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Multiple Access Wiretap Channel with

Noiseless Feedback
Bin Dai and Zheng Ma

Abstract

The physical layer security in the up-link of the wireless communication systems is often modeled as the multiple

access wiretap channel (MAC-WT), and recently it has received a lot attention. In this paper, the MAC-WT has been

re-visited by considering the situation that the legitimate receiver feeds his received channel output back to the

transmitters via two noiseless channels, respectively. This model is called the MAC-WT with noiseless feedback.

Inner and outer bounds on the secrecy capacity region of this feedback model are provided. To be specific, we first

present a decode-and-forward (DF) inner bound on the secrecy capacity region of this feedback model, and this bound

is constructed by allowing each transmitter to decode the other one’s transmitted message from the feedback, and

then each transmitter uses the decoded message to re-encode his own messages, i.e., this DF inner bound allows the

independent transmitters to co-operate with each other. Then, we provide a hybrid inner bound which is strictly larger

than the DF inner bound, and it is constructed by using the feedback as a tool not only to allow the independent

transmitters to co-operate with each other, but also to generate two secret keys respectively shared between the

legitimate receiver and the two transmitters. Finally, we give a sato-type outer bound on the secrecy capacity region

of this feedback model. The results of this paper are further explained via a Gaussian example.

Index Terms

Multiple-access wiretap channel, noiseless feedback, secrecy capacity region.

I. INTRODUCTION

The physical layer security (PLS) was first investigated by Wyner in his landmark paper on the degraded wiretap

channel [1]. Wyner’s degraded wiretap channel model consists of one transmitter and two receivers (a legitimate

receiver and an eavesdropper). The transmitter sends a private message to the legitimate receiver via a discrete

memoryless main channel, and an eavesdropper eavesdrops the output of the main channel via another discrete

memoryless wiretap channel. We say that the perfect secrecy is achieved if no information about the private
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message is leaked to the eavesdropper. The secrecy capacity Cs, which is the maximum reliable transmission rate

with perfect secrecy constraint, was characterized by Wyner [1], and it is given by

Cs = max
p(x)

(I(X;Y )− I(X;Z)), (1.1)

where X , Y and Z are the input of the main channel, output of the main channel and output of the wiretap channel,

respectively, and they satisfy the Markov chain X → Y → Z. Here note that (1.1) holds under the degradedness

assumption X → Y → Z, and the secrecy capacity of the general wiretap channel (the wiretap channel without the

degradedness assumption) was determined by Csiszár and Körner [2]. The work of [1] and [2] lays a foundation

for the PLS of the practical communication systems.

Since Wozencraft et al. [3] showed that the time-variant noisy two-way channels can be used to provide noiseless

feedback, whether this noiseless feedback helps to enhance the capacities of various communication channels

motivates the researchers to study the channels with noiseless feedback. Shannon first proved that the noiseless

feedback does not increase the capacity of a point-to-point discrete memoryless channel (DMC) [4]. After that,

Cover et al. [5], [6] and Bross et al. [7] showed that the capacity regions of several multi-user channels, such as

multiple-access channel (MAC) and relay channel, can be enhanced by feeding back the receiver’s channel output

to the transmitter over a noiseless channel. Then, it is natural to ask: does the noiseless feedback from the legitimate

receiver to the transmitter also help to enhance the secrecy capacity of the wiretap channel? Ahlswede and Cai [8]

answered this question by considering the wiretap channel with noiseless feedback. Since the noiseless feedback

is known by the legitimate receiver and the transmitter, and it is not available for the eavesdropper, Ahlswede

and Cai pointed out that the noiseless feedback can be used to generate a secret key shared only between the

transmitter and the legitimate receiver, and we can use this key to encrypt the transmitted messages. Combining

the idea of generating a secret key from the noiseless feedback with Wyner’s random binning technique used in

the achievability proof of (1.1), Ahlswede and Cai showed that the secrecy capacity Csf of the degraded wiretap

channel with noiseless feedback is given by

Csf = max
p(x)

min{I(X;Y ), I(X;Y )− I(X;Z) +H(Y |X,Z)}, (1.2)

where X , Y and Z are defined the same as those in (1.1), and X → Y → Z forms a Markov chain. Comparing

(1.2) with (1.1), it is easy to see that the noiseless feedback increases the secrecy capacity of the degraded wiretap

channel. Other related works on the wiretap channel with noiseless feedback are in [9]-[11].

In recent years, the PLS in the up-link of wireless communication system receives a lot attention, see [12]-[16].

These work extends Wyner’s wiretap channel to a multiple access situation: the multiple-access wiretap channel

(MAC-WT). Bounds on the secrecy capacity region of MAC-WT are provided in [12]-[16]. In order to investigate

whether the noiseless feedback from the legitimate receiver to the transmitters helps to enhance the secrecy capacity

region of the MAC-WT, in this paper, we study the MAC-WT with noiseless feedback, see Figure 1. We first present

a DF inner bound on the secrecy capacity region of the model of Figure 1, and this bound is constructed by using

the DF strategy of the MAC-WT with noisy feedback [17], where each transmitter of the MAC decodes the other
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one’s transmitted message from the noisy feedback and then uses it to re-encode his own messages. Second, note

that the noiseless feedback can not only be used to re-encode the messages of the transmitters, but also be used

to generate secret keys to encrypt the transmitted messages, thus we present a hybrid inner bound on the secrecy

capacity region of the model of Figure 1 by combining Ahlswede and Cai’s idea of generating a secret key from

the noiseless feedback [8] with the DF strategy used in [17], and we show that this hybrid inner bound is strictly

larger than the DF inner bound. Third, we present a sato-type outer bound on the secrecy capacity region of the

model of Figure 1. Finally, the results of this paper are further explained via a Gaussian example.

