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On the DoF of Two-way 2× 2× 2 Relay Networks

with or without Relay Caching
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Abstract

Two-way relay is potentially an effective approach to spectrum sharing and aggregation by allowing simulta-

neous bidirectional transmissions between source-destinations pairs. This paper studies the two-way 2×2×2 relay

network, a class of four-unicast networks, where there are four source/destination nodes and two relay nodes, with

each source sending a message to its destination. We show that without relay caching the total degrees of freedom

(DoF) is bounded from above by 8/3, indicating that bidirectional links do not double the DoF (It is known that

the total DoF of one–way 2× 2× 2 relay network is 2.). Further, we show that the DoF of 8/3 is achievable for

the two-way 2× 2× 2 relay network with relay caching. Finally, even though the DoF of this network is no more

than 8/3 for generic channel gains, DoF of 4 can be achieved for a symmetric configuration of channel gains.
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I. INTRODUCTION

To meet the demand of future mobile networks, it is important to understand the fundamental capacity

of networks. While characterizing network capacity is in general unsolved, there has been considerable

progress in two research fronts. The first one focuses on single-flow multi-hop networks, in which one

source aims to send the same message to one or more destinations, using multiple relay nodes. Since

in this scenario all destination nodes are interested in the same message, there is effectively only one

information stream in the network. Starting from the max-flow-min-cut theorem of Ford-Fulkerson [1],

there has been significant progress on this problem [2].

The second research direction focuses on multi-flow wireless networks with only one-hop between the

sources and the destinations, i.e., the interference channel. While the capacity of the interference channel

remains unknown, there has been a variety of approximate capacity results, such as constant-gap capacity

approximations [3–5] and degrees of freedom (DoF) characterizations [6–11].

The two-way communication between two users was first studied by Shannon [12]. Recently, there have

been many attempts to demonstrate two-way communications experimentally [13–19]. The two-way relay

channel where two users communicate to each other in the presence of relays, has been widely studied

[20–38]. Two-unicast channels consist of two sources and two destinations communicating through a

general network. The DoF for one-way 2×2×2 fully-connected two-unicast channels has been studied in

[39], and further extended with interfering relays in [40]. These results were further generalized to one-

way 2×2×2 non-layered topology in [41, 42]. General one-way two-unicast channel has been considered

in [43, 44] and it was shown in [44] that the DoF for any topology takes one of the values in {1, 3
2
, 2},

depending on the topology. Two-way two-unicast channels have been studied for a single relay in [45–47].

In [48], three different achievability strategies for two-way MIMO 2× 2× 2 fully-connected channel are

proposed. A finite-field two-way two-unicast model is also studied in [49, 50].

Caching is a technique to reduce traffic load by exploiting the high degree of asynchronous content

reuse and the fact that storage is cheap and ubiquitous in today’s wireless devices [51, 52]. During off-

peak periods when network resources are abundant, some content can be stored at the wireless edge

(e.g., access points or end user devices), so that demands can be met with reduced access latencies and

bandwidth requirements. The caching problem has a long history, dating back to the work by Belady in

1966 [53]. There are various forms of caching, i.e., to store data at user ends, relays, etc. [54]. However,

using the uncoded data on devices can result in an inefficient use of the aggregate cache capacity [55].
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The caching problem consists of a placement phase which is performed offline and an online delivery

phase. One important aspect of this problem is the design of the placement phase in order to facilitate the

delivery phase. There are several recent works that consider communication scenarios where user nodes

have pre-cached information from a fixed library of possible files during the offline phase, in order to

minimize the transmission from source during the delivery phase [56, 57]. There are only a limited number

of works on the DoF with caching. In particular, [58, 59] study the DoF for the relay and interference

channels with caching, respectively, under some assumptions and provide asymptotic results on the DoF

as a function of the output of some optimization problems.

In this paper, we study the two-way 2×2×2 relay network, a class of four-unicast networks, also known

as the two-way layered interference channel in the literature. We consider a general two-way 2 × 2 × 2

relay network where all channel gains are chosen from the same continuous distribution. Even though the

one-way 2× 2× 2 relay network has 2 DoF, we show that the two-way 2× 2× 2 relay network has DoF

less than or equal to 8/3. Thus, the bidirectional links cannot double the DoF. In the analysis of cached

2×2×2 relay network, we show the equivalence of our model to the compound MISO broadcast channel

and use the existing results on the latter to obtain the achievable DoF of the former. Note that this is the

first work relating 2× 2× 2 relay network and compound MISO broadcast channel.

We further propose a caching strategy in relays for the two-way 2 × 2 × 2 relay network based on

prefetching uncoded raw bits and delivering linearly encoded messages to facilitate the transmission from

relays to destinations. We show that with relay caching, the DoF of 8/3 is achievable.

Finally for a special case of two-way 2× 2× 2 relay network where the channels exhibit symmetries,

we show that the DoF is 4. This special case is interesting because (i) This shows that the 2 × 2 × 2

topology allows 4 DoF for some symmetric channel gains while the DoF is outer bounded by 8/3 for

generic channel gains. (ii) The non-invertibility of the symmetric channel matrix plays an important role

in achieving DoF=4, which does not hold for the general channel matrix. (iii) The symmetric channel is

a common model for many results on interference channels [60–63]; and these results can be obtained

only with such symmetric assumptions and the problems remain open otherwise.

