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Abstract

Sparse Code Multiple Access (SCMA) is a novel non-orthogonal multiple access scheme for 5G systems, in which the
logarithm domain message passing algorithm (Log-MPA) is applied at the receiver to achieve near-optimum performance. However,
the computational complexity of Log-MPA detector is still a big challenge for practical implementation, especially for energy-
sensitive user equipments in the downlink scenario. In this paper, a Region-Restricted detector with an improved Log-MPA (RRL
detector) is proposed for downlink SCMA systems, in which the complexity is reduced from two perspectives. To avoid unnecessary
calculations when searching the superposition constellation exhaustively, the proposed RRL detector updates the function nodes
only within a restricted search region. While constellation points outside the search region are neglected, the performance is well
maintained which is verified by simulations. Besides, the original Log-MPA heavily relies on exponential operations, resulting in
high computational complexity. To solve this problem, an improved Log-MPA is also put forward in this paper to make a better
compromise between complexity and performance. Simulation results show that the complexity of the RRL detector is reduced
considerably while the bit error rate (BER) performance degrades unnoticeably.

I. INTRODUCTION

With the development of mobile devices and Internet of Things, explosive traffic growth and rapidly increased requirements
are expected in the fifth generation (5G) wireless communications. To support massive connectivity with a large number of
devices, multiple access technology is undergoing a paradigm shift from orthogonal to non-orthogonal based approaches [1].

Sparse code multiple access (SCMA) [2] is a novel non-orthogonal multiple access technique which derives from low density
signature (LDS) [3] [4]. Moreover, SCMA replaces QAM modulation and LDS spreading with multi-dimensional codebooks,
enabling SCMA to reap shaping gains. Due to the sparse structure of SCMA, the message passing algorithm (MPA) can be
efficiently applied to approximate the optimum Maximum Likelihood (ML) detector. To reduce the complexity of the MPA
detector, [1] proposed a Max-Log-MPA in which MPA is implemented in logarithm domain and the Jacobian logarithm max∗

is simplified as maximization operation max. However, the simplification results in additional performance degradation. [5] [6]
investigated several better performing Log-MPA detectors by replacing max∗ with approximate functions

∼
max. However, this

method brings extra multiplications and additions. [7] proposed a fixed low complexity detector based on partial marginalization.
In [8], a shuffled MPA detection scheme for SCMA systems is proposed. In [9], the complexity of SCMA detector is reduced
by an edge selection approach, where adaptive Gaussian approximation is applied to unselected edges. [10] proposed several
techniques to reduce the SCMA detection, including codebook design with a specific structure and detection techniques taking
advantage of the codebook structure. [11] investigated a low-complexity decoding algorithm based on list sphere decoding.
However, most of these prior works [7]- [11] are for uplink channels, which means the proposed detectors are not suitable
for downlink SCMA systems. This is due to the distinct channel environment in downlink systems, where symbols collided
at the same resource are going through the same channel, which makes edge selection algorithm [9] and techniques in [10]
noneffective. Other detectors produce unexpected performance loss when applied in downlink systems.

Motivated by this, we concentrate on the design of SCMA detector in downlink channels in this paper. The computational
complexity of SCMA detector is mainly governed by the complexity of operations at function nodes (FNs) as well as the number
of exp(·) calculations [10]. To tackle these problems, we propose a novel Region-Restricted detector with an improved Log-
MPA (RRL detector) for downlink SCMA systems in this paper. The proposed RRL detector reduces the complexity effectively
from two different perspectives. In the RRL detector, building on our previous work [12], the superposition constellation of
SCMA is partitioned by several rays and concentric circles. Then the received signal falls within one of the regions bounded
by the rays and circles (denoted by D). Based on D, a search region S is obtained subsequently which is larger than D. Instead
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Fig. 1. SCMA downlink system between the transmitter and the j-th receiver.

of searching the whole constellation exhaustively, only constellation points in S are searched in each iteration process while
the other points are neglected. To further reduce the complexity, in the RRL detector, the Log-MPA is improved by combining
max/

∼
max operations properly to obtain a better trade-off between complexity and performance. Our simulation results show

that the RRL detector performs close to the original Log-MPA detector while the complexity is reduced remarkably, especially
for additions and exponential operations.

