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Abstract—This paper studies the joint multicast beamforming
and user scheduling problem, with the objective of minimizing
total transmitting power across multiple channels by jointly
assigning each user to appropriate channel and designing mul-
ticast beamformer for each channel. The problem of interest is
formulated in two different optimization problems, a mixed bi-
nary quadratically constrained quadratic program and a highly-
structured nonsmooth program. Two different algorithms, based
on convex relaxation and convex restriction, respectively, are
proposed to solve the problem. The performance ratio between
the approximate solution provided by the convex-relaxation-
based algorithm and optimal solution is proved to be upper
bounded by a constant independent of problem data. The
convex-restriction-based algorithm is guaranteed to converge to
a critical point to the nonsmooth formulation problem. Finally,
extensive simulation results verify the theoretical analysis and
demonstrate the advantage of the proposed co-design scheme
over conventional fixed scheduling and random scheduling in
terms of power consumption.

Index Terms—Multicast beamforming, user scheduling, semi-
definite relaxation, approximation ratios, sequential convex ap-
proximation, dual fast gradient projection

I. INTRODUCTION

Demands for high-rate wireless services, such as Internet

TV, on-line gaming, and multimedia downloading, continue

to grow explosively in the worldwide. Wireless multicast

is regarded as one of key enabling technologies in future

cellular systems to boost the capacity of wireless networks and

cater to the customer demands. When combined with large-

scale antenna arrays at base station (BS), wireless multicast

is able to take full advantage of available channel state

information at transmitter (CSIT) to provide enhanced data

rates and relatively high transmission reliability [1]. Wireless

multicast has always been an important part of the evolution of

multimedia broadcast multicast service (MBMS) in wireless

communication standards such as UMTS, LTE and LTE-

Advanced [2].

Lots of downlink multicast beamforming problems have

been discussed for different scenarios. Single-group multicast

beamforming for single-cell system was first investigated

in [3], and then extended to multi-group multicast in [4].

Multicast beamforming with per-antenna power constraints
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was further discussed in [5] [6]. Furthermore, coordinated

multicast beamforming under per-BS power constraints for

multi-cell system was considered in [7] [8]. Some other issues,

such as energy efficient design, user selection and real-time

implementation, were also studied in [9] [10] [11].

A commonly-used formulation of above studies is trans-

mitting power minimization under quality of service (QoS)

constraints. A key difficulty with such formulation is that the

problem may be infeasible, especially when the number of

users is much larger than the number of antennas. In such

a situation, part of users should be removed out (admission

control) or scheduled in orthogonal resource dimensions, such

as time, frequency, and code slots, which is crucial for

practical applications. The former leads to a variety of joint

beamforming and admission control problems.

In [12], the authors addressed the joint multicast beamform-

ing and admission control problem based on semidefinite pro-

gramming relaxation (SDR) and greedy membership deflation.

The basic idea is sequentially dropping a weakest user, then

solving the relaxed problems and finally checking whether

the suboptimal rank-one solution satisfies all QoS constraints.

Recently, network energy efficient design and sparse opti-

mization of the joint multicast beamforming and admission

control for green Cloud-RAN was further discussed in [13].

For the particular satellite communication systems, system

sum rate optimization of the multi-group multicast precoding

and user scheduling under per-antenna power constraints and

underlying framing structure constraints was considered in

[14]. In [15], a closed-form asymptotically optimal solution

was proposed for the joint multi-group multicast beamforming

and user grouping in massive MIMO systems.

This paper studies the joint multicast beamforming and

user scheduling in large-scale antenna systems with a massive

number of users. We assume that each user takes interest in

multiple information symbols but is assigned to receive one of

its interested information symbols. Each information symbol is

transmitted over an orthogonal channel, such as, time slot and

frequency subcarrier. The problem of interest is minimizing

the total transmitting power across all orthogonal channels

by jointly assigning each user to appropriate channel and

designing multicast beamforming vector for each information

symbol such that each user should successfully decode at least

one information symbol. Since channel quality of each user at

all channels should be taken into consideration, this problem is

much different from the admission control in [12], where only

channel quality of all users at a fixed channel is considered.