The remainder of this paper is organized as follows. In Section II, we give the model for the two-way

2×2×2 relay network. In Section III, the main results on the DoF of the 2×2×2 relay network without

relay caching is studied. The DoF of a symmetric two-way 2 × 2 × 2 relay network is also investigated

in this section. In Section IV, the results on the DoF of the 2× 2× 2 relay network with relay caching
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is presented. Finally, Section V concludes this paper.

II. CHANNEL MODEL AND RELATED WORKS

In this section, we first present our system model and then we discuss some recent related results in

the literature.

A. Channel Model

As shown in Fig. 1, the two-way 2× 2× 2 relay network consists of four transmitters S1, . . . , S4, two

relays R1, R2, and four receivers D1, . . . , D4. Each transmitter Si has one message that is intended for its

receiver Di. Fig. 2 shows the two hops of this system separately. In the first hop (Fig. 2(a)), the signal

received at relay Rk, k ∈ {1, 2} in time slot m is

YRk
[m] =

4∑
i=1

Hi,Rk
[m]Xi[m] + ZRk

[m], (1)

where Hi,Rk
[m] is the channel coefficient from transmitter Si to relay Rk, Xi[m] is the signal transmitted

from Si, YRk
[m] is the signal received at relay Rk and ZRk

[m] is the i.i.d. circularly symmetric complex

Gaussian noise with zero mean and unit variance, i ∈ {1, 2, 3, 4}, k ∈ {1, 2}. In the second hop (Fig.

2(b)), the signal received at receiver Di in time slot m is given by

Yi[m] =
2∑

k=1

HRk,i[m]XRk
[m] + Zi[m], (2)

where HRk,i[m] is the channel coefficient from relay Rk to receiver Di, XRk
[m] is the signal transmitted

from Rk, Yi[m] is the signal received at receiver Di and Zi[m] is the i.i.d. circularly symmetric complex

Gaussian noise with zero mean and unit variance, i ∈ {1, 2, 3, 4}, k ∈ {1, 2}. We assume that the channel

coefficient values are drawn i.i.d. from a continuous distribution and they are bounded from below and

above, i.e., Hmin < |Hi,Rk
[m]| < Hmax and Hmin < |HRk,i[m]| < Hmax as in [6]. The relays are assumed

to be full-duplex and equipped with caches. Furthermore, the relays are assumed to be causal, which

means that the signals transmitted from the relays depend only on the signals received in the past and not

on the current received signals and can be described as

XRk
[m] = f(Y m−1

Rk
, Xm−1

Rk
, CRk

), (3)
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where Xm−1
Rk

, (XRk
[1], . . . , XRk

[m − 1]), Y m−1
Rk

, (YRk
[1], . . . , YRk

[m − 1]), and CRk
is the cached

information in relay Rk. We assume that source Si, i ∈ {1, 2, 3, 4} knows only channels Hi,Rk
, k ∈

{1, 2}; relay Rk, k ∈ {1, 2} knows channels Hi,Rk
, HR1,i and HR2,i, i ∈ {1, 2, 3, 4}; and destination Di,

i ∈ {1, 2, 3, 4} knows only channels HRk,i, k ∈ {1, 2}.

The source Si, i ∈ {1, 2, 3, 4} has a message Wi that is intended for destination Di. |Wi| denotes the size

of the message Wi. The ratesRi =
log |Wi|

n
, i ∈ {1, 2, 3, 4} are achievable during n channel uses by choosing

n large enough, if the probability of error can be arbitrarily small for all four messages simultaneously.

The capacity region C = {(R1,R2,R3,R4)|(R1,R2,R3,R4) ∈ C} represents the set of all achievable

quadruples. The sum-capacity is the maximum sum-rate that is achievable, i.e., CΣ(P ) =
∑4

i=1Rc
i where

(Rc
1,Rc

2,Rc
3,Rc

4) = argmax(R1,R2,R3,R4)∈C
∑4

i=1Ri and P is the transmit power at each source node.

The DoF is defined as

DoF , lim
P→∞

CΣ(P )

logP
=

4∑
i=1

lim
P→∞

Rc
i

logP
=

4∑
i=1

di, (4)

where di , limP→∞
Rc

i

logP
is the DoF of source Si, for i ∈ {1, 2, 3, 4}. We assume that channel gains

are i.i.d., chosen from the same continuous distribution, and thus the DoF is the result for almost every

channel realization (in other words, with probability 1 over the channel realizations). We denote DoFC as

the DoF for the case of with relay caching, DoFNC as the DoF for the case of no relay caching.

𝐷3 
𝑅1 

𝑅2 

𝑆1 

𝐷4 

𝑆2 

𝐷1 

𝑆3 

𝐷2 

𝑆4 

Fig. 1. Two-way 2× 2× 2 relay network.

B. Related Works

In the literature, there has been extensive research over the last decade to characterize the DoF and

the capacity region of one-way relay networks as well as two-unicast networks. However, beyond single-

hop, there is much less known about the capacity of multi-flow networks. Even in the simplest case

with two sources S1 and S2 and two destinations D1 and D2, there are very few results, such as [64],

where the maximum flow in two-unicast undirected wireline networks is characterized. In the wireless
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(a) The channels from transmitters to the relays.
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(b) The channels from relays to the receivers.