The rest of this paper is organized as follows. In Section II, we show the definitions, notations and the main

results of the model of Figure 1. An Gaussian example of the model of Figure 1 is provided in Section III. Final

conclusions are presented in Section IV.

Fig. 1: The multiple-access wiretap channel with noiseless feedback

II. MODEL DESCRIPTION AND THE MAIN RESULT

Basic notations: We use the notation pV (v) to denote the probability mass function Pr{V = v}, where V (capital

letter) denotes the random variable, v (lower case letter) denotes the real value of the random variable V . Denote

the alphabet in which the random variable V takes values by V (calligraphic letter). Similarly, let UN be a random

vector (U1, ..., UN ), and uN be a vector value (u1, ..., uN ). In the rest of this paper, the log function is taken to

the base 2.

Definitions of the model of Figure 1:

Let W1, uniformly distributed over the finite alphabetW1 = {1, 2, ...,M1}, be the message sent by the transmitter

1. Similarly, let W2, uniformly distributed over the finite alphabet W2 = {1, 2, ...,M2}, be the message sent by the

transmitter 2.

The inputs of the channel are xN1 and xN2 , while the outputs are yN and zN . The channel is discrete memoryless,

i.e., at the i-th time, the channel outputs Yi and Zi depend only on X1,i and X2,i, and thus we have

PY N ,ZN |XN
1 ,X

N
2

(yN , zN |xN1 , xN2 )

=

N∏
i=1

PY,Z|X1,X2
(yi, zi|x1,i, x2,i). (2.1)
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Since yN can be fed back to the transmitters via a noiseless feedback channel, at the i-th time, the channel input

Xj,i (j = 1, 2) is given by

Xj,i =

 fj,i(Wj), i = 1

fj,i(Wj , Y
i−1), 2 ≤ i ≤ N.

(2.2)

Here note that the i-th time channel encoder fj,i (j = 1, 2) is a stochastic encoder, and the transmission rates of

the messages W1 and W2 are logM1

N and logM2

N , respectively.

The decoder is a mapping ψ : YN →W1 ×W2, with input Y N and outputs Ŵ1, Ŵ2. The average probability

of error Pe is denoted by

Pe =
1

M1M2

M1∑
i=1

M2∑
j=1

Pr{ψ(yN ) 6= (i, j)|(i, j) sent}. (2.3)

The eavesdropper’s equivocation to the messages W1 and W2 is defined as

∆ =
1

N
H(W1,W2|ZN ). (2.4)

A positive rate pair (R1, R2) is called achievable with weak secrecy if, for any small positive ε, there exists an

(M1,M2, N, Pe) code such that

logM1

N
≥ R1 − ε,

logM2

N
≥ R2 − ε,∆ ≥ R1 +R2 − ε, Pe ≤ ε. (2.5)

Here we note that ∆ ≥ R1 + R2 − ε also ensures 1
NH(Wt|ZN ) ≥ Rt − ε for t = 1, 2, and the proof is in [17,

p. 609]. The secrecy capacity region Cs of the model of Figure 1 is a set composed of all rate pairs (R1, R2)

satisfying (2.5). The following Theorem 1 and Theorem 2 show two inner bounds on Cs, and Theorem 3 shows an

outer bound on Cs.

Theorem 1: For the discrete memoryless MAC-WT with noiseless feedback, an inner bound CDFs on the secrecy

capacity region Cs is given by

CDFs = {(R1 ≥ 0, R2 ≥ 0) : R1 ≤ I(X1;Y |X2, U)

R2 ≤ I(X2;Y |X1, U)

R1 +R2 ≤ min{I(X1, X2;Y ), I(X1;Y |X2, U) + I(X2;Y |X1, U)} − I(X1, X2;Z)},

for some distribution

PZ,Y |X1,X2
(z, y|x1, x2) · PX1|U (x1|u) · PX2|U (x2|u) · PU (u). (2.6)

Proof:

In the MAC-WT with noisy feedback [17], the legitimate receiver’s channel output Y is sent to the transmitters

via two noisy feedback channels, and the outputs of the noisy feedback channel are Y1 and Y2. Substituting

Y1 = Y2 = Y (which implies the feedback channel is noiseless) into [17, Theorem 2], the DF inner bound CDFs
for the model of Figure 1 is obtained, and the proof of CDFs is along the lines of that of [17, Theorem 2] (the full

DF inner bound on the secrecy capacity region of the MAC-WT with noisy feedback), and thus we omit the proof

here.
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Remark 1: In [17, Theorem 1], Tang et al. also provide a partial DF inner bound on the secrecy capacity region

of the MAC-WT with noisy feedback. Substituting Y1 = Y2 = Y into [17, Theorem 1], and using Fourier-Motzkin

elimination (see, e.g., [18]) to eliminate R10, R12, R20 and R21, it is not difficult to show that the partial DF inner

bound CPDFs of the model of Figure 1 is exactly the same as the DF inner bound CDFs shown in Theorem 1.

Theorem 2: For the discrete memoryless MAC-WT with noiseless feedback, an inner bound Cins on the secrecy

capacity region Cs is given by

Cins = {(R1 ≥ 0, R2 ≥ 0) : R1 ≤ I(X1;Y |X2, U)

R2 ≤ I(X2;Y |X1, U)

R1 +R2 ≤ min{I(X1, X2;Y ), I(X1;Y |X2, U)

+I(X2;Y |X1, U)} − I(X1, X2;Z)

+ min{I(X1, X2;Z), H(Y |Z,X1, X2)}},

for some distribution satisfying (2.7).