Our main contributions are summarized as follows. First, the

problem of interest is cleverly formulated in two different op-
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timization problems, a mixed binary quadratically constrained

quadratic program and a highly-structured nonsmooth pro-

gram. Second, a polynomial-time SDR algorithm is proposed

to address the problem. The worst-case approximation ratio

of SDR is proved to be O(QK) for general channel scenario,

and O(K1/Q) for the special case of homogeneous channel

scenario, where Q and K is the number of orthogonal channels

and the number of users, respectively. Our result is an impor-

tant improvement and generalization upon those in [16] [17]

[18]. Third, a sequential convex approximation (SCA) scheme

is proposed for the nonsmooth formulation problem and an

efficient dual fast gradient projection (DFGP) algorithm is

devised for the subproblems. The overall algorithm is matrix-

free, i.e., based solely on matrix-vector multiplications and

comparison operations, and guaranteed to converge to a critical

point to the nonsmooth formulation problem. Finally, exten-

sive simulation results are provided to verify the theoretical

analysis and demonstrate the advantage of the proposed co-

design scheme over conventional fixed scheduling and random

scheduling in terms of transmitting power consumption.

The remainder of paper is outlined as follows. Section II

describes the system model and the two problem formulations.

Section III presents the SDR algorithm and theoretical perfor-

mance analysis. Section IV details the SCA-DFGP algorithm

and its convergence result and computational complexity.

Section V and Section VI provides comprehensive simulation

results to assess the performance of the proposed algorithms

and concludes the paper, respectively.

Notation: In the rest of this paper, boldface italic lowercase

and uppercase characters denote column vectors and matrices,

respectively. The operators (·)T, (·)H, |·| ,Tr(·), ‖·‖2 , and ‖·‖F ,
correspond to the transpose, the conjugate transpose, the

absolute value, the trace and the Euclidean norm and the

Frobenius norm operations, while Re(·) and Im(·) denotes the

real part and imaginary part of complex number, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a downlink multicast scenario consisting of a

BS with M antennas and K single-antenna users. Assume that

there are Q orthogonal channels Cq (q ∈ Q,Q = {1, 2, . . . ,Q})
between the BS and each user, such as nonoverlapping time

slots or orthogonal subcarriers. Let h̃k,q ∈ CM denote the

complex channel vector between the BS and the k-th user for

channel Cq. Note that for each user these Q channel vectors

could be identical if the coherence bandwidth or coherence

time is sufficiently large. Such a special case will be referred

to as homogeneous channel scenario. The BS uses an M × 1

beamforming vector wq to send a zero-mean and unit-variance

common information symbol xq to the interested users over

channel Cq. The signal received from Cq by the k-th user is

yk,q = h̃
H
k,qwqxq + nk,q ∀q ∈ Q ∀k ∈ K, (1)

where K = {1, 2, . . . ,K} is the user index set, and nk,q is

the zero-mean circularly-symmetric complex Gaussian random

noise with variance σ2
k,q

, which is independent of xq and

h̃k,q. The signal-to-noise ratio (SNR) at the k-th user can be

expressed as

γk,q =

���h̃H
k,q

wq

���2
σ2
k,q

∀q ∈ Q ∀k ∈ K . (2)

The QoS requirement for the k-th user to successfully

decode information symbol xq can be expressed as γk,q ≥ γ̄q .
Let hk,q = h̃k,q/(σk,q

√
γ̄q) be the k-th user’s normalized

channel vector for Cq (q ∈ Q). The QoS requirement can be

rewritten as ���hH
k,qwq

���2 ≥ 1. (3)

We assume that each user takes interest in multiple infor-

mation symbols but is assigned to receive one of its interested

information symbols. When there are a large number of users

in the system, it is impractical or inefficient to serve all users

within a single channel. Therefore, properly scheduling all

users to multiple channels is important to boost the system

capacity.

B. MBQCQP Formulation

A commonly-used disjunctive modelling technique is using

binary variable bk,q ∈ {0, 1} as scheduling indicator, i.e.,

bk,q = 1 indicates that the k-th user is scheduled in channel

Cq. Hence, the problem of interest can be formulated as the

following mixed binary quadratically constrained quadratic

program (MBQCQP)

min
{wq }, {bk,q }

Q∑
q=1



wq



2

2
(4a)

s.t.

���hH
k,qwq

���2 ≥ bk,q ∀q ∈ Q ∀k ∈ K, (4b)

Q∑
q=1

bk,q = 1 ∀k ∈ K, (4c)

bk,q ∈ {0, 1} ∀q ∈ Q ∀k ∈ K . (4d)

In the above problem, the objective function are quadratic in

the continuous variables and the disjunctive constraints contain

both continuous and binary variables. This class of MBQCQP

problem is extremely difficult partly as they are nonconvex

even with the binary variables being fixed [17] [18]. In the

special case of bk,1 = 1 for all k ∈ K, the problem reduces to

the single-group multicast beamforming problem, which is a

continuous QCQP and NP-hard in general [3].