Fig. 2. The channels from and to relays in a two-way 2× 2× 2 relay network.

realm, constant-gap capacity approximations for specific two-hop networks (the ZZ and ZS structures as

depicted in Fig. 3) were obtained in [65]. Furthermore, it was shown that the network resulting from the

concatenation of two fully-connected interference channels (the XX network as depicted in Fig. 4) admits

the maximum of two DoF [39, 44]. The achievability scheme relies on the notion of real interference

alignment, which was introduced in [9].

In [44], two-unicast multi-hop wireless networks with two sources S1 and S2 and two destinations D1

and D2 that have a layered structure with arbitrary connectivity are studied. It is shown that, if the channel

gains are chosen independently according to continuous distributions, then, with probability 1, the DoF

of the two-unicast layered Gaussian networks can be 1, 3/2 or 2. In particular, for the one-way 2× 2× 2

relay network in Fig. 4, one DoF for each user is achievable, i.e., the total DoF is two.

There are limited number of works on the two-way 2 × 2 × 2 relay network in Fig. 1. In [48], three

different achievability strategies for such a network with MIMO channels are proposed. However, these



7

𝑊1 𝑆1 

𝑆2 

𝑅1 

𝑅2 

𝐻1,𝑅1 

𝐻2,𝑅2  

𝐻2,𝑅1  

𝑊2 

𝑍𝑅1  

𝑍𝑅2  

𝐷1 

𝐻𝑅2,2 
𝐷2 

𝐻𝑅1,1 

𝐻𝑅2,1 

𝑊 1 

𝑊 2 

𝑍1 

𝑍2 

(a) One-way ZZ channel.
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(b) One-way ZS channel.

Fig. 3. One-way ZZ and ZS networks.
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Fig. 4. One-way 2× 2× 2 relay network.
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schemes are considerably away from the optimum, since the achievable total DoF is only two for the

SISO case, i.e., the same as the one-way network. In addition, a symmetric finite-field two-way 2× 2× 2

relay network model is studied in [49, 50].

There are a few recent papers that studied the impact of caching on DoF. In particular, [58, 59] analyzed

the DoF gain induced by caching in interference networks, and proposed a cache-induced cooperative

transmission strategy. Also [66] studied some fundamental limits of the DoF for cache-aided interference

networks.

III. MAIN RESULTS ON THE TWO-WAY 2× 2× 2 RELAY NETWORK

In this section, we study the model in Figs. 1 and 2, with and without caching at relays.

A. Two-way 2× 2× 2 Relay Network without Caching

We assume that the channel parameters Hj,Rk
, HRk,j , j ∈ {1, 2, 3, 4}, k ∈ {1, 2} are independent and

chosen from the same continuous distribution. Our result is that without caching at the relay, the total

DoF of the two-way 2× 2× 2 network is lower bounded by 2 and upper bounded by 8/3.

Proposition 1. For a two-way 2× 2× 2 relay network, DoFNC ≥ 2.

Proof: If all nodes except for S1, R2, and S3 in Fig. 1 are silent, then the channel can be seen as a

two-way 1×1×1 relay network formed by S1, R2, and S3. This channel can achieve two DoF by simply

forwarding the sum of the received signals at relay R2, which is the sum of the two messages from S1

and S3.

The next result shows that the DoF for the two-way 2× 2× 2 relay network is upper bounded by 8/3.

Thus, the DoF for the two-way network is smaller than twice the DoF for the one-way network.

Theorem 1. For a two-way 2× 2× 2 relay network, DoFNC ≤ 8
3
.

Proof: For the outer bound, we assume that there is a channel with infinite capacity between the

relays. Also, suppose that a genie provides W1 to this combined relay. Then W3 should be decodable at

the relay as it is decodable at D3 given W1. Following this, the messages W2 and W4 can be decoded

if the matrix H (defined below) is full rank as (5) will suggest this mathematically, which happens with

probability 1 over generic channel gains. Therefore, the combined relay should be able to decode three

signals W2, W3, and W4 with its two antennas (suggesting d2 + d3 + d4 ≤ 2). This is further proved in

the following.
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Consider n time slots of the channel use and assume that nRi represents the maximum rate achievable

for transmitter i in the total n time slots. Define Y n
i , (Yi[1], . . . , Yi[n]) and Xn

i , (Xi[1], . . . , Xi[n]),

i = 1, . . . , 4. We also define hj,R , [Hj,R1 Hj,R2 ], y
n
R , [Y n

R1
Y n
R2
], and znR , [Zn

R1
Zn

R2
], where Y n

Rk
,

(YRk
[1], . . . , YRk

[n]) and Zn
Rk

, (ZRk
[1], . . . , ZRk

[n]). Then, we have:

nR3

(a)

≤ I(W3;Y
n

3 ) + nεn
(b)

≤ I(W3;Y
n

3 |W1) + nεn
(c)