Proof:

The hybrid inner bound Cins is constructed by combining Ahlswede and Cai’s idea of generating a secret key

from the noiseless feedback [8] with the DF strategy used in [17, Theorem 2], and it is achieved by the following

key steps:

• For the transmitter 1, split the transmitted message W1 into W1,0 and W1,1, and let W ∗1 be a dummy message

randomly generated by the transmitter 1, and it is used to confuse the eavesdropper. Analogously, for the

transmitter 2, split the transmitted message W2 into W2,0 and W2,1, and let W ∗2 be a dummy message randomly

generated by the transmitter 2, and it is used to confuse the eavesdropper.

• The messages W1 and W2 are transmitted through n blocks, and in block i (2 ≤ i ≤ n), when each transmitter

receives the noiseless feedback, he tries to decode the other transmitter’s message (including the transmitted

message and the dummy message) and uses it to re-encode his own message. In addition, the noiseless feedback

is used to generate a pair of secret keys (K∗1 ,K
∗
2 ), and K∗j (j = 1, 2) is used to encrypt the sub-message Wj,1.

• Comparing the above code construction of Cins with that of CDFs , the encoding and decoding schemes of these

two bounds are almost the same, except that the sub-message Wj,1 (j = 1, 2) is encrypted by a secret key K∗j .

Thus the secrecy sum rate R1 +R2 is bounded by two part: the first part is the upper bound on the sum rate

of CDFs , and the second part is the upper bound on the rate of the secret keys K∗1 and K∗2 . Using the balanced

coloring lemma introduced by Ahlswede and Cai [8], we conclude that the rate of the secret keys K∗1 and K∗2

is bounded by min{H(Y |X1, X2, Z), I(X1, X2;Z)}. Thus, the hybrid inner bound Cins is obtained.

The details of the proof are in Appendix A.

Remark 2: Comparing the DF inner bound CDFs and the partial DF inner bound CPDFs with our hybrid new

inner bound Cins , it is easy to see that our new inner bound Cins is strictly larger than CDFs and CPDFs .
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Theorem 3: For the discrete memoryless MAC-WT with noiseless feedback, an outer bound Couts on the secrecy

capacity region Cs is given by

Couts = {(R1 ≥ 0, R2 ≥ 0) : R1 +R2 ≤ H(Y |Z)},

for some distribution

PZ,Y |X1,X2
(z, y|x1, x2) · PX1X2

(x1, x2). (2.7)

Proof: The outer bound Couts is a simple sato-type outer bound, and the proof is in Appendix B.

III. GAUSSIAN EXAMPLE

A. Capacity Results on the Gaussian MAC-WT with Noiseless Feedback

For the Gaussian case of the model of Figure 1, the channel inputs and outputs satisfy

Y = X1 +X2 +N1 Z = X1 +X2 +N2, (3.1)

where the channel noises N1 and N2 are independent and Gaussian distributed, i.e., N1 ∼ N (0, σ2
1), and N2 ∼

N (0, σ2
2). The average power constraint of the transmitted signal Xj (j = 1, 2) is given by

1

N

N∑
i=1

E[X2
ji] ≤ Pj , j = 1, 2. (3.2)

The DF and partial DF inner bounds on the secrecy capacity region for the Gaussian case of the model of

Figure 1:

Theorem 4: The DF inner bound Cgdfs and the partial DF inner bound Cgpdfs for the Gaussian case of the model

of Figure 1 are given by

Cgdfs = Cgpdfs = {(R1 ≥ 0, R2 ≥ 0) : R1 ≤
1

2
log(1 +

P1

σ2
1

),

R2 ≤
1

2
log(1 +

P2

σ2
1

),

R1 +R2 ≤
1

2
log(1 +

P1 + P2

σ2
1

)− 1

2
log(1 +

P1 + P2

σ2
2

)}. (3.3)

Proof: In Remark 1, we have shown that for the model of Figure 1, the DF inner bound is the same as the

partial DF inner bound. Along the lines of [17, pp. 610-611], we have

Cgdfs = Cgpdfs = {(R1 ≥ 0, R2 ≥ 0) : R1 ≤
1

2
log(1 +

P1

σ2
1

),

R2 ≤
1

2
log(1 +

P2

σ2
1

),

R1 +R2 ≤ min{1

2
log(1 +

P1 + P2

σ2
1

),
1

2
log(1 +

P1

σ2
1

) +
1

2
log(1 +

P2

σ2
1

)}

−1

2
log(1 +

P1 + P2

σ2
2

)}. (3.4)

Note that in (3.4), 1
2 log(1 + P1+P2

σ2
1

) ≤ 1
2 log(1 + P1

σ2
1
) + 1

2 log(1 + P2

σ2
1
), and thus (3.3) is obtained. The proof is

completed.
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The hybrid inner bound on the secrecy capacity region for the Gaussian case of the model of Figure 1:

Theorem 5: The hybrid inner bound Cgis for the Gaussian case of the model of Figure 1 is given by

Cgis = {(R1 ≥ 0, R2 ≥ 0) : R1 ≤
1

2
log(1 +

P1

σ2
1

),

R2 ≤
1

2
log(1 +

P2

σ2
1

),

R1 +R2 ≤
1

2
log(1 +

P1 + P2

σ2
1

)− 1

2
log(1 +

P1 + P2

σ2
2

)

+ min{1

2
log(2πeσ2

1),
1

2
log(1 +

P1 + P2

σ2
2

)}}. (3.5)

Proof: Similar to the corresponding proof in [17, pp. 610-611], substituting X1 =
√

(1− α)P1U +
√
αP1U1

(0 ≤ α ≤ 1) and X2 =
√

(1− β)P2U +
√
βP2U2 (0 ≤ β ≤ 1) into (3.1), and using the fact that U , U1

and U2 are independent and Gaussian distributed with zero mean and unit variance, and 1
2 log(1 + P1+P2

σ2
1

) ≤
1
2 log(1 + P1

σ2
1
) + 1

2 log(1 + P2

σ2
1
), (3.5) is directly obtained. Here note that (3.5) is achieved when α = 1 and β = 1.

