in (4). Hence, although the cardinality of the set Emay be
large in (4), only a single representative of those collinear error
vectors has to be considered. Let E′ denote the reduced set of error
vectors, where the redundant collinear elements have been
eliminated. For a BPSK-modulated SM-based system associated
with Nt = 2, 4, 8, the entries of the error vectors eij lie in the set
{0, ±1, ±2} and the cardinality of E′ is 4, 16 and 64, respectively,
which is half of the total number of error vectors. For a
higher-order modulation scheme, this reduction of the search space
becomes more substantial.

4.1.2 Complexity-reduction by exploiting the PRP-aided
SM-PSK-specific signal structure: To further reduce the
complexity of calculating dmin(H, Θ), the PRP-aided
SM-PSK-specific signal structure can be exploited. More
specifically, let xi = si

l
ei and xj = sjkej denote two distinct transmit
5
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symbols, and si
l
and sj

k
denote the lth and kth constellation points

transmitted by the ith and jth antennas, respectively. Then the FD
is represented by (25)

dmin H , Q( )

= min
sj
l
, sj

k
[S

�H(silei − sjkej)
∥∥∥ ∥∥∥

F

= min
sj
l
, sj

k
[S

�his
i
l − �hjs

j
k )

∥∥∥ ∥∥∥
F

= min
sj
l
, sj

k
[S

����������������������������
(�his

i
l − �hjs

j
k )

H(�his
i
l − �hjs

j
k )

√

= min
sj
l
, sj

k
[S

������������������������������������������������������
sil
∣∣ ∣∣2�hHi �hi + sjk

∣∣∣ ∣∣∣2�hHj �hj − (sil)
∗sjk�h

H
i
�hj − sil(s

j
k )

∗�hi�h
H
j

√

(25)

where �H = HQ is the effective channel matrix and �hq is the qth
column of �H . Moreover, let us define f = /((si

l
)∗sjk ) = −(si

l
(sjk )

∗),
whose legitimate values are limited to

f = k · 2p/N (k = 0, . . . , N − 1) (26)

Hence, by exploiting that |sil| = |sjk | = 1 for PSK-modulated
symbols, (25) may be rewritten as

dmin H , Q( ) = min
sj
l
, sj

k
[S

���������������������������������������
hi
∣∣ ∣∣2 + ∣∣hj∣∣2 − 2Re{ej(f−ui+uj)hHi hj}

√
(27)

where |hi|
2, |hj|

2 and hHi hj are the elements of the matrix HHH. For a
fixed TA pair (i, j) in (27), we only have to consider the legitimate
phase f. Hence, the corresponding complexity of the PRP
algorithm is low.
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4.2 Complexity of the proposed PRP algorithms

On the basis of the above-mentioned complexity-reduction methods,
Table 2 shows the complexity comparison of various ASM
algorithms, where only the multiplications of complex numbers are
considered. To be specific, if the number of TAs is 2, the
closed-form solution for the PRP can be found as shown in
Section 3.3, hence the corresponding complexity is

CPRP = (2N2
t Nr − NtNr)+

1

2
(L2 − L)(2L+ 8) (28)

Then, for the case of Nt > 2, the complexity of ‘the proposed PRP
Algorithm 1’ and of ‘the proposed PRP Algorithm 2’ can be
Table 2 Complexity comparison of different adaptive algorithms for
SM

Adaptive algorithms 2 × 2,
QPSK

2 × 2,
8PSK

4 × 2,
QPSK

8 × 2,
QPSK

ASM 516 2172 2216 9168
optimal max-FD PRP
algorithm

108 684 — —

proposed PRP Algorithm 1 — — 522 1424
proposed PRP Algorithm 2 — — 282 792

6

expressed, respectively, as (29) and (30)

CPRP1 = (2N2
t Nr − NtNr)+ Nt +

N2
t − Nt

2
+ NtN − N

( )
(2L− 1)

(29)

CPRP2 = (2N2
t Nr − NtNr)+ Nt +

1

2
(N2

t − Nt + (L2 − L)(Nt − 1))

× (2L− 1)+ 9

2
(L2 − L)

(30)

Moreover, the complexity of the ASM scheme of [18] is

CASM = (2N2
t Nr − NtNr)+ 9NtL(NtL− 1) (31)

Note that the complexity evaluations of the proposed PRP
algorithms, as formulated in (28)–(30), are detailed in Appendix.