C. Nonsmooth Reformulation

For each user, ensuring the QoS requirement (3) in at least

one channel is equivalent to making the QoS requirement

in the best channel be satisfied. Hence, the feasible set of

continuous variables {wq} in (4) can be equivalently described

by the following nonsmooth constraints

max
q∈Q

{���hH
k,qwq

���2
}
≥ 1 ∀k ∈ K . (5)
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Denote W = [w1,w2, . . . ,wQ] ∈ CM×Q and

fk(W ) = max
q∈Q

{���hH
k,qwq

���2
}
. (6)

Observing that the binary variables in (4) is absent from the

objective function, we obtain a nonsmooth reformulation of

(4) as follows

min
W ∈CM×Q

‖W ‖2
F (7a)

s.t. fk (W ) ≥ 1 ∀k ∈ K . (7b)

In this equivalent reformulation, all binary variables are

removed out at the expense of a small number of nonsmooth

constraints. The main obstacle in (7) is, of course, the non-

smoothness and nonconvexity of constraints. However, each

constraint function fk(W ) is highly structured, and making

use of the available structure in an appropriate way will give

efficient algorithms to solve (7). After solving (7), we can

properly assign each user to the channel in which the user

attains the best QoS among all channels.

We will propose a semidefinite relaxation (SDR) approach

in section III to solve (4), and an efficient nonsmooth opti-

mization approach in section IV to solve (7).

III. SEMIDEFINITE RELAXATION APPROACH

In this section, a SDR technique with performance guarantee

is developed for solving the MBQCQP formulation (4). The

main idea is to simultaneously use the continuous relaxation

for the binary variables and the SDR for the continuous

variables. After solving the SDR problem, a randomization

procedure is used to generate approximate solutions to the

original MBQCQP formulation from an optimal solution of

the SDR problem. Furthermore, we analyze the bound on

the approximation ratio between the optimal value of the

MBQCQP problem and that of the associated SDR.

Upon changing the optimization variables to Wq = wqw
H
q

and then doing the SDP relaxation for Wq and the continuous

relaxation for {bk,q} in (4), we obtain the following problem

min
{Wq }, {bk,q }

Q∑
q=1

Tr(Wq) (8a)

s.t. h
H
k,qWqhk,q ≥ bk,q ∀q ∈ Q ∀k ∈ K, (8b)

Q∑
q=1

bk,q = 1 ∀k ∈ K, (8c)

0 ≤ bk,q ≤ 1 ∀q ∈ Q ∀k ∈ K, (8d)

Wq � 0 ∀q ∈ Q. (8e)

We observe that these continuous variables {bk,q} in (8) can

be eliminated out from the problem without loss of optimality.

An equivalent problem is obtained as follows

min
{Wq }

Q∑
q=1

Tr(Wq) (9a)

s.t.

Q∑
q=1

h
H
k,qWqhk,q ≥ 1 ∀k ∈ K, (9b)

Wq � 0 ∀q ∈ Q. (9c)

One can verify that each feasible solution to (9) is also

feasible to (8) and vice versa. Moreover, the same formulation

is obtained if similar convex relaxation is applied to the

nonsmooth problem (7).

For the special case of homogeneous channel scenario that

the Q channel vectors for each user are identical, i.e., h̃k,1 =

h̃k,2 = · · · = h̃k,Q
∆
= h̃k∀q ∈ Q, problem (9) is symmetric with

respect to the arguments {Wq} and could be further reduced

to

min
W1

Tr(W1) (10a)

s.t. h̃
H
k W1h̃k ≥ 1 ∀k ∈ K, (10b)

W1 � 0. (10c)

Surprisingly, besides much simpler formulation, it will been

shown in next subsection that (10) provides better performance

guarantee for homogeneous channel scenario than for general

channel scenario.

Problem (9) and (10) are both convex, which can be

efficiently solved using off-the-shelf interior point solvers such

as SDPT3 and SeDuMi. Once an optimal solution {W ∗
q } to (9)

is obtained [for (10), W ∗
1
= W ∗

2
= · · · = W ∗

Q
], the Gaussian

randomization method could be used to generate the candidate

beamformers. The l-th candidate beamformer for channel

block Cq is generated as x
(l)
q = UqΣ

1/2
q vl, where Uq,Σq are

the eigen-decomposition factors of W ∗
q, i.e., W ∗

q = UqΣqU
H
q ,

and vl ∼ CN(0, IM ). It’s easy to show that xq ∼ CN(0,W ∗
q ).