The proof is completed.

The outer bound on the secrecy capacity region for the Gaussian case of the model of Figure 1:

Theorem 6: For the case that σ2
1 ≥ σ2

2 , the outer bound Cgos for the Gaussian case of the model of Figure 1 is

given by

Cgos = {(R1 ≥ 0, R2 ≥ 0) : R1 +R2 ≤
1

2
log(2πe(σ2

1 − σ2
2))}. (3.6)

For the case that σ2
1 ≤ σ2

2 , the outer bound Cgos is given by

Cgos = {(R1 ≥ 0, R2 ≥ 0) : R1 +R2 ≤
1

2
log(2πe(σ2

2 − σ2
1)) +

1

2
log

P1 + P2 + σ2
1

P1 + P2 + σ2
2

}. (3.7)

Proof:

• For the case that σ2
1 ≥ σ2

2 , (3.1) can be re-written as

Y = X1 +X2 +N2 +N1 −N2 Z = X1 +X2 +N2. (3.8)

Substituting (3.8) into Theorem 3, we have

R1 +R2 ≤ h(Y |Z) = h(X1 +X2 +N2 +N1 −N2|X1 +X2 +N2)

= h(N1 −N2|X1 +X2 +N2) ≤ h(N1 −N2) =
1

2
log(2πe(σ2

1 − σ2
2)). (3.9)

• For the case that σ2
1 ≤ σ2

2 , (3.1) can be re-written as

Y = X1 +X2 +N1 Z = X1 +X2 +N1 +N2 −N1. (3.10)
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Substituting (3.10) into Theorem 3, we have

R1 +R2 ≤ h(Y |Z) = h(Y,Z)− h(Z) = h(Z|Y ) + h(Y )− h(Z)

= h(X1 +X2 +N1 +N2 −N1|X1 +X2 +N1) + h(Y )− h(Y +N2 −N1)

= h(N2 −N1|X1 +X2 +N1) + h(Y )− h(Y +N2 −N1)

≤ h(N2 −N1) + h(Y )− h(Y +N2 −N1)

(a)

≤ h(N2 −N1) + h(Y )− 1

2
log(22h(Y ) + 22h(N2−N1))

(b)

≤ h(N2 −N1) +
1

2
log(2πe(P1 + P2 + σ2

1))− 1

2
log(2πe(P1 + P2 + σ2

1) + 2πe(σ2
2 − σ2

1))

=
1

2
log(2πe(σ2

2 − σ2
1)) +

1

2
log(2πe(P1 + P2 + σ2

1))− 1

2
log(2πe(P1 + P2 + σ2

1) + 2πe(σ2
2 − σ2

1))

=
1

2
log(2πe(σ2

2 − σ2
1)) +

1

2
log

P1 + P2 + σ2
1

P1 + P2 + σ2
2

, (3.11)

where (a) is from the entropy power inequality, i.e., 22h(Y+N2−N1) ≥ 22h(Y )+22h(N2−N1), and (b) is from the

fact that h(Y )− 1
2 log(22h(Y )+22h(N2−N1)) is increasing while h(Y ) is increasing, h(Y ) = h(X1+X2+N1) ≤

1
2 log(2πe(P1 + P2 + σ2

1)) and h(N2 −N1) = 1
2 log(2πe(σ2

2 − σ2
1)).

The proof is completed.

Finally, recall that Tekin and Yener [12] have shown that for the Gaussian MAC-WT without feedback, an inner

bound Cgmac−wts is given by

Cgmac−wts = {(R1 ≥ 0, R2 ≥ 0) : R1 ≤
1

2
log(1 +

P1

σ2
1

)− 1

2
log(1 +

P1

σ2
2 + P2

),

R2 ≤
1

2
log(1 +

P2

σ2
1

)− 1

2
log(1 +

P2

σ2
2 + P1

),

R1 +R2 ≤
1

2
log(1 +

P1 + P2

σ2
1

)− 1

2
log(1 +

P1 + P2

σ2
2

)}. (3.12)

For the case that σ2
1 ≤ σ2

2 , the following Figure 2 shows the inner bound Cgis , the partial (Cgpdfs ) and full (Cgdfs )

DF inner bounds for the Gaussian case of Figure 1, the outer bound Cgos and Tekin-Yener’s inner bound Cgmac−wts

of the Gaussian MAC-WT [12] for P1 = P2 = 1, σ2
1 = 1 and σ2

2 = 10. From Figure 2, it is easy to see that

our new inner bound Cgis is larger than the DF inner bounds Cgpdfs and Cgdfs , and the noiseless feedback helps to

enhance the secrecy rate region Cgmac−wts of the Gaussian MAC-WT.

For the case that σ2
1 ≥ σ2

2 , the DF bounds Cgpdfs , Cgdfs and Tekin-Yener’s inner bound Cgmac−wts reduce to

the point (R1 = 0, R2 = 0). The following Figure 3 shows the inner bound Cgis and the outer bound Cgos for

P1 = P2 = 10, σ2
1 = 5, σ2

2 = 2. It is easy to see that when σ2
1 ≥ σ2

2 , our hybrid inner bound still provides positive

secrecy rates, while there is no positive secrecy rate in the partial and full DF inner bounds.