The rest of this paper is organized as follows. Section II introduces the downlink SCMA system model along with the
original Log-MPA detector. In Section III, the proposed RRL detector is presented. Section IV compares the BER performance
and complexity between the RRL and original detector. Finally, conclusions are drawn in Section V.

Notations: We use bold upper case letters to denote matrices, bold lower case letters to denote vectors and lower case
letters to denote scalars. The notations (·)H and (·)T respectively denote the Hermitian transpose and transpose. Also, diag(h)
denotes a diagonal matrix formed by the elements of vector h, and real(h) and imag(h) respectively stand for the real and
imaginary part of h. The maximum of (·) is denoted as max(·) .

II. SYSTEM MODEL

A. Downlink SCMA system

Consider a downlink channel where a base station (BS) is communicating with J users, which is depicted in Fig. 1.
For each user, m = log2(M) bits are transmitted by a K-dimensional complex codebook with M codewords, and the K-
dimensional codebook has only N nonzero elements, where N � K. For simplicity, the codeword of user j is denoted as
xj =

[
xj1, x

j
2, ..., x

j
K

]T ∈ Xj , and the K-dimensional M -sized Xj can be constructed by algorithms proposed in [13]. Then J
codewords are superposed at the transmitter, and the received signal at user j can be expressed as

yj = diag(hj)
J∑
j=1

xj + n, (1)

where hj =
[
hj1, h

j
2, ..., h

j
K

]T
is the channel gain between the transmitter and user j, and n ∼ CN (0, δ2I) denotes the

Gaussian noise, where I is the identity matrix. For simplicity, the superscripts of yj and hj in (1) are removed from the
equation, and thus the received signal at the k-th resource can be written as

yk = hk

J∑
j=1

xjk + nk, k = 1, 2, ...,K. (2)

Commonly, X = [x1,x2, ...,xK ] is called SCMA matrix with df non-zero elements in each row and N non-zero elements
in each column. Now define ξk and ζj as the subsets of indices corresponding to the non-zero locations in the k-th row and
the j-th column of SCMA matrix, respectively, i.e., ξk , {j ∈ {1, 2, ..., J}|xjk 6= 0} and ζj , {k ∈ {1, 2, ...,K}|xjk 6= 0}.
Then (2) can be rewritten as

yk = hk
∑
j∈ξk

xjk + nk , hkzk + nk, (3)

where zk =
∑
j∈ξk x

j
k ∈ Zk , and zk can be considered as a symbol superposed by df symbols from different users. Just as

mentioned in [12], the constellation Zk is referred to as superposition constellation. Obviously, the size of Zk is |Zk| =Mdf

which increases exponentially with df .
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B. The original Log-MPA detector

Due to the sparse property of SCMA matrix, the Log-MPA can be applied at the receiver to reduce the complexity while
maintaining desired performance. Let Ltj→k(xj) and Ltk→j(xj) be the messages sent from user node (UN) j and function
node (FN) k along edge ej,k at the t-th iteration. For zk ∈ Zk, the probability of zk in logarithm domain after observing yk
can be measured by

M(zk) = −
1

2σ2

∣∣yk − hkzk|2, (4)

then the k-th FN can be updated as below

Ltk→j(xj) = λ max∗
zk∈Zk:xj

( ∑
j′∈ξk\j

Lt−1j′→k(xj′) +M(zk)

)
, (5)

where λ denotes the normalization coefficient [14] and max∗ is the Jacobian logarithm

max∗(a, b) = log(ea + eb) = max(a, b) + C(a− b), (6)

C(x) = log(1 + e−|x|), (7)

with C(x) represents the correction term.
The j-th UN is updated by the extrinsic information from connected FNs:

Ltj→k(xj) =
∑

k′∈ζj\k

Ltk′→j(xj). (8)

After the message passing algorithm has converged or has reached the maximum number of iterations tmax, the estimated
value of user node j is given by

x̂j = arg max
xj∈Xj

∑
k∈ζj

Ltk→j(xj). (9)

III. PROPOSED RRL DETECTOR

The complexity of the original Log-MPA detector is dominated by (5), since it performs max∗ operation by Mdf−1 − 1

times for each xj ∈ Xj . In general, all constellation points in Zk are involved in the calculations of (4)-(7), which cannot be
sustained for energy-sensitive user equipments. To address this issue, we propose a novel RRL detector where constellation
points in a specific search region are searched to compute (5). Besides, in our proposed RRL detector, the Log-MPA is improved
by applying an appropriate combination of max/

∼
max operations to avoid exp(·) calculations.

A. RR-MPA for AWGN channels

For simplicity, consider AWGN channels firstly, i.e., hk = 1, k = 1, 2, ...,K. In (5),
∑
j′∈ξk\j L

t−1
j′→k(xj′) is the extrinsic

information from connected user nodes, and M(zk) is proportional to the Euclidean distance between yk and zk. Just as we
have defined, zk is a point from the superposition constellation. For a point zk who is far away from yk, M(zk) is so small
that the addition

∑
j′∈ξk\j L

t−1
j′→k(xj′)+M(zk) makes little contribution to Ltk→j(xj) whatever the extrinsic information is. In

this case, calculating (5) is a waste of computation. In our proposed RR-MPA, constellation points to calculate (5) are selected
elaborately.

In SCMA systems, the superposition constellation is quite different from that in the optimized LDS systems [12]. For
example, the superposition constellations with M = 4 and M = 16 are given in Fig. 2, where rotated QPSK and 16-QAM
constellations respectively are employed by each user in each dimension. We can see from the figure that points close to the
origin are clustered densely, and points far away from the origin are distributed sparsely. The low-complexity detector in [12]
can not be applied in SCMA systems. Based on this, we put forward the RR-MPA which is described in detail below.

Firstly, the superposition constellation is partitioned by several rays and concentric circles just as depicted in Fig. 3 (a).
Eight rays shooting from the origin (including the real and imaginary axis) l0, l1, ..., l7 divide the constellation into 8 sectors
with central angles equal π/4. In radial direction, P concentric circles with radius r0, r1, ..., rP partition the constellation into
several annuluses. Finally, we get three kind of shaped regions bounded by these rays and concentric circles, marked by the
shaded areas in Fig. 3 (a). Just as we have defined, the bounded region containing the the received signal yk is referred to
as the decision region D and it can be determined by the magnitude and the phase of yk which are denoted as |yk| and θyk,
respectively.
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(a) (b)

Fig. 2. (a). The superposition constellation of SCMA systems with M = 4 and df = 3; (b). The superposition constellation of SCMA systems with M = 16
and df = 3.
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Fig. 3. (a). The decision region is the bounded region containing the received signal; (b). The search region is determined based on D.

In general, constellation points in D are closer to yk, so only these points are searched when making hard decision. However,
it is inappropriate for MPA since FNs are passing soft decision messages to connected UNs. For example, it is not advisable
to search D only when yk is on the boundary of D. Thus, the region within which constellation points are searched and
calculated should be larger than D, and we refer to it as search region S, shown in Fig. 3 (b). We observe that S contains
D, which means points not only in D but also around D are searched and hence involved in the calculation of (5), whereas
points outside S are ignored due to their far distances to yk. The search region S can be determined based on D as follows.