≤ I(W3;y
n
R|W1) + nεn

= h(yn
R|W1)− h(yn

R|W1,W3) + nεn

= h(yn
R|W1)− I(yn

R;W2,W4|W1,W3)− h(yn
R|W1,W3,W2,W4) + nεn

(d)
= h(yn

R|W1)− I(yn
R;W2,W4|W1,W3)− h(znR) + nεn

= h(yn
R|W1)− I(yn

R;W2,W4|W1,W3)− log
(
(2πe)2n

)
+ nεn

= h(yn
R|W1)−H(W2,W4|W1,W3) +H(W2,W4|W1,W3,y

n
R)− 2n log (2πe) + nεn

≤ h(yn
R|W1)−H(W2,W4|W1,W3) +H(W2,W4|yn

R −H1,RX
n
1 −H3,RX

n
3 )− 2n log (2πe) + nεn

= h(yn
R|W1)−H(W2,W4|W1,W3) +H(W2,W4|H2,RX

n
2 +H4,RX

n
4 + znR)− 2n log (2πe) + nεn

(e)
= h(yn

R|W1)−H(W2,W4|W1,W3) +H(W2,W4|[Xn
2 Xn

4 ] + znRH
−1)− 2n log (2πe) + nεn

(f)
= h(yn

R|W1)−H(W2,W4|W1,W3) +H(W2,W4|Xn
2 + zn

′

2 , X
n
4 + zn

′

4 )− 2n log (2πe) + nεn
(g)

≤ h(yn
R|W1)−H(W2,W4|W1,W3) +H(W2|Xn

2 + zn
′

2 ) +H(W4|Xn
4 + zn

′

4 )− 2n log (2πe) + nεn

(h)
= h(yn

R|W1)−H(W2,W4|W1,W3)− 2n log (2πe) + nε
′

n + nεn

= h(yn
R|W1)−H(W2,W4)− 2n log (2πe) + nε

′′

n

(i)

≤ h(yn
R)−H(W2,W4)− 2n log (2πe) + nε

′′

n

(j)

≤ h(Y n
R1
) + h(Y n

R2
)−H(W2,W4)− 2n log (2πe) + nε

′′

n

(k)

≤ 2
(
log
(
2πe(4H2

maxP + 1)
)n)−H(W2,W4)− 2n log (2πe) + nε

′′

n, (5)

where (a) follows since the transmission rate is less than or equal to the mutual information between

the message and the received signal, and εn can be arbitrarily small by increasing n; (b) follows since

I(W3;Y
n
3 |W1) − I(W3;Y

n
3 ) = I(W3;Y

n
3 ;W1) ≥ −min{I(W3;Y

n
3 ), I(W1;Y

n
3 ), I(W3;W1)} = 0 (as

I(W3;W1) = 0); (c) holds since W3 → yn
R → Y n

3 ; (d) follows since by subtracting the contributions of
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Xn
i , i = 1, . . . , 4 from yn

R, we will only have Gaussian noise at the relays; (e) follows from the fact that

by defining H , [hT
2,R hT

4,R]
T , we obtain the following:

(yn
R −H1,RX

n
1 −H3,RX

n
3 )H

−1 = [Xn
2 Xn

4 ]
T + znRH

−1; (6)

(f) holds by defining [zn
′

2 zn
′

4 ] , znRH
−1; (g) holds since conditioning decreases entropy; (h) follows

from Fano’s inequality and the fact that probability of error in decoding Wi given Xn
i + z

n′
i , i = 2, 4 goes

to zero for high SNR; (i) holds because conditioning decreases the entropy; (j) holds since h(X, Y ) ≤

h(X) + h(Y ); (k) holds since YRi
is in the form of (1), with |Hi,Rk

[m]| ≤ Hmax, and Xi ∼ CN (0, P ).

Dividing both sides of (5) by n logP , and using n(R2+R4− ε
′′′
n ) ≤ I(W2;Y2)+I(W4;Y4) = H(W2)−

H(W2|Y2) +H(W4)−H(W4|Y4) ≤ H(W2) +H(W4) = H(W2,W4), results in:

R3

logP
≤2 log (2πe(4H2

maxP + 1))
n

n logP
− (R2 +R4)

logP
− 2n log (2πe)

n logP
+

ε
′′
n

logP
, (7)

and with n→∞ and P →∞, we obtain the following bound:

d2 + d3 + d4 ≤ 2. (8)

Similarly, we also have

d1 + d2 + d3 ≤ 2, (9)

d1 + d2 + d4 ≤ 2, (10)

d1 + d3 + d4 ≤ 2. (11)

Summing up (8)-(11) gives the upper bound in the statement of the theorem.

B. Symmetric Two-way 2× 2× 2 Relay Network

In this section, we focus on a symmetric case of the two-way 2× 2× 2 relay network in Fig. 1, where

the channel parameters are assumed to have the following symmetry: H1,Rk
= H3,Rk

, H2,Rk
= H4,Rk

,

HRk,1 = HRk,3, and HRk,2 = HRk,4, k ∈ {1, 2}. The two-hop decomposition of such a symmetric two-way

2× 2× 2 relay network is shown in Fig. 5. The following result shows that the DoF for symmetric two-

way 2× 2× 2 relay network is four. Thus, this two-way network achieves twice the DoF as compared to

the one-way network studied in [39]. Essentially the symmetry in channel parameters allows for efficient

alignment of the signals from the two directions at the relays that leads to the DoF of four.
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(b) The channels from relays to the receivers.

Fig. 5. The channels from and to relays in a symmetric two-way 2× 2× 2 relay network.

Proposition 2. For the symmetric two-way 2× 2× 2 relay network, DoFNC = 4.

Proof: For the achievability, S1 and S3 can be seen as one user and S2 and S4 can be seen as another

user from the relay nodes’ perspective, due to symmetry. Based on the result for the one-way 2× 2× 2

network in [39], each message can achieve one DoF. Since we increase the number of messages from 2 in

[39] to 4 in this paper, DoF= 4 is achievable. The detailed achievability scheme is described in Appendix

A.