B. Power Control for the Maximum Secrecy Sum Rate of Cgis

In this subsection, we assume that the average power constraints of the transmitters satisfy

0 ≤ P1, P2 ≤ P, (3.13)
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Fig. 2: The bounds Cgis , Cgpdfs , Cgdfs , Cgos , and Cgmac−wts for P1 = P2 = 1, σ2
1 = 1, σ2

2 = 10

and define the maximum secrecy sum rate R∗sum of Cgis as

R∗sum = max
P1,P2

1

2
log(1 +

P1 + P2

σ2
1

)− 1

2
log(1 +

P1 + P2

σ2
2

)

+ min{1

2
log(2πeσ2

1),
1

2
log(1 +

P1 + P2

σ2
2

)}. (3.14)

In the remainder of this subsection, we calculate the maximum secrecy sum rate R∗sum of Cgis , and show the

optimum power control (the optimum of P1 and P2 is denoted by P ∗1 and P ∗2 , respectively) for R∗sum.

Theorem 7: If σ2
1 > σ2

2 , the maximum secrecy sum rate R∗sum of Cgis is given by

R∗sum =


1
2 log(1 + 2P

σ2
1

), 0 ≤ P ≤ (2πeσ2
1−1)σ

2
2

2

1
2 log(1 +

(2πeσ2
1−1)σ

2
2

σ2
1

), P ≥ (2πeσ2
1−1)σ

2
2

2 ,
(3.15)

and the optimum power control is given by

(P ∗1 , P
∗
2 ) =

 (P, P ), 0 ≤ P ≤ (2πeσ2
1−1)σ

2
2

2

(
(2πeσ2

1−1)σ
2
2

2 ,
(2πeσ2

1−1)σ
2
2

2 ), P ≥ (2πeσ2
1−1)σ

2
2

2 .
(3.16)

If σ2
1 ≤ σ2

2 , the maximum secrecy sum rate R∗sum of Cgis is given by

R∗sum =


1
2 log(1 + 2P

σ2
1

), 0 ≤ P ≤ (2πeσ2
1−1)σ

2
2

2

1
2 log(2πeσ2

1) + 1
2 log(1 + 2P

σ2
1

)− 1
2 log(1 + 2P

σ2
2

), P ≥ (2πeσ2
1−1)σ

2
2

2 ,
(3.17)

and the optimum power control is given by

(P ∗1 , P
∗
2 ) =

 (P, P ), 0 ≤ P ≤ (2πeσ2
1−1)σ

2
2

2

(P, P ), P ≥ (2πeσ2
1−1)σ

2
2

2 .
(3.18)
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Fig. 3: The bounds Cgis and Cgos for P1 = P2 = 10, σ2
1 = 5, σ2

2 = 2

Proof: From Theorem 5, it is easy to see that the secrecy sum rate Rsum of Cgis is given by

Rsum =
1

2
log(1 +

P1 + P2

σ2
1

)− 1

2
log(1 +

P1 + P2

σ2
2

) + min{1

2
log(2πeσ2

1),
1

2
log(1 +

P1 + P2

σ2
2

)},(3.19)

and (3.19) can be re-written as

Rsum =


1
2 log(1 + P1+P2

σ2
1

), 0 ≤ P1 + P2 ≤ (2πeσ2
1 − 1)σ2

2

1
2 log(1 + P1+P2

σ2
1

)− 1
2 log(1 + P1+P2

σ2
2

) + 1
2 log(2πeσ2

1), P1 + P2 > (2πeσ2
1 − 1)σ2

2 .
(3.20)

Since 0 ≤ P1 + P2 ≤ 2P , the secrecy sum rate Rsum in (3.20) can be considered into the following three cases:

• (Case 1:) If 0 ≤ P ≤ (2πeσ2
1−1)σ

2
2

2 , it is easy to see that Rsum is increasing while P1 and P2 are increasing,

and thus we have R∗sum = 1
2 log(1 + 2P

σ2
1

), and the corresponding optimum P ∗1 and P ∗2 equal to P .

• (Case 2:) If P >
(2πeσ2

1−1)σ
2
2

2 and σ2
1 ≤ σ2

2 , (3.20) is re-written as

Rsum =


1
2 log(1 + P1+P2

σ2
1

), 0 ≤ P1 + P2 ≤ (2πeσ2
1 − 1)σ2

2

1
2 log(1 + P1+P2

σ2
1

)− 1
2 log(1 + P1+P2

σ2
2

) + 1
2 log(2πeσ2

1), (2πeσ2
1 − 1)σ2

2 < P1 + P2 ≤ 2P.

(3.21)

It is not difficult to show that for this case, R∗sum = 1
2 log(1 + 2P

σ2
1

)− 1
2 log(1 + 2P

σ2
2

) + 1
2 log(2πeσ2

1), and the

corresponding optimum P ∗1 and P ∗2 equal to P .

• (Case 3:) If P >
(2πeσ2

1−1)σ
2
2

2 and σ2
1 > σ2

2 , it is not difficult to show that for this case, R∗sum = 1
2 log(1 +

(2πeσ2
1−1)σ

2
2

σ2
1

), and the corresponding optimum P ∗1 and P ∗2 equal to (2πeσ2
1−1)σ

2
2

2 .

Combining the above three cases, Theorem 7 is obtained, and the proof is completed.
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The following Figure 4 and Figure 5 show the maximum secrecy sum rate R∗sum and the corresponding optimum

power control for σ2
1 > σ2

2 and σ2
1 ≤ σ2

2 , respectively. It is easy to see that for both cases, R∗sum tends to a constant

while P tends to infinity.