For simplicity, just as depicted in Fig. 4 (a), the diameter and central angle of D and S are denoted as rD, θD, rS and θS ,
respectively. Let rS = βrD, θS = αθD, where β ≥ 1 and α ≥ 1 are two coefficients. Let ri = ir0 for all i = 1, 2, ..., P , which
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Fig. 4. (a). The diameter and central angle of D and S; (b). The special case of S.
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TABLE I
THE COMPLEXITY OF FUNCTION NODES OF THE DETECTORS IN III-C.

max operations exponential operations additions multiplications

the original Log-MPA detector MJ(Mdf−1 − 1) 2MJ(Mdf−1 − 1) 3MJ(Mdf−1 − 1) +D1 D2

the Max-Log-MPA detector MJ(Mdf−1 − 1) 0 D1 D2

the detector in [5] MJ(Mdf−1 − 1) 0 4MJ(Mdf−1 − 1) +D1 MJ(Mdf−1 − 1) +D2

the improved Log-MPA detector MJ(Mdf−1 − 1) 0 4MJ +D1 MJ +D2

is verified reasonable by simulation results later.
Suppose D is bounded by rays li, l(i+1)mod8, then the phase of constellation point zk in S should be satisfied with

θli −
(α− 1)π

8
< θzk < θl(i+1)mod8

+
(α− 1)π

8
, (10)

where θli , θl(i+1)mod8
, θzk are the phases of li, l(i+1)mod8 and zk, respectively.

If D is sector-shaped which is bounded by r0, the magnitude of zk ∈ S satisfies

|zk| < βr0. (11)

For annular-sector-shaped D which is bounded by rj and rj+1, j = 0, 1, ..., P − 1, the magnitude of zk ∈ S satisfies

(j − 1)r0 −
(β − 1)r0

2
< |zk| < jr0 +

(β − 1)r0
2

. (12)

For the last kind of shaped D which is bounded by rP , point zk in S satisfies

|zk| > Pr0 −
(β − 1)r0

2
. (13)

As a result, points in S can be selected by (10) and (11)−(13), and then S is determined directly on the basis of D. It
is also worth pointing out that there is a special case which is shown in Fig. 4 (b). For sector-shaped D, yk is close to the
origin. In this case, the Euclidean distance between two points belonging to different sectors is not large enough. Thus, zk has
a close distance to yk even though zk does not satisfy (10). To solve the problem, for sector-shaped D, constellation points
|zk| < rmin should also be considered, regardless of what θzk is. We can see that the search region S is the union of a disk
and a sector. For other kind of D, S has the same shape as D with a proper increase on the boundary.

Note that the RR-MPA is similar to the list sphere decoding based MPA [11], which restricts the search region to a hyper-
sphere. Nevertheless, our proposal has lower complexity and is simpler to implement because the search region S can be
calculated based on D off-line according to Equ. (10)-(13), which means the calculation of S can be accomplished before the
transmission. Therefore, in our RR-MPA detector, S can be determined directly after D is determined based on yk without
any calculations. In contrast, the list sphere decoding based MPA wastes lots of computations and time to select the proper
points to participate in the updating.

B. RR-MPA for fading channels

In downlink flat fading channels, the received signal at k-th resource is given by (3). To apply RR-MPA in fading channels,
(3) is rewritten as

yk
hk

= zk +
nk
hk
, k = 1, 2, ...,K. (14)

It can be also considered as the AWGN channel with received signal yk/hk and noise nk/hk. Thus yk/hk is used to
determine the decision region D in the downlink fading channels. Note that it is difficult to recover signals when channels
are in deep fading. Even worse, the RR-MPA scheme will increase the performance degradation severely. It is because of the
Euclidean distances reduction caused by the deep fading, and the optimal points are usually not in S even though S is larger
than D. To avoid this condition, RR-MPA is applied only when |hk| ≥ γ where γ is a parameter. Otherwise (5) is calculated
for all zk ∈ Zk. As can be seen, larger γ makes the detector perform better but with increased complexity, and vice versa.
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C. The Improved Log-MPA