In addition, it can be seen that the upper bound follows from the cut-set bound.

Remark 1. The comparison of Theorem 1 and Proposition 2 shows that, interestingly, even though without

caching 8/3 is an upper bound for generic channels, for symmetric channels DoF = 4 which shows that

this network topology can, in principle, allow 4 DoF. Note that step (e) in (5) for generic channel

parameters requires the invertibility of H, which does not hold for symmetric channels. This is what
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distinguishes generic channels (for which DoF ≤ 8/3) from symmetric symmetric channels (for which

DoF = 4).

IV. TWO-WAY 2× 2× 2 NETWORK WITH CACHING

A. Caching and Transmission Strategy

In this subsection, we consider the more general model of multi-antenna relays and single-antenna

source/destination nodes, where each relay Rk, k ∈ {1, 2} has Nk antennas. For this model, the difference

with the single-antenna case in Section II-A is that channels Hi,Rk
[m], HRk,i[m] are Nk × 1 and 1×Nk

vectors, respectively, the signals to and from the relays, (YRk
[m] and XRk

[m], respectively), are vectors of

size Nk × 1, and the noise ZRk
[m] is an Nk × 1 vector, i ∈ {1, 2, 3, 4}, k ∈ {1, 2}. We assume that each

relay is equipped with a cache that can store the data from the sources. Our goal is to design strategies for

caching and transmission so that the sum rate of all four source-destination pairs is maximized. Similar

to caching strategies in the literature [56, 57], the transmission consists of two phases. The first phase

is the transmission from sources to the relays, as shown in Fig. 2(a), which is performed offline and

is known as the placement phase. The second phase is the transmission from relays to the destinations,

as shown in Fig. 2(b), which is performed online and is known as the delivery phase. We assume that

the relays decode Wi, i = 1, . . . , 4 in the offline phase and save W ′
1 , W1 ⊕W3, W ′

2 , W2 ⊕W4 in

their caches. Then since both relays have access to W ′
1 and W ′

2, we can consider them together as an

(N1 +N2)-antenna relay, transmitting xn
R = f(W ′

1,W
′
2), which intends to make W ′

1 decodable at D1 and

D3, and W ′
2 decodable at D2 and D4 in Fig. 2(b).

The next result, after a short review of the compound broadcast channels, shows that the DoF for the

two-way 2 × 2 × 2 relay network with multiple-antenna relays and single-antenna transceivers is lower

bounded by 4(N1+N2)
N1+N2+1

under the above caching and transmission strategy.

B. Background on Compound Broadcast Channel

Here, we briefly introduce the compound broadcast channel and list two lemmas that we need. The

Gaussian MISO compound broadcast channel comprises one transmitter with N antennas and K single-

antenna receivers. The transmitter transmits K messages, each intended for a different receiver i whose

channel state is chosen from a finite set {1, . . . , Ji}, i = 1, . . . , K. In the literature there are several results

on the behavior of this channel at high SNR, i.e., the DoF. We cite the following two lemmas on the

lower and upper bounds of the compound broadcast channel, respectively.
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Lemma 1. [67, 68] For the compound broadcast channel with N antennas at the transmitter, K single-

antenna receivers, and Ji ≥ N states at receiver i, i = 1, . . . , K, the total DoF of NK
N+K−1

is achievable.

Lemma 2. [69] Consider a compound broadcast channel with N antennas at the transmitter, and K = 2

single-antenna receivers with J1 = 1, J2 = 2. Then the DoF region is outer bounded by the following

region (
1

N

)
d1 + d2 ≤ 1, (12)

d1 +

(
1

N

)
d2 ≤ 1. (13)

C. DoF of Two-way 2× 2× 2 Relay Network with Caching

In the following, we provide a result on the achievability of the two-way 2× 2× 2 relay network with

multiple-antenna relays and single-antenna transceivers with caching:

Proposition 3. Under the caching and transmission strategy given above, DoF ≥ 4(N1+N2)
N1+N2+1

for the two-way

2× 2× 2 relay network with multiple-antenna relays and single-antenna transceivers.

Proof: In our transmission strategy, the relays amplify-and-forward the encoded data available in their

caches. We treat the two relays together as a super-relay with two antennas that has access to W ′
1 and W ′

2.

The super-relay intends to make W ′
1 decoded at D1 and D3, and W ′

2 decoded at D2 and D4 since each

receiver can decode the desired message by cancelling the contribution of its own message. This becomes

equivalent to a compound MISO broadcast channel where message W ′
1 should be received at both D1 and

D3, while message W ′
2 should be received at both D2 and D4 as depicted in Fig. 6. Thus, using Lemma

1 with N = N1 +N2 and K = 2, we obtain the DoF of 2(N1+N2)
N1+N2+1

which needs to be multiplied by 2 due

the fact that each of the signals W ′
1 and W ′

2 is decoded by two receivers in the original channel. Hence

we obtain the DoF of 4(N1+N2)
N1+N2+1

with caching.

Now, we provide a discussion on the optimal transmission strategy for the channel with relay caching.

Consider the following two transmission strategies for the relays:

• Encode W1 and transmit with power P : It is helpful for receiver 1, has no effect for receiver 3, and

is treated as interference for the other two receivers.