Fig. 4: The maximum secrecy sum rate R∗sum and the corresponding optimum power control for σ2
1 = 5 and σ2

2 = 2

IV. CONCLUSIONS

In this paper, we present two inner bounds and one outer bound on the secrecy capacity region of the MAC-WT

with noiseless feedback. To be specific, the first inner bound is constructed by using the DF strategy, where each

transmitter decodes the other one’s transmitted message from the noiseless feedback and then uses the decoded

message to re-encode his own messages. The second inner bound is constructed by combining Ahlswede and Cai’s

idea of generating a secret key from the noiseless feedback [8] with the DF strategy used in the first inner bound.

The outer bound is a simple sato-type bound. We show that the second inner bound is strictly larger than the first

one, and the capacity results are further explained via a Gaussian example.

ACKNOWLEDGEMENT

This work was supported by the National Natural Science Foundation of China under Grants 61671391, 61301121

and 61571373, the fundamental research funds for the Central universities (No. 2682016ZDPY06), and the Open

Research Fund of the State Key Laboratory of Integrated Services Networks, Xidian University (No. ISN17-13).



12

Fig. 5: The maximum secrecy sum rate R∗sum and the corresponding optimum power control for σ2
1 = 1 and

σ2
2 = 10

APPENDIX A

PROOF OF THEOREM 2

The messages W1 = (W1,1, ...,W1,n) and W2 = (W2,1, ...,W2,n) are transmitted through n blocks. In block

i (1 ≤ i ≤ n), the transmitted message wj,i (j = 1, 2) is denoted by wj,i = (wj,i,0, wj,i,1), where wj,i,0 ∈

{1, 2, ..., 2NRj0}, wj,i,1 ∈ {1, 2, ..., 2NRj1}, wj,i ∈ {1, 2, ..., 2NRj} and Rj = Rj0 +Rj1. Here note that in block 1,

the transmitted message wj,1 = (wj,1,0, const) (j = 1, 2), which implies that the sub-message wj,1,1 is a constant.

For block i (1 ≤ i ≤ n), let w∗1,i and w∗2,i be the randomly generated dummy messages for transmitters 1 and 2,

respectively. Here w∗j,i ∈ {1, 2, ..., 2NR
∗
j } (j = 1, 2).

For 1 ≤ i ≤ n, let X̃j,i (j = 1, 2), Ũi, Ỹi and Z̃i be the random vectors with length N for block i. The

specific values of the above random vectors are denoted by lower case letters. Moreover, let Xn
j = (X̃j,1, ..., X̃j,n),

Un = (Ũ1, ..., Ũn), Y n = (Ỹ1, ..., Ỹn) and Zn = (Z̃1, ..., Z̃n).

Construction of the code-books: In each block i (1 ≤ i ≤ n), for a fixed joint probability PZ,Y |X1,X2
(z, y|x1, x2)

PX1|U (x1|u)PX2|U (x2|u)PU (u), randomly generate 2N(R10+R11+R
∗
1+R20+R21+R

∗
2) i.i.d. sequences ũi according to

PU (u), and index these sequences as ũi(w
′

0,i), where 1 ≤ w′0,i ≤ 2N(R10+R11+R
∗
1+R20+R21+R

∗
2).

For each w
′

0,i, randomly generate 2N(Rj0+Rj1+R
∗
j ) (j = 1, 2) i.i.d. sequences x̃j,i according to PXj |U (xj |u), and

index these sequences as x̃j,i(w
′

j,i), where 1 ≤ w′j,i ≤ 2N(Rj0+Rj1+R
∗
j ).

Encoding scheme: In block 1, both the transmitters choose w
′

0,1 = 1 as the index of the transmitted ũ1, and send

ũ1(1). Furthermore, the transmitter j (j = 1, 2) chooses w
′

j,1 = (wj,1,0, wj,1,1 = const, w∗j,1) as the index of the
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transmitted codeword x̃j,1.

In block i (2 ≤ i ≤ n), suppose that transmitter 1 has already obtained w
′

0,i−1 and w
′

1,i−1 = (w1,i−1,0, w1,i−1,1, w
∗
1,i−1).

Since the transmitter 1 receives the feedback ỹi−1, he tries to find a unique sequence x̃2,i−1(w̌
′

2,i−1, w
′

0,i−1) such

that (x̃2,i−1(w̌
′

2,i−1, w
′

0,i−1), x̃1,i−1(w
′

1,i−1, w
′

0,i−1), ũi−1(w
′

0,i−1),

ỹi−1) are jointly typical sequences. From AEP, it is easy to see that the error probability Pr{w̌′2,i−1 6= w
′

2,i−1}

goes to 0 if

R20 +R21 +R∗2 ≤ I(X2;Y |X1, U). (A1)

Thus in block i, the transmitter 1 sends ũi with the index w
′

0,i = (w
′

1,i−1, w̌
′

2,i−1).

Analogously, since the transmitter 2 receives the feedback ỹi−1, he tries to find a unique sequence x̃1,i−1(w̃
′

1,i−1, w
′

0,i−1)

such that (x̃1,i−1(w̃
′

1,i−1, w
′

0,i−1), x̃2,i−1(w
′

2,i−1, w
′

0,i−1), ũi−1(w
′

0,i−1),

ỹi−1) are jointly typical sequences. From AEP, it is easy to see that the error probability Pr{w̃′1,i−1 6= w
′

1,i−1}

goes to 0 if

R10 +R11 +R∗1 ≤ I(X1;Y |X2, U). (A2)

Thus in block i, the transmitter 2 sends ũi with the index w
′

0,i = (w̃
′

1,i−1, w
′

2,i−1).