The complexity of original Log-MPA detector is also governed by the number of exp(·) calculations [10]. For illustration
purposes, (5) is expressed simply as

log

n∑
i=1

exi = fn(xn, fn−1(xn−1, ..., f2(x2, x1))), (15)

where n = Mdf−1 and xi represents the addition
∑
j′∈ξk\j L

t−1
j′→k(xj′) +M(zk). In the original Log-MPA detector, fn =

fn−1 = ... = f2 = max∗, resulting in that exponential operations are performed by countless times.
To reduce the number of exp(·) calculations, authors in [1] proposed a Max-Log-MPA detector in which the correction term

C(x) in (7) is neglected and the Jacobian logarithm is simplified as max∗(a, b) = max(a, b). Thus, in the Max-Log-MPA
detector, (15) is calculated as

log

n∑
i=1

exi ≈ max(xn,max(xn−1, ...,max(x2, x1))). (16)

The simplification eliminates the exp(·) operations to achieve a complexity reduction, but at the cost of degraded perfor-
mance. To tackle this problem, we propose an improved Log-MPA which exhibits a better trade-off between complexity and
performance. For the sake of illustration, sort {xi} in descending order, namely xd1 ≥ xd2 ≥ ... ≥ xdn, and (15) can be expressed
as

log

n∑
i=1

exi = Fn , max∗(xdn,max
∗(xdn−1, ...,max

∗(xd2, x
d
1))) = max∗(xdn,Fn−1). (17)

As C(x) > 0 for all x > 0, we have Fn > Fn−1 > xd1 ≥ ... ≥ xdn, and thus (17) can be expanded as

Fn = Fn−1 + C(Fn−1 − xdn) (18)

= Fn−2 + C(Fn−2 − xdn−1) + C(Fn−1 − xdn) = ... (19)

= F1 + C(F1 − xd2) + C(F2 − xd3) + ...C(Fi−1 − xdi ) + ...+ C(Fn−1 − xdn)︸ ︷︷ ︸
correction items

, (20)

where F1 = xd1.
Since xdi ≥ xdi+1 and Fi > Fi−1, we have Fi − xdi+1 > Fi−1 − xdi . We know that C(x) is a decreasing function [5], and

we get C(Fi − xdi+1) < C(Fi−1 − xdi ) which means the correction items in (20) are decreasing with increasing i. In the
Max-Log-MPA, all correction items are ignored which accounts for the performance loss.

To improve the performance, the first Q correction items can be retained where 0 ≤ Q ≤ n − 1. However, sorting {xi}
wastes plenty of time and computations. Inspired by [15], in which novel turbo decoding algorithms are proposed based on
the application of max/max∗ operations at different levels, in our proposed Log-MPA, we implement max∗ on fn while
fn−1, ..., f2 are simplified as max, and thus Fn ≈ F1 + C(F1 − xd2). Therefore, the largest correction item is retained and
sorting operation is also avoided. While ignoring all other correction items, the performance is well maintained which is verified
by simulations later.

To eliminate the exponential operation completely, max∗ is approximated by a non-linear function [5]

C1(x) =

{
m
n+x + p x ≤ q,
0 x > q,

(21)

where m = 1.0807, n = 1.1657, p = −0.1975, q = 5. Denote
∼

max(a, b) = max(a, b) + C1(a − b), and in our improved
Log-MPA, (15) is computed as follows

F ,
∼

max(xn,max(xn−1, ...,max(x2, x1))). (22)

Simulations and complexity investigations show that (22) provides a more favorable performance-complexity tradeoff.
To compare the complexities of the detectors mentioned above detailedly, the amount of computational operations of function

nodes in one iteration are listed in TABLE. I, where D1 and D2 represent the additions and multiplications performed when
the extrinsic information and M(zk) are involved. More precisely, D1 = JMdf (2df − 1), D2 = 4MJ and they are identical
for all detectors. We can see from the table that the complexity of our improved Log-MPA is reduced significantly compared
to the original detector and the detector in [5], while increased slightly compared to the Max-Log-MPA detector.