• Encode W ′
1 and transmit with power P : It is helpful for receiver 1 (exactly the same effect as in the

previous case), and is also helpful for receiver 3 (in contrast to the previous case), and is treated as

interference for the other two receivers similar to the previous case.
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Fig. 6. Compound MISO broadcast channel as achievability for two-way 2 × 2 × 2 relay network with multiple-antenna relays and
single-antenna transceivers and with relay caching.

Comparison of the above two strategies suggests that if there is an achievability scheme where all of

the messages are decodable for some given total transmission power at the relays, then there is also a

strategy with the same power that comprises only W ′
1 and W ′

2. Note that receivers 1 and 3 can decode

their desired messages by having access to W ′
1 (because they have access to each other’s message and

can subtract it), and similar relation holds for receivers 2 and 4. With this assumption, we present the

following result that gives the sum DoF = 4(N1+N2)
N1+N2+1

.

Proposition 4. For the two-way 2× 2× 2 relay network with multiple-antenna relays and single-antenna

transceivers and with caching at the relays, total DoFC = 4(N1+N2)
N1+N2+1

if the relays only use W
′
1 and W

′
2 in

their transmission rather than the original individual messages.

Proof: The achievability follows from Proposition 3. Now we give the proof of the outer bound.

With the assumption that the relays only transmit W ′
1 and W ′

2. The channel can be seen as a compound

broadcast channel with two receivers, where each receiver takes two possible states as in Fig. 6. We know

that decreasing the number of channel states does not decrease the capacity [67]. So, we decrease the

number of states in receiver 1 to only 1. Then, according to Lemma 2, the DoF region of the compound

channel is bounded by (12)-(13) for N = N1 + N2, and bounds
(

1
N

)
d1 + d2 ≤ 1 and d1 +

(
1
N

)
d2 ≤ 1.

These two bounds give a convex region with three non-zero corners of (d1, d2) =
(

N1+N2

N1+N2+1
, N1+N2

N1+N2+1

)
,

(d1, d2) = (1, 0) and (d1, d2) = (0, 1). Therefore, d1 = d2 = N1+N2

N1+N2+1
results in the largest value of
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d1 + d2 = 2(N1+N2)
N1+N2+1

which as before needs to be multiplied by 2 due the fact that each of the signals

W ′
1 and W ′

2 is decoded by two receivers in the original channel. Therefore we obtain 4(N1+N2)
N1+N2+1

as a DoF

upper bound.

The above result leads to the following conjecture on the general upper bound:

Conjecture 1. For the two-way 2× 2× 2 relay network with multiple-antenna relays and single-antenna

transceivers and with caching at the relays, the total DoFC ≤ 4(N1+N2)
N1+N2+1

.

Remark 2. The results in Section III-A show that the DoF of two-way 2× 2× 2 relay network with no

relay caching is bounded as 2 ≤ DoFNC ≤ 8/3 and Proposition 3 shows that DoFC = 8/3 is achievable

with relay caching for N1 = N2 = 1. Hence caching can achieve the upper bound of the non-caching DoF

of the two-way multiple-unicast network, thus showing that relay caching in this network could potentially

improve the DoF.

Finally, the following corollary gives the DoF of symmetric 2× 2× 2 relay networks with caching.

Corollary 1. For the symmetric two-way 2× 2× 2 relay network with relay caching, DoFC = 4.

Proof: The proof follows from the following facts together:

• For the symmetric two-way 2× 2× 2 relay network with no caching, DoFNC = 4 (Proposition 2).

• For the two-way 2× 2× 2 relay network, DoFC ≤ 4 due to the cut-set bound.

• DoFC ≥ DoFNC .

V. CONCLUSIONS

We have investigated the two-way 2× 2× 2 relay network, a class of four-unicast networks. We have

shown that the total DoF is bounded from above by 8/3, indicating that bidirectional links do not double

the DoF. We have also shown that DoF of 8/3 is achievable with caching at the relays. Therefore, the

proposed work demonstrates that caching can achieve the outer bound of the non-caching DoF of the two-

way multiple-unicast network, thus showing that relay caching in this network could be helpful in terms

of DoF. Finding the DoF for other models of two-way four-unicast networks as well as two-way networks

with more than four source-destination pairs remains an open problem. Moreover, the effect of finite-size

cache and message popularity in the information theoretic setting also remains to be investigated.
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APPENDIX A

ACHIEVABILITY STRATEGY FOR PROPOSITION 2

We propose an achievability strategy for the symmetric two-way 2× 2× 2 relay network by applying

the time-extension method [39]. Here, we will see that on M -symbol extension of the channel, a DoF of

M is achievable for sources 1 and 3,1 while a DoF of (M − 1) is achievable for sources 2 and 4, thus

achieving a total DoF of (4M − 2). Therefore, the achievable DoF = 4M−2
M
→ 4 as M →∞.

1. Beamformers at transmitters for signal alignment at relays:

With M -symbol extension, we consider M consecutive transmissions of the original channel as a

single transmission of an equivalent MIMO channel with M antennas and a diagonal channel matrix. In

particular, we write the M consecutively received signals at Rk in (1) in vector form as
YRk

[Mn+ 1]

YRk
[Mn+ 2]

...

YRk
[Mn+M ]


︸ ︷︷ ︸

yRk
[n]

=


ZRk

[Mn+ 1]

ZRk
[Mn+ 2]

...

ZRk
[Mn+M ]


︸ ︷︷ ︸

zRk
[n]

+

4∑
i=1


Hi,Rk

[Mn+ 1] 0 · · · 0

0 Hi,Rk
[Mn+ 2] · · · 0

...
... . . . ...