In block i (2 ≤ i ≤ n), before choosing the transmitted codewords x̃1,i and x̃2,i, we generate a mapping

gi : ỹi−1 → {1, 2, ..., 2N(R11+R21)}. Furthermore, we define K∗i = (K∗i,1,K
∗
i,2) = gi(Ỹi−1) as a random variable

uniformly distributed over {1, 2, ..., 2N(R11+R21)}, and it is independent of X̃1,i, X̃2,i, Ỹi, Z̃i, W1,i, W2,i, W ∗1,i

and W ∗2,i. Here note that K∗i,j (j = 1, 2) is used as a secret key shared by the transmitter j and the receiver,

and k∗i,j ∈ {1, 2, ..., 2NRj1} is a specific value of K∗i,j . Reveal the mapping gi to the transmitters, receiver and

the eavesdropper. After the generation of the secret key, the transmitter j (j = 1, 2) sends x̃j,i with the index

w
′

j,i = (wj,i,0, wj,i,1 ⊕ k∗i,j , w∗j,i).

Decoding scheme for the receiver: The intended receiver does backward decoding after the transmission of all

n blocks is completed, and the receiver’s decoding scheme is exactly the same as that of the classical MAC with

feedback [5, pp. 295-296]. Following similar steps of error probability analysis for MAC with feedback [5, pp.

295-296], we have

R10 +R11 +R∗1 +R20 +R21 +R∗2 ≤ I(X1, X2;Y ). (A3)

Equivocation analysis (1): For block 2 ≤ i ≤ n, a lower bound on H(K∗i |X̃1,i−1, X̃2,i−1, Z̃i−1): Given X̃1,i−1,

X̃2,i−1 and Z̃i−1, the eavesdropper’s equivocation about the secret key k∗i can be bounded by Ahlswede and Cai’s

balanced coloring lemma [8, p. 260], see the followings.

Lemma 1: (Balanced coloring lemma) For arbitrary ε, δ > 0, sufficiently large N , all N -type PX1X2Y (x1, x2, y)

and all x̃1,i−1, x̃2,i−1 ∈ TNX1X2
(2 ≤ i ≤ n), there exists a γ- coloring c : TNY |X1,X2

(x̃1,i−1, x̃2,i−1) → {1, 2, .., γ}

of TNY |X1,X2
(x̃1,i−1, x̃2,i−1) such that for all joint N -type PX1X2Y Z(x1, x2, y, z) with marginal distribution



14

PX1X2Z(x1, x2, z) and
|TN

Y |X1,X2,Z(x̃1,i−1,x̃2,i−1,z̃i−1)|
γ ≥ 2Nε, x̃1,i−1, x̃2,i−1, z̃i−1 ∈ TX1X2Z ,

|c−1(k)| ≤
|TNY |X1,X2,Z

(x̃1,i−1, x̃2,i−1, z̃i−1)|(1 + δ)

γ
, (A4)

for k = 1, 2, ..., γ, where c−1 is the inverse image of c.

From Lemma 1, we see that the typical set TNY |X1,X2,Z
(x̃1,i−1, x̃2,i−1, z̃i−1) maps into at least

|TNY |X1,X2,Z
(x̃1,i−1, x̃2,i−1, z̃i−1))|

|TN
Y |X1,X2,Z

(x̃1,i−1,x̃2,i−1,z̃i−1)|(1+δ)
γ

=
γ

1 + δ
(A5)

colors. On the other hand, the typical set TNY |X1,X2,Z
(x̃1,i−1, x̃2,i−1, z̃i−1) maps into at most γ colors. From (A5),

we can conclude that

H(K∗i |X̃1,i−1, X̃2,i−1, Z̃i−1) ≥ log
γ

1 + δ
. (A6)

Here note that
|TN

Y |X1,X2,Z(x̃1,i−1,x̃2,i−1,z̃i−1)|
γ ≥ 2Nε implies that γ ≤ |TNY |X1,X2,Z

(x̃1,i−1, x̃2,i−1, z̃i−1)|. Choosing

γ = |TNY |X1,X2,Z
(x̃1,i−1, x̃2,i−1, z̃i−1)| and noticing that

|TNY |X1,X2,Z
(x̃1,i−1, x̃2,i−1, z̃i−1)| ≥ (1− ε1)2N(1−ε2)H(Y |X1,X2,Z), (A7)

where ε1 and ε2 tend to 0 as N tends to infinity, (A6) can be further bounded by

H(K∗i |X̃1,i−1, X̃2,i−1, Z̃i−1) ≥ log
1− ε1
1 + δ

+N(1− ε1)H(Y |X1, X2, Z). (A8)

Equivocation analysis (2): Bound on eavesdropper’s equivocation ∆: For all blocks, the equivocation ∆ is

bounded by

∆ =
1

nN
H(W1,W2|Zn)

(a)
=

1

nN
(H(W

′

1,0,W
′

2,0|Zn)

+H(W
′

1,1,W
′

2,1|Zn,W
′

1,0,W
′

2,0)), (A9)

where (a) is from the definitions W
′

j,0 = (Wj,1,0, ...,Wj,n,0) and W
′

j,1 = (Wj,2,1, ...,Wj,n,1) for j = 1, 2. The

conditional entropy H(W
′

1,0,W
′

2,0|Zn) of (A9) is bounded by

H(W
′

1,0,W
′

2,0|Zn) = H(W
′

1,0,W
′

2,0, Z
n)−H(Zn)

= H(W
′

1,0,W
′

2,0, Z
n, Xn

1 , X
n
2 )−H(Xn

1 , X
n
2 |W

′

1,0,W
′

2,0, Z
n)−H(Zn)

(b)
= H(Zn|Xn

1 , X
n
2 ) +H(Xn

1 , X
n
2 )−H(Xn

1 , X
n
2 |W

′

1,0,W
′

2,0, Z
n)−H(Zn)

(c)
= nN(R10 +R11 +R∗1 +R20 +R21 +R∗2)− nNI(X1, X2;Z)−H(Xn

1 , X
n
2 |W

′

1,0,W
′

2,0, Z
n)

(d)

≥ nN(R10 +R11 +R∗1 +R20 +R21 +R∗2)− nNI(X1, X2;Z)− nNε3, (A10)

where (b) is from H(W
′

1,0|Xn
1 ) = 0 and H(W

′

2,0|Xn
2 ) = 0, (c) is from the code constructions of Xn

1 , Xn
2 and the

fact that the channel is memoryless, and (d) is from the fact that given w
′

1,0, w
′

2,0 and zn, the eavesdropper tries to

find unique w
′

1,1, w
′

2,1, w∗1 = (w∗1,1, ..., w
∗
1,n) and w∗2 = (w∗2,1, ..., w

∗
2,n) such that (xn1 , x

n
2 , z

n) are jointly typical,

and from the properties of AEP, we see that the eavesdropper’s decoding error probability tends to 0 if

R1,1 +R2,1 +R∗1 +R∗2 ≤ I(X1, X2;Z), (A11)
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then by using Fano’s inequality, we have 1
nNH(Xn

1 , X
n
2 |W

′

1,0,W
′

2,0, Z
n) ≤ ε3, where ε3 → 0 as n,N → ∞.

Moreover, the conditional entropy H(W
′

1,1,W
′

2,1|Zn,W
′

1,0,W
′

2,0) of (A9) is bounded by

H(W
′

1,1,W
′

2,1|Zn,W
′

1,0,W
′

2,0)

≥
n∑
i=2

H(W1,i,1,W2,i,1|Zn,W
′

1,0,W
′

2,0,W1,1,1,W2,1,1,

...,W1,i−1,1,W2,i−1,1,W1,i,1 ⊕K∗i,1,W2,i,1 ⊕K∗i,2)

(e)
=

n∑
i=2

H(W1,i,1,W2,i,1|Z̃i−1,W1,i,1 ⊕K∗i,1,W2,i,1 ⊕K∗i,2)

≥
n∑
i=2

H(W1,i,1,W2,i,1|Z̃i−1, X̃1,i−1, X̃2,i−1,W1,i,1 ⊕K∗i,1,W2,i,1 ⊕K∗i,2)

=

n∑
i=2

H(K∗i,1,K
∗
i,2|Z̃i−1, X̃1,i−1, X̃2,i−1,W1,i,1 ⊕K∗i,1,W2,i,1 ⊕K∗i,2)

(f)
=

n∑
i=2

H(K∗i |Z̃i−1, X̃1,i−1, X̃2,i−1)

(g)

≥ (n− 1)(log
1− ε1
1 + δ

+N(1− ε1)H(Y |X1, X2, Z)),

(A12)

where (e) is from the Markov chain (W1,i,1,W2,i,1)→ (Z̃i−1,W1,i,1 ⊕K∗i,1,W2,i,1 ⊕K∗i,2)

→ (W
′

1,0,W
′

2,0,W1,1,1,W2,1,1, ...,W1,i−1,1,W2,i−1,1, Z̃1, ..., Z̃i−2,

Z̃i, ..., Z̃n), (f) is from the definition K∗i = (K∗i,1,K
∗
i,2) and the Markov chain K∗i → (Z̃i−1, X̃1,i−1, X̃2,i−1) →

(W1,i,1 ⊕K∗i,1,W2,i,1 ⊕K∗i,2), and (g) is from (A8).

Substituting (A10) and (A12) into (A9), we have

∆ ≥ R10 +R11 +R∗1 +R20 +R21 +R∗2 − I(X1, X2;Z)− ε3 +
n− 1

nN
log

1− ε1
1 + δ

+
n− 1

n
(1− ε1)H(Y |X1, X2, Z). (A13)

The bound (A13) implies that if

R∗1 +R∗2 ≥ I(X1, X2;Z)−H(Y |X1, X2, Z) (A14)

we can prove that ∆ ≥ R10 +R11 +R20 +R21 − ε by choosing sufficiently large n and N .

Finally, applying Fourier-Motzkin elimination (see, e.g., [18]) on (A1), (A2), (A3), (A11) and (A14), Theorem

2 is obtained. The proof of Theorem 2 is completed.

APPENDIX B

PROOF OF THEOREM 3

Note that

R1 +R2 − ε
(1)

≤ H(W1,W2|ZN )

N
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=
1

N
(H(W1,W2|ZN )−H(W1,W2|ZN , Y N ) +H(W1,W2|ZN , Y N ))

(2)

≤ 1

N
(I(W1,W2;Y N |ZN ) + δ(Pe))

≤ 1

N
(H(Y N |ZN ) + δ(Pe))

=
1

N

N∑
i=1

H(Yi|Y i−1, ZN ) +
δ(Pe)

N

≤ 1

N

N∑
i=1

H(Yi|Zi) +
δ(Pe)

N

(3)
=

1

N

N∑
i=1

H(Yi|Zi, J = i) +
δ(Pe)

N

(4)
= H(YJ |ZJ , J) +

δ(Pe)

N
(5)

≤ H(YJ |ZJ) +
δ(ε)

N
(6)
= H(Y |Z) +

δ(ε)

N
, (A15)

where (1) is from (2.5), (2) is from Fano’s inequality, (3) and (4) are from the fact that J is a random variable

(uniformly distributed over {1, 2, ..., N}), and it is independent of Y N , ZN , W1 and W2, (5) is from Pe ≤ ε and

δ(Pe) is increasing while Pe is increasing, and (6) is from the definitions Y , YJ and Z , ZJ . Letting ε → 0,

R1 +R2 ≤ H(Y |Z) is proved. The proof of Theorem 3 is completed.
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