Performance comparisons are also given in Fig. 5. From the figure, it is observed that our proposed Log-MPA has a quite



7

6 7 8 9 10 11 12

Eb/No(dB)

10-3

10-2

10-1

B
E

R

the original Log-MPA detector
the improved Log-MPA detector
the Max-Log-MPA detector
the detector in [5]

Fig. 5. Performance comparison between the detectors in III-C. The simulations are run with J = 6,K = 4,M = 4, tmax = 6 over AWGN channels.

similar performance with the detector in [5], and both two are close to the original Log-MPA detector. While Max-Log-MPA
has the lowest complexity, the performance is degraded by 0.5dB when BER equals 10−3, compared with the other three
detectors. From Fig. 5 and TABLE. I we can see that our proposed Log-MPA has the lowest complexity while the BER
performance degrades unnoticeably.

D. The RRL MPA detector

By combining the above two techniques RR-MPA and the improved Log-MPA together, messages at FNs can be updated
in a more simplified way:

Lik→j(xj) = λ F
zk∈S:xj

( ∑
j′∈ξk\j

Lt−1j′→k(xj′) +M(zk)

)
. (23)

The novel RRL detector reduces the complexity considerably, and the detailed procedure of the proposed detector is provided
in TABLE. II.

IV. SIMULATIONS

In this section, the BER performance of downlink SCMA systems (K = 4, J = 6, df = 3, dc = 2, tmax = 6) is evaluated
over AWGN and Rayleigh fading channels. The SCMA matrix in [2] with M = 4 and M = 16 are considered. Besides, the
average energy of user j at k-th resource is set to 1.

A. Performance in AWGN channels

Performance comparisons are shown in Fig. 6 and Fig. 7 for SCMA systems with M = 4 and M = 16, respectively. The
number of constellation points in S is compared to that in Zk, and the ratio is also listed in the legend separated by a vertical
bar, and the ratio can be used to represent the complexity ratio to some extent. From Fig. 6 it is observed that the proposed RRL
detector with r0 = 1.5, α = 2.2 performs almost as well as the original Log-MPA detector when M = 4, but the complexity
is reduced to 27.67%. The complexity can be further decreased to 25.35% with performance degradation about 0.6dB at
BER=10−3. For the case with M = 16, the complexity can be reduced to 17.59% with well-maintained performance when
β = 1.5, α = 1.7. The decrease of β enables the RRL detector to reduce the complexity to 14.96% with 0.7dB performance
degradation at BER=10−3. In general, the larger α, β are, the more complex the proposed RRL detector is, and the better it
performs.

B. Performance in fading channels

Fig. 8 and Fig. 9 compare the original detector and our proposed detector in downlink rayleigh fading channels. Based
on IV-A, we choose r0 = 1.5, α = 2.2 and β = 1.5, α = 1.7 for M = 4 and M = 16, respectively. We can see from the
figures that the proposed RRL detector with γ = 0 performs poorly with about 8.0dB and 2.5dB degradation compared to the
original detector at BER=10−3, for 4-ary and 16-ary SCMA respectively. However, with a moderate increase of complexity,
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TABLE II
THE PROPOSED RRL DETECTOR

Initialization:
t = 0;

for all k = 1, 2, ...,K; j = 1, ..., J ; xj ∈ Xj do
L0

j→k(xj) = 0;L0
k→j(xj) = 0;

for t = 1, 2, ..., tmax do
function nodes update:

for all k = 1, 2, ...,K do
if |yk| < γ do

for all xj ∈ Xj do
for all zk ∈ Zk : xj do

Calculate Lt
k→j using (5);

end for
end for

else
Determine the decision region D on the basis of yk/hk;
Determine the search region S on the basis of D;
for all xj ∈ Xj do

for all zk ∈ S : xj do
Calculate Lt

k→j using (23);
end for

end for
end if

end for
user nodes update:

for all j = 1, 2, ..., J do
for all xj ∈ Xj do

Calculate Lt
k→j using (8);

end for
end for
t = t+ 1;

end for
decision:

for all j = 1, 2, ..., J do
Do the decision using (9);

end for

4 5 6 7 8 9 10 11 12

Eb/No(dB)