0 0 · · · Hi,Rk
[Mn+M ]


︸ ︷︷ ︸

Hi,Rk
[n]


Xi[Mn+ 1]

Xi[Mn+ 2]

...

Xi[Mn+M ]


︸ ︷︷ ︸

xi[n]

, (14)

for k ∈ {1, 2}. Note that due to the channel symmetry assumption, we have H1,Rk
= H3,Rk

, H2,Rk
=

H4,Rk
. For simplicity, we omit the time index n in the following.

We assume that transmitter Si, i ∈ {1, 3}, has M messages Wi,k, k ∈ {1, . . . ,M} to send. Each message

Wi,k is encoded into a Gaussian codeword of length n denoted by xi,k[1], . . . , xi,k[n]. Si transmits the

symbol xi,k via a beamforming vector v1,k, i.e., its transmitted signal is

xi =
M∑
k=1

v1,kxi,k, i ∈ {1, 3}. (15)

Further, we assume that transmitter Si, i ∈ {2, 4}, has M −1 messages Wi,k, k ∈ {1, . . . ,M −1} to send.

1In other words, the rate of Ri = M logP + o(logP ), for i ∈ {1, 3} is achievable over M time slots, for large P .
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Each message Wi,k is encoded into a Gaussian codeword of length n denoted by xi,k[1], . . . , xi,k[n]. Si

transmits symbol xi,k via a beamforming vector v2,k, i.e., its transmitted signal is

xi =
M−1∑
k=1

v2,kxi,k, i ∈ {2, 4}. (16)

The beamforming vectors vi,k, i ∈ {1, 2} are such that the signals align at relays. In particular, at relay

R1, the signals H1,R1v1,i+1, and H2,R1v2,i are aligned, i.e.,

H1,R1v1,i+1 = H2,R1v2,i, i ∈ {1, · · · ,M − 1}. (17)

At relay R2, the signals H1,R2v1,i, and H2,R2v2,i are aligned, i.e.,

H1,R2v1,i = H2,R2v2,i, i ∈ {1, · · · ,M − 1}. (18)

Using (17) and (18), we can express all beamformers in terms of v1,1 as follows

v1,i+1 =
(
H−1

1,R1
H2,R1H

−1
2,R2

H1,R2

)i
v1,1, (19)

v2,i =
(
H−1

2,R2
H1,R2H

−1
1,R1

H2,R1

)i−1
H−1

2,R2
H1,R2v1,1, i ∈ {1, . . . ,M − 1}. (20)

Note that all matrices in (19)-(20) are diagonal and once v1,1 is given, all other beamformers can be

obtained. Then from (14), the received signal at R1 can be written as

yR1 = H1,R1x1 +H2,R1x2 +H1,R1x3 +H2,R1x4 + zR1

= H1,R1

M∑
k=1

v1,kx1,k +H2,R1

M−1∑
k=1

v2,kx2,k +H1,R1

M∑
k=1

v1,kx3,k +H2,R1

M−1∑
k=1

v2,kx4,k + zR1

= H1,R1v1,1(x1,1 + x3,1) +
M−1∑
i=1

H1,R1v1,i+1 (x1,i+1 + x2,i + x3,i+1 + x4,i) + zR1 , (21)

where the last equality is due to (17). Similarly the received signal at relay R2 can be written as

yR2 = H1,R2x1 +H2,R2x2 +H1,R2x3 +H2,R2x4 + zR2

= H1,R2

M∑
k=1

v1,kx1,k +H2,R2

M−1∑
k=1

v2,kx2,k +H1,R2

M∑
k=1

v1,kx3,k +H2,R2

M−1∑
k=1

v2,kx4,k + zR2

=
M−1∑
i=1

H1,R2v1,i (x1,i + x2,i + x3,i + x4,i) +H1,R2v1,M(x1,M + x3,M) + zR2 , (22)

where the last equality follows from (18).
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If we define HR1 , [H1,R1v1,1,H1,R1v1,2, . . . ,H1,R1v1,M ], and HR2 , [H1,R2v1,1,H1,R2v1,2, . . . ,H1,R2v1,M ],

then from (21) and (22) we have

H−1
R1
yR1 =


x1,1 + x3,1

x1,2 + x3,2 + x2,1 + x4,1

...

x1,M + x3,M + x2,M−1 + x4,M−1


+H−1

R1
zR1 ,


xR1,1

...

xR1,M

 , (23)

H−1
R2
yR2 =


x1,1 + x3,1 + x2,1 + x4,1

...

x1,M−1 + x3,M−1 + x2,M−1 + x4,M−1

x1,M + x3,M


+H−1

R2
zR2 ,


xR2,1

...

xR2,M

 . (24)

2. Beamforming at relays for interference cancellation at destinations:

At time n, each relay amplify-and-forwards its received signal at time (n− 1). Specifically, R1 sends

xR1,k in (23) using a beamforming vector vR1,k, k ∈ {1, . . . ,M}, i.e.,

xR1 =
M∑
k=1

vR1,kxR1,k. (25)

R2 sends xR2,k in (24) using a beamforming vector vR2,k, k ∈ {1, . . . ,M − 1}, i.e.,

xR2 =
M−1∑
k=1

vR2,kxR2,k. (26)

The relay beamformers vR1,k,vR2,k are designed such that the interference is canceled in the signal received

at the destinations Di, i ∈ {1, 2, 3, 4}. Specifically, as before, with M -symbol extension the equivalent
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MIMO model for the received signal at Di can be written as
Yi[Mn+ 1]

Yi[Mn+ 2]

...

Yi[Mn+M ]


︸ ︷︷ ︸

yi[n]

=


Zi[Mn+ 1]

Zi[Mn+ 2]

...

Zi[Mn+M ]


︸ ︷︷ ︸

zi[n]

+

2∑
k=1


HRk,i[Mn+ 1] 0 · · · 0

0 HRk,i[Mn+ 2] · · · 0

...
... . . . ...

0 0 · · · HRk,i[Mn+M ]


︸ ︷︷ ︸

HRk,i[n]


XRk

[Mn+ 1]

XRk
[Mn+ 2]

...

XRk
[Mn+M ]


︸ ︷︷ ︸

xRk
[n]

, (27)

for i ∈ {1, . . . , 4}. Note that due to the channel symmetry assumption, we have HRk,1 = HRk,3, HRk,2 =

HRk,4.

From (23)-(24), xR1,i+1 = x1,i+1 + x3,i+1 + x2,i + x4,i and xR2,i = x1,i + x3,i + x2,i + x4,i (ignoring

noise). In order to cancel x2,i and x4,i at D1 and D3, we choose the relay beamformers such that

HR1,1vR1,i+1 = −HR2,1vR2,i, i ∈ {1, . . . ,M − 1}. (28)

Moreover, we also have xR1,i = x1,i + x3,i + x2,i−1 + x4,i−1 and xR2,i = x1,i + x3,i + x2,i + x4,i. In order

to cancel x1,i and x3,i at D2 and D4, we choose the relay beamformers such that

−HR1,2vR1,i = HR2,2vR2,i, i ∈ {1, . . . ,M − 1}. (29)

Using (28) and (29), the relay beamformers can be expressed in terms of vR1,1 as follows:

vR1,i+1 = (H−1
R1,1

HR2,1H
−1
R2,2

HR1,2)
i
vR1,1, (30)

vR2,i = −(H−1
R2,2

HR1,2H
−1
R1,1

HR2,1)
i−1

H−1
R2,2

HR1,2vR1,1. (31)

Hence given vR1,1, all relay beamformers can be obtained.

3. Successive decoding at destinations:

Now we examine the received signals at the destinations. From (27), the received signal at Di, i ∈ {1, 3},
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can be written as

yi = HR1,1xR1 +HR2,1xR2 + zi

= HR1,1

M∑
k=1

vR1,kxR1,k +HR2,1

M−1∑
k=1

vR2,kxR2,k + zi

= HR1,1vR1,1(x1,1 + x3,1 + z
′

1,1) +
M−1∑
k=1

HR1,1vR1,k+1

(
x1,k+1 + x3,k+1 − x1,k − x3,k + z

′

1,k+1 − z
′

2,k

)
+ zi, (32)

where the last equality follows from (28) and z′

i,k is the kth entry of the noise vector H−1
Ri
zRi

in (23) and

(24). Similarly, the received signal at Di, i ∈ {2, 4}, can be written as

yi = HR1,1xR1 +HR2,1xR2 + zi

= HR1,1

M∑
k=1

vR1,kxR1,k +HR2,1

M−1∑
k=1

vR2,kxR2,k + zi

= HR1,1vR1,M(x1,M + x3,M + x2,M−1 + x4,M−1 + z
′

1,M) +
M−1∑
k=1

HR2,1vR2,k

(
x2,k + x4,k − x2,k−1 − x4,k−1 + z

′

2,k − z
′

1,k

)
+ zi, (33)

where the last equality follows from (29) and x2,0 = x4,0 = 0.

If we define H1 , [HR1,1vR1,1, . . . ,HR1,1vR1,M ], and H2 , [HR2,1vR2,1, . . . ,HR2,1vR2,M−1,HR1,1vR1,M ],

then from (32) and (33) we have

H−1
1 yi =


x1,1 + x3,1 + z

′
1,1

x1,2 + x3,2 − x1,1 − x3,1 + z
′
1,2 − z

′
2,1

...

x1,M + x3,M − x1,M−1 − x3,M−1 + z
′
1,M − z

′
2,M−1


+H−1

1 zi, i ∈ {1, 3}, (34)

H−1
2 yi =


x2,1 + x4,1 − x2,0 − x4,0 + z

′
2,1 − z

′
1,1

...

x2,M−1 + x4,M−1 − x2,M−2 − x4,M−2 + z
′
2,M−1 − z

′
1,M−1

x1,M + x3,M + x2,M−1 + x4,M−1 + z
′
1,M


+H−1

2 zi, i ∈ {2, 4}. (35)

Now from (34), Di, i ∈ {1, 3}, is able to first estimate x1,1+x3,1 and then add it to the second dimension

in order to estimate x1,2 +x3,2 and so on. Finally, since D1 = S3, D1 knows x3,1, . . . , x3,M , and therefore

it can decode x1,1, . . . , x1,M . Similarly, since D3 = S1, D3 knows x1,1, . . . , x1,M , and so it can decode
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x3,1, . . . , x3,M .

Similarly from (35), Di, i ∈ {2, 4}, can decode xi,1, . . . , xi,M . And this completes the proof of

achievability.
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