As shown in Table 2, the proposed PRP algorithms have a lower
complexity than ASM. As regards to the feedback load, the
PRP-aided SM-PSK scheme only has to feedback the TA index to
be rotated and its corresponding phase-rotation value. Furthermore,
the matched filter-based single-stream ML detector of [26, 27] can
be adopted for the detection of our proposed PRP-aided SM-PSK,
where the TA indices and the L-PSK symbols are detected
separately.
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5 Simulation results

In this section, we characterise the performance of both
the conventional PSK-modulated SM scheme as well as of the
corresponding max-FD-aided PRP schemes, namely that of the
proposed optimal max-FD-based PRP assisted SM, of the PRP
Algorithm 1 and of the PRP Algorithm 2. These performance
results were also compared with that of the conventional
PRP-aided SM schemes of [21], to the ASM arrangements of [18]
and to the PA-aided SM schemes of [25] for transmission over
independent Rayleigh block-flat MIMO channels [Note that the
proposed PRP algorithm can be readily extended to the channels
exhibiting time-domain correlation, where both the computational
complexity and the feedback load are reduced, because only a
single PRP matrix has to be calculated within each coherence
interval.]. The reason we selected these schemes as our
benchmarkers is because their design principle is the same as that
of maximising the FD with the aid of a single-RF chain. Hence,
these schemes have a similar overhead.

Fig. 4 shows the BER performance of the conventional PRP, as
well as of the proposed optimal max-FD-aided PRP and of the
optimal max-FD-based PA of [25]. In Fig. 4, the (2 × 1)-element
and (2 × 2)-element MIMO channels using BPSK modulation are
considered. For completeness, we added the theoretical upper
bound of [11] for the conventional SM scheme. Moreover, for the
(2 × 2)-element MIMO channels, the performance curves of the
conventional PRP-aided SM is not considered, because this
method is only suitable for MISO channels. We observe in Fig. 4
that the PRP-aided SM schemes provide considerable
signal-to-noise ratio (SNR) gains over the conventional SM
schemes. Moreover, the proposed max-FD-assisted PRP
outperforms the max-FD-aided PA algorithm of [25]. Furthermore,
observed in Fig. 4 that according to Remark 1, we found that the
conventional PRP and the proposed optimal max-FD-based
arrangement achieve the same BER performance.

Fig. 5 compares the BER performances of the PRP-aided schemes
and of the conventional ASM schemes for different PSK
arrangements in (2 × 2) MIMO channels. As shown in Fig. 5, in
the low-to-medium SNR regime, the proposed PRP-aided schemes
outperform the ASM schemes, but they may perform worst than
the ASM at high SNRs. This is due to the fact that these
techniques exploit different properties of the MIMO channels,
IET Commun., pp. 1–9
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Fig. 7 Probability of the transmit symbol modulus for different ASM
schemesFig. 5 BER comparison of the ASM and the proposed max-FD-based

PRP-aided SM schemes in (2 × 2)-element MIMO channels with different
PSK schemes
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when aiming for maximising the FD; hence, they may exhibit
different BER advantages for different number of TAs. It is worth
noting that different QAM schemes may be assigned to different
TAs, relying on the near-instantaneous channel conditions in
ASM; hence, the receiver has to detect these different
constellations and hence imposes a higher complexity than the
PSK-modulated PRP-aided SM. Moreover, as discussed in Section
2 and shown in Fig. 7, the proposed PRP scheme has a higher
energy efficiency than the ASM scheme because of the
constant-modulus property of the transmitted signals.

Moreover, Fig. 6 explores the attainable system performance relying
on more antennas. To be specific, (4 × 2)-element and (8 × 2)-element
MIMO channels are considered. Observed in Fig. 6 that the proposed
max-FD-aided PRP-SM schemes achieve a 3–5 dB performance gain
at BER= 10−5 over the identical-throughput non-precoded SM
scheme. Moreover, the low-complexity PRP Algorithm 2 achieves
almost the same performance as the PRP Algorithm 1.
Fig. 6 BER comparison of various SM schemes in (4 × 2)- and (8 × 2)-element M