10-3

10-2

10-1

B
E

R

original detector |100%
r
0
=1.5,α=3.0 | 39.07%

r
0
=1.5,α=2.2 | 27.67%

r
0
=1.0,α=3.0 | 36.75%

r
0
=1.0,α=2.2 | 25.35%

Fig. 6. BER performance comparison of SCMA detectors with M = 4 in AWGN channels. P = 2, β = 2.5, rmin = 0.8, and the RRL detectors with
different r0, α are investigated and compared.
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10 12 14 16 18 20 22

Eb/No(dB)

10-3

10-2

10-1

B
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original detector | 100%
β=1.5,α=3.0 | 27.28%
β=1.5,α=1.7 | 17.59%
β=1.1,α=3.0 | 22.76%
β=1.1,α=1.7 | 14.96%

Fig. 7. BER performance comparison of SCMA detectors with M = 16 in AWGN channels. r0 = 2, P = 5, β = 2.5, rmin = 0.3, and the RRL detectors
with different β, α are investigated and compared.

6 8 10 12 14 16 18 20 22 24 26
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R

original detector | 100%
γ = 0.15 | 37.41%
γ = 0.10 | 34.16%
γ = 0.05 | 30.78%
γ = 0.00 | 27.13%

Fig. 8. BER performance comparison of SCMA detectors with M = 4 in Rayleigh fading channels.

10 12 14 16 18 20 22 24 26 28 30
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original detector | 100%
γ = 0.05 | 21.32%
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Fig. 9. BER performance comparison of SCMA detectors with M = 16 in Rayleigh fading channels.
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Fig. 10. Convergence behavior comparison between the original detect and the RRL detector.
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Fig. 11. Complexity comparison between the original Log-MPA, Max-Log-MPA and the RRL detector with M = 4.

BER performance could be improved dramatically. Our proposed RRL detector reduces the complexity to 34.16% and 19.05%

of the original detector for M = 4 and M = 16 while the performance is degraded unnoticeably. The complexity is increased
slightly compared with the RRL detector in AWGN channels, and it is because an exhaustive search is implemented when the
channel is in deep fading.

C. Convergence behavior

Fig. 10 shows the convergence behavior of the proposed detector and original detector at Eb/No = 14dB,16dB,18dB in
downlink rayleigh fading channels. We choose γ = 0.10 (0.02) for M = 4 (16), respectively. From the simulation results, the
proposed detector exhibits the same convergence performance as the original detector, particularly for the first three iterations.
After that, the proposed detector converges to a little higher BER compared to the original detector.

D. Complexity analysis

Fig. 11 and Fig. 12 illustrate the computational complexity of the proposed RRL detector, the Max-Log-MPA detector and
the original Log-MPA detector in detail. The Max-Log-MPA reduces the amount of additions and eliminates the exponential
operations by replacing max∗ with max. As can be seen, the proposed RRL detector reduces the number of additions to about
26.0% and 18.8% when M = 4 and M = 16 respectively, compared with the original Log-MPA. The multiplications are
not decreased as much as the additions because (21) introduces extra multiplications to eliminate the exponential operations.
Besides, the RRL detector has lower complexity than the Max-Log-MPA and attains a better trade-off between the performance
and computational complexity.
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Fig. 12. Complexity comparison between the original Log-MPA, Max-Log-MPA and the RRL detector with M = 16.

V. CONCLUSION

In this paper, we proposed a novel RRL detector for downlink SCMA systems. The proposed RRL detector substantially
reduces the computational complexity by decreasing the number of constellation points involved in the updating of function
nodes. In addition, the proposed RRL detector eliminates the exponential operations by applying an appropriate combination
of max/

∼
max operations, offering performance close to the original detector. The RRL detector demonstrates a near-optimum

BER performance with significantly reduced complexity.
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