Given such candidate beamformers {xq}Qq=1
, we still need to

determine the corresponding transmitting power. Let ck,q =���hH
k,q

xq

���2. Substituting wq =
√

pqxq into (7), we have

min
p≥0

Q∑
q=1

pq


xq

2

(11a)

s.t. max
q∈Q

{
pqck,q

}
≥ 1 ∀k ∈ K . (11b)

Albeit nonconvex, the problem (11) is a special monotonic

optimization problem. Many kinds of outer approximation

algorithms could be applied[19]. For the sake of analysis

convenience, a simple scaling procedure is used to obtain

high-quality approximate solution. The feasible approximate

solution to (11) is given by pq = p({xq}) ∀q ∈ Q, where

p({xq}) =
1

mink∈K maxq∈Q{ck,q}
. (12)

For completeness, the overall SDR-G algorithm for (4) or

(7) is summarized in Algorithm 1.

A. Approximation Ratio

In this subsection, we will analyze the performance of

proposed SDR-G algorithm. Denote the optimal value of

SDR problem (9) by v
∗
SDR-LB

, the optimal value of MBQCQP

problem (4) by v
∗, and the objective value of the approximate

solution to (7) by v
∗
SDR-G

. Obviously, we have

vSDR-LB ≤ v
∗ ≤ v

∗
SDR-G = min

l=1,...,L
p(l). (13)
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Algorithm 1 SDR-G algorithm for (4) or (7)

Initialization Solve an optimal solution {W ∗
q } to (9).

for l = 1, . . . , L do

1) Sample x
(l)
q ∼ CN(0,W ∗

q ) (∀q ∈ Q).

2) Calculate p(l) = p({x(l)q })∑q∈Q




x(l)q 


2

using (12).

end for

Output Let l∗ = argminl=1,...,L p(l). Select {
√

p(l∗)x(l
∗)

q } as

the approximate solution to (7).

We will show that there exists a constant θ > 0 only depending

on the number of orthogonal channels Q and the number of

users K, such that

v
∗
SDR-G ≤ θvSDR-LB (14)

holds true with overwhelming probability. Such a constant θ is

generally referred to as approximation ratio in computational

complexity theory. It implies that the power loss due to the

SDR approximation is at most 10 log10 θ dB away from the

optimal transmitting power v
∗ according to (13) and (14).

The main results about the upper bound on the worst-case

approximation ratio θ are given in the following theorem.

Theorem 1: (1) For general channel scenario,

θ ≤ 5QK (15)

holds with probability at least 1 − 0.9L .

(2) For the special case of homogeneous channel scenario,

θ ≤ 5K1/Q (16)

holds with probability at least 1 − 0.9L .

Please refer to Appendix for the proof of Theorem 1. Let’s

give some physical meaning explanations about why the worst-

case approximation ratio are different between two scenarios.

For general channel scenario, when Q − 1 channels are very

poor simultaneously for all users, then scheduling all users

into the rest channel are optimal. This degenerated problem

is nothing but single-group multicast problem, for which the

worst-case performance bound of O(K) provided by SDR is

in fact tight up to a constant factor [20]. For homogeneous

channel scenario, the bound of O(K1/Q) can be regarded as

the result of a kind of user selection diversity according to the

proof. For average-case general channel scenario, one could

expect such diversity, which, however, vanishes in the worst-

case scenario. For the special case of homogeneous channel

scenario with Q = 2, a bound of O(K) is shown in [18].

Moreover, by using a rank-two transmit beamformed Alamouti

space-time code scheme for single-group multicast, a bound

of O(
√

K) is obtained in [16]. Our result is an interesting

improvement and generalization upon above results.

IV. NONSMOOTH OPTIMIZATION APPROACH

Although SDR is a valuable benchmark for the problem,

the computational burden of SDR is not well scalable to large-

scale antenna system. Moreover, the worst-case results imply

that the performance of SDR-G may deteriorate considerably

when there are a massive number of users in the system.

Hence, we also provide an efficient algorithm to handle with

such case. MBQCQP formulation (4) is difficult to solve

due to a great number of binary variables and disjunctive

constraints. We turn to highly-structured nonsmooth problem

(7). Specifically, we devise a sequential approximation scheme

to yield a series of smooth convex subproblems, and present

a dual fast gradient projection algorithm to solve each sub-

problem. Finally, convergence and computational complexity

of the overall algorithm is analyzed.

A. Sequential Convex Approximations

Since nondifferential constraint function fk (W ) in (6) is the

maximum of a finite number of convex quadratic functions,

fk(W ) is convex as well. Therefore, we have the following

subgradient inequality,

fk (W ) ≥ fk(V ) + 〈Gk(V ),W − V 〉 ∀W, (17)

where Gk(V ) is a subgradient of fk (W ) at V and 〈G,W 〉 =
Re

(
Tr(GHW )

)
is the inner product of two complex matrices

G and W .

At differentiable points, there is a unique subgradient of

fk(W ), i.e., the gradient, while at nondifferentiable points,

there is an infinite set of subgradients. All subgradients Gk(W )
of fk(W ) satisfying (17) form a convex set called subdifferen-

tial. According to subdifferential calculus of convex functions

[21], we can write the subdifferential of fk(W ) as

∂ fk(W ) =
{[
d1, d2, . . . , dQ

]
:

dq = 2αqhk,qh
H
k,qwq ∀q ∈ Q,

αq = 0 ∀q < Ik(W ),∑
q∈Ik (W )

αq = 1, αq ≥ 0 } ,

Ik(W ) =
{
q :

���hH
k,qwq

���2 = fk (W )
}
.

(18)

Our choice of subgradient is

Gk(W ) = 2

|Ik(W )|
∑

q∈Ik (W )
hk,qh

H
k,qwq, (19)

where |Ik(W )| is the cardinality of set Ik(W ). The idea behind

such choice is ensuring equal probability of scheduling each

user into the active channels.

By iteratively linearizing fk (W ) at W (n) using (17) and (19),

we obtain a sequence of convex approximations of problem

(7) as follows

min
W ∈CM×Q

‖W ‖2
F (20a)

s.t. 〈Gk (W (n)),W 〉 + ck(W (n)) ≥ 0,∀k ∈ K . (20b)

where ck(W (n)) = fk(W (n)) − 〈Gk(W (n)),W (n)〉 − 1.

Problem (20) is a strongly-convex quadratic program and

therefore has a unique solution. Since the convergence rate

of the subgradient-based method for nonsmooth optimization

problem may be slow, efficient subproblem-solving algorithm

is necessarily important, which will be detailed in next sub-

section.
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B. Dual Fast Gradient Projection Method

Since the constraints in (20) are all linear inequalities and

W (n) is a feasible solution to (20), the refined Slater’s condition

for (20) is satisfied [21]. It implies that strong duality holds,

i.e., the optimal value of (20) is equal to the attained optimal

value of the dual problem. Due to strong convexity of problem

(20), its dual problem is Lipschitz smooth and could be solved

efficiently by a fast gradient projection method.

To avoid complex notations, we consider the following

general model of problem (20)

min
x∈CMQ

‖x‖2
2 (21a)

s.t. Re(Ax) + a ≥ 0. (21b)

where A ∈ CK×(MQ) and a ∈ RK . Obviously, problem (20)

could be cast into (21) by appropriate matrix concatenation.

The Lagrangian function associated with (21) is

L(x, z) = x
H
x − Re(zT

Ax) − z
T
a. (22)

Minimizing L(x, z) over x gives the optimal solution

x =
1

2
A

H
z (23)

and the dual objective function

D(z) = −1

4
z

T
Bz − a

T
z, (24)

where B = Re(AAH) = Re(A)Re(A)T + Im(A) Im(A)T.
Hence, the dual program of (21) has a same solution set

with the following problem

min
z∈RK

1

4
z

T
Bz + a

T
z (25a)

s.t. z ≥ 0. (25b)

Problem (25) is a continuously-differentiable convex mini-

mization problem with a very simple constraint set. Applying

Nesterov’s optimal gradient scheme [22] to (25), we obtain

the dual fast gradient projection (DFGP) iteration formula as

follows

z
(l)
= max

(
z̃
(l−1) − µ(1

2
Bz̃

(l−1)
+ a), 0

)
, (26a)

z̃
(l)
= z

(l)
+

l − 1

l + 2

(
z
(l) − z

(l−1)
)
, (26b)

where µ = 2
λ1(B) and λ1(B) is the maximum eigenvalue of

positive semidefinite matrix B. It is known that the algorithm

converges to an ε-optimal solution to (25) within O( 1√
µε

)
iterations [22].

C. Convergence and Complexity

For clarity, the overall algorithm for the nonsmooth refor-

mulation (7) is summarized in Algorithm 2. We first analyze

the convergence of proposed algorithm. Let P(W (n)) denote

the instance of problem (20) at W (n). Since the cost function

‖W ‖2
F is independent of n and W (n) is also feasible for

P(W (n+1)), we have strict inequality


W (n+1)

2

F
<



W (n)

2

F

unless W (n+1)
= W (n). Hence, the cost sequence

{

W (n)

2

F

}

Algorithm 2 SCA-DFGP algorithm for (7)

output: W (n)

Initialization Randomly generate a feasible initial point

W (0).
for n = 1, 2, . . . do

Step 1. Calculate Gk(W (n−1)) according to (19) for all

k.

Step 2. Solve (20) for the solution W (n) using (26) and

(23).

Step 3. If


W (n) −W (n−1)



F
≤ ε, then STOP.

end for

converges either in finite iterations or to a unique value. Noting

the cost function is exactly the square of Frobenius norm of

W , the variable sequence
{
W (n)} converges to a unique point

W (∞) as well. Since the feasible set in (7) is semi-algebraic,

P(W (n)) is an inner convex approximation of (7), and each

constraint function of P(W (n)) has a consistent directional

derivative at W (n) in certain direction with that of (7), we could

show by using the results in [23] [24] that W (∞) is a critical

point to (7) under mild constraint qualification condition.

The DFGP method in (26) is an efficient matrix-free al-

gorithm that are based solely on matrix-vector products and

comparison operations. The number of arithmetic operations

per iteration for DFGP is O(K2) or O(QMK), depending on

the use of explicit or implicit matrix-vector multiplication Bz.

At each step of the SCA algorithm, the number of additional

arithmetic operations for computing subgradients is O(QMK).

V. SIMULATION RESULTS

In this section, we provides numerical results to assess

the performance of the proposed schemes, i.e., the SDR-G

algorithm and the SCA-DFPG algorithm. We assume that for

each user, the small-scale fading is frequency-flat Rayleigh,

i.e., complex Gaussian distributed with zero mean and unit

variance, and the shadow fading is log-normally distributed

with standard deviation 0.5 dB. For simplicity, we assume

that all users have a common QoS target γ̄q = 3 dB and

the noise variance of each user is σ2
k,q
= 1∀k, q. The results

are averaged over 500 channel realizations. The number of

randomly generated candidates for each channel realization is

L = 1000 and the number of iterations of DFGP method is

set to 400.

A. Approximation Ratio Tests

We first test the proposed SDR-G procedure listed in

Algorithm 1 for homogeneous channel scenario under various

parameter settings. Tables 1 summarize the minimum value

(Min), the maximum value (Max), the average value (Mean),

and the standard deviation (Std) of empirical approximation

ratios v
∗
SDR-G

/vSDR-LB over 500 independent channel realiza-

tions. We can see that the maximum values of v∗
SDR-G

/vSDR-LB

are lower than 3 in all test examples. Moreover, the practical

results are much better than those of worst-case analysis. On

the other hand, the minimum value, the maximum value and

the average value of v
∗
SDR-G

/vSDR-LB all increase as K grows
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TABLE I
STATISTICS OF EMPIRICAL APPROXIMATION RATIOS v∗

SDR-G
/vSDR-LB

Q M K Min Max Mean Std θ

2 8 10 1.0003 1.8816 1.4635 0.2527 15.81
2 8 20 1.2483 2.4106 1.8943 0.1996 22.36
2 8 30 1.5017 2.8103 2.2018 0.2179 27.39
2 16 10 1.0028 1.9346 1.4697 0.2642 15.81
2 16 20 1.3508 2.6042 1.9878 0.1989 22.36
2 16 30 1.7433 2.9791 2.3608 0.2170 27.39

3 8 10 1.0003 1.9114 1.4618 0.2496 10.77
3 8 20 1.2080 2.4799 1.8881 0.1958 13.57
3 8 30 1.6496 2.7887 2.2122 0.2260 15.54
3 16 10 1.0017 1.9406 1.4758 0.2655 10.77
3 16 20 1.3305 2.6277 1.9862 0.1963 13.57
3 16 30 1.7217 2.9683 2.3685 0.2163 15.54
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Fig. 1. Empirical approximation ratios for Q = 2, M = 8, K = 10.

for fixed Q and M in all test examples, which also corroborates

well with the theoretic analysis.

Fig. 1 plots the empirical approximation ratio of 500 inde-

pendent channel realizations for Q = 2,M = 8,K = 10. Fig.

2 shows the corresponding histogram. It can be seen that in

some cases the empirical approximation ratios are very near

to 1, which means the optimal solutions are obtained by the

proposed algorithm for these cases.

B. Transmitting Power Comparisons

In this part, we focus on general channel scenario and

assume that there are Q = 3 orthogonal channels. We first

demonstrate the convergence of the SCA-DFGP algorithm.

Fig.3 plots the transmitting power consumption during each

iteration for different settings in general channel scenario. The

results validate the monotonicity and convergence of the SCA-

DFGP algorithm. It can be seen that at the first about 10

iterations, the SCA-DFGP algorithm converges very fast and

reaches the major part of the limiting value.

We will next compare the the transmitting power consump-

tion of the proposed co-design schemes with conventional

scheduling algorithms. The first benchmark is fixed scheduling

(OneGroup) [3], in which all users are scheduled into a single

group and receive a common message in a fixed best channel.

The second benchmark is random scheduling (Equipartition),

in which all users are randomly scheduled into Q groups with

Fig. 2. Histogram of the outcomes in Fig. 1.
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Fig. 3. Convergence curve of the SCA-DFGP algorithm.

equal size. Moreover, the SDR lower bound (SDR-LB) is also

presented.

Fig. 4 compares the average transmitting power of all the

algorithms versus K for M = 32. Similarly, Fig. 5 compares

the average transmitting power of all the algorithms versus

M for K = 72. It can be seen from Fig. 4 and Fig. 5 that

the average transmitting power consumed by the SCA-DFGP

algorithm is lower than the two benchmarks. The performances

of two benchmarks are very similar while the power saving of

the SCA-DFGP algorithm over the two benchmarks is signifi-

cantly beneficial especially when the ratio of number of users

to number of antennas is large. On the other hand, the SDR-

G algorithm performs poorly in large-scale antenna arrays,

especially when the number of users increases, which is also

confirmed by the worst-case analysis and many other studies

[3] [4] [11]. Moreover, the gap between the transmitting power

for the SCA-DFGP algorithm and the SDR lower bound is

always less than about 3 dB in Fig. 4 and Fig. 5. Therefore,

proper user scheduling is necessarily important when there are

a large number of users in the system.
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Fig. 4. Transmitting power versus number of users, K, for M = 32 in general
channel scenario.
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Fig. 5. Transmitting power versus number of antennas, M, for K = 72 in
general channel scenario.

VI. CONCLUSIONS

In this paper, the joint multicast beamforming and user

scheduling problem was investigated. A mixed binary quadrat-

ically constrained quadratic program formulation and a highly-

structured nonsmooth formulation were presented. Convex-

relaxation-based and convex-restriction-based algorithms were

proposed to solve the problem. Theoretical performance guar-

antee of convex-relaxation-based algorithm was proved and

convergence of convex-restriction-based algorithm was estab-

lished. Extensive numerical experiments were conducted to

show the advantage of the proposed co-design scheme over

fixed scheduling and random scheduling in terms of power

consumption.

VII. APPENDIX: PROOF OF THEOREM 1

For any W ∗ � 0 and ξ ∼ CN(0,W ∗), it’s easy to verify that��hHξ
��2 is an exponential random variable with mean hHW ∗h

and distribution function

Pr
(��hHξ

��2 ≤ ηhH
W

∗
h

)
= 1 − e−η ≤ η. (27)

Let independent random variables ξq ∼ CN(0,W ∗
q ) (∀q ∈

Q). For any µ > 0 and η > 0, we obtain

Pr
©­«
∑
q∈Q



ξq

2 ≤ µ
∑
q∈Q

Tr(W ∗
q ),min

k∈K
max
q∈Q

{���hH
k,qξq

���2
}
≥ ηª®

¬
≥ 1 − Pr

©­
«
∑
q∈Q



ξq

2 ≥ µ
∑
q∈Q

Tr(W ∗
q )
ª®
¬

−
K∑
k=1

Pr

(
max
q∈Q

{���hH
k,qξq

���2
}
≤ η

)
(28a)

≥ 1 − 1

µ
−

K∑
k=1

Pr

(
max
q∈Q

{���hH
k,qξq

���2
}
≤ η

)
, (28b)

where the first inequality is due to union bound of probability,

and the last inequality is from the Markov’s inequality.

A. General channel scenario

From the constraints in (9), we have

max
q∈Q

h
H
k,qW

∗
qhk,q ≥ 1

Q
∀k ∈ K . (29)

Let q∗
k
= argmaxq∈Q hH

k,q
W ∗

qhk,q . For general channel sce-

nario, we have

Pr

(
max
q∈Q

{���hH
k,qξq

���2
}
≤ η

)

≤ Pr

(
max
q∈Q

{���hH
k,qξq

���2
}
≤ Qηmax

q∈Q
h

H
k,qW

∗
qhk,q

)
(30a)

= Πq∈Q Pr

(���hH
k,qξq

���2 ≤ Qηmax
q∈Q

h
H
k,qW

∗
qhk,q

)
(30b)

≤ Pr

(���hH
k,q∗

k
ξq∗

k

���2 ≤ QηhH
k,q∗

k
W

∗
q∗
k
hk,q∗

k

)
(30c)

= Qη, (30d)

where (30b) is due to independence of random variables {ξq}
and (30d) is from (27).

Thus, by setting µ =
√

5 and η = 1√
5KQ
, we have

Pr
©­«
∑
q∈Q



ξq

2 ≤ µ
∑
q∈Q

Tr(W ∗
q ),min

k∈K
max
q∈Q

{���hH
k,qξq

���2
}
≥ ηª®

¬
≥ 1 − 1

µ
− KQη (31a)

= 1 − 2
√

5
= 0.1056 . . . . (31b)

We see that with positive probability of at least 0.1, the

randomly generated candidate beamformers {x(l)q } satisfies

∑
q∈Q




x(l)q 


2

≤
√

5
∑
q∈Q

Tr(W ∗
q ) (32)

and

min
k∈K

max
q∈Q

{���hH
k,qx

(l)
q

���2
}
≥ 1√

5KQ
. (33)
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With p({xq}) defined in (12),

{√
p({x(l)q })x(l)q

}
is feasible for

(4), so that

p(l) = p({x(l)q })
∑
q∈Q




x(l)q 


2

(34a)

=

∑
q∈Q




x(l)q 


2

mink∈K maxq∈Q

{���hH
k,q

x
(l)
q

���2
} (34b)

≤
√

5
∑

q∈Q Tr(W ∗
q )

1/(
√

5KQ)
(34c)

= 5KQ · vSDR-LB. (34d)

If one generates L independent realizations of {x(l)q } from

CN(0,W ∗
q ), it is at least with probability 1 − 0.9L to obtain

one candidate beamformers satisfying (34). Since v
∗
SDR-G

=

minl=1,...,L p(l), it follows that

vSDR-LB ≤ v
∗ ≤ v

∗
SDR-G ≤ 5KQ · vSDR-LB. (35)

B. Homogeneous channel scenario

For homogeneous channel scenario, we have W ∗
1
= W ∗

2
=

· · · = W ∗
Q

, h̃H
k
W1h̃k ≥ 1 ∀k ∈ K and ξq ∼ CN(0,W ∗

1
) (∀q ∈

Q). Thus,

Pr

(
max
q∈Q

{��h̃H
k ξq

��2} ≤ η
)

≤ Pr

(
max
q∈Q

{��h̃H
k ξq

��2} ≤ ηh̃H
k W

∗
1 h̃k

)
(36a)

= Πq∈Q Pr
(��h̃H

k ξq
��2 ≤ ηh̃H

k W
∗
1 h̃k

)
(36b)

= Pr
(��h̃H

k ξ1

��2 ≤ ηh̃H
k W

∗
1 h̃k

)Q
(36c)

≤ ηQ . (36d)

By setting µ =
√

5 and η = 1

(
√

5K)(1/Q) , we have

Pr
©­«
∑
q∈Q



ξq

2 ≤ µTr(W ∗
1 ),min

k∈K
max
q∈Q

{��h̃H
k ξq

��2} ≥ ηª®
¬

≥ 1 − 1

µ
− KηQ (37a)

= 1 − 2
√

5
= 0.1056 . . . . (37b)

Similar to the proof for general channel scenario, we conclude

that with probability of at least 1 − 0.9L, if L independent

realizations are generated, one could obtain an approximate

solution such that

vSDR-LB ≤ v
∗ ≤ v

∗
SDR-G ≤ 5