a 4 × 2 MIMO
b 8 × 2 MIMO

IET Commun., pp. 1–9
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Furthermore, as shown in Figs. 4–6, the proposed PRP schemes
are capable of achieving almost the same BER result as the
identical-throughput ASM schemes, such as the 4 × 2 and 2 × 2
MIMO setups in Figs. 5 and 6. Moreover, as shown in Fig. 4,
the proposed PRP schemes perform better than the PA-aided
SM. In a word, the proposed PRP is an attractive alternative for
ASM and PA-aided schemes in limited-feedback SM
transmission in terms of BER. On the other hand, as shown in
Fig. 7, in the proposed schemes the moduli of the transmit
SM-MIMO signals are constant, whereas that of the ASM and
the PA-aided SM schemes has a large variation. To be specific,
the symbol-power within each RF chain of ASM and PA-aided
SM is time-variant, depending on the PA matrix and ASM
candidate invoked. This increases the realisation cost for
practical communication systems. As shown in Fig. 7, this
problem can be avoided by our proposed constant-modulus
PRP-aided SM-PSK.
IMO channels
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6 Conclusion

In this paper, we have proposed a novel PRP-aided SM-PSK scheme
for improving the achievable BER performance. Our PRP-aided SM
scheme exhibits an attractive BER performance at a low complexity,
despite its limited-feedback load. This system is also eminently
suitable for single-RF-aided MIMO scenarios [28].
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9 Appendix

The complexity expressions of the proposed PRP algorithms are
presented by (28)–(30). This appendix provides more detailed
information for this complexity assessment.
9.1 Complexity of the optimal max-FD PRP algorithm
using Nt = 2

Given channel matrix H [ C
Nr×Nt in Section 3.3, we first evaluated

the elements of the matrix HHH for the sake of determining the
values of |hi|

2, |hj|
2 and hHi hj in (27). The associated complexity is

given by

comp(HHH) = 2N2
t Nr − NtNr (32)

where comp(·) represents the number of complex-valued
multiplications. Then, recall from Section 3.3 that the calculation

of the
L
2

( )
possible phase values in (20) imposes a complexity of

comp( tan u1) =
9

2
(L2 − L) (33)

Then, the FDs of all possible PRP matrices formed by (20) are
computed by using (27) at a complexity of

comp(dallmin) = L
2

( )
(2L− 1) (34)

Finally, the total complexity of the proposed optimal max-FD PRP
algorithm associated with Nt = 2 is given by (28), also taking into
account (32)–(34).
9.2 Complexity of the proposed PRP Algorithm 1 using
Nt > 2

As shown in Section 3.4, we have to determine the elements of the
matrix HHH. Then, the FD associated with the initial PRP matrix by
using (27) is computed, which imposes a complexity of

comp(dinmin) = Nt
2

( )
(2L− 1) (35)

Note that the number of legitimate PRP matrices in (23) is NPRP1 =N
and hence the FDs of these matrices are calculated by using (27) at a
complexity of

comp(dPRP1min ) = N (Nt − 1)(2L− 1) (36)

Note that in (27) only the distances between the changed TA and
other TAs has to be considered. To be specific, only one of the
TAs assigns a new phase, whereas the other TAs may keep the
phase values unchanged. Hence, there are (Nt− 1) possible TA
pairs, which is the number of combinations of the changed TA
and one of the unchanged TAs. For each pair, the complexity of
evaluating the received distance is (2L− 1). The final complexity
result shown in (36). On the basis of (32), (35) and (36), the total
complexity of the proposed PRP Algorithm 1 is formulated in (29).
IET Commun., pp. 1–9
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9.3 Complexity of the proposed PRP Algorithm 2 using
Nt > 2

By contrast, for the proposed PRP Algorithm 2 of Section 3.5, the
legitimate PRP matrices are based on using (20) rather than (23),
which imposes a complexity of comp(tan θ1). Moreover, since

there are NPRP2 = L
2

( )
possible PRP solutions, compared with
IET Commun., pp. 1–9
& The Institution of Engineering and Technology 2015
(36), the complexity of computing the FDs of NPRP2 PRP matrices
is given by

comp(dPRP2min ) = NPRP2(Nt − 1)(2L− 1) (37)

Hence, based on (32), (33), (35) and (37), we arrive at the
complexity of the proposed PRP Algorithm 2 as in (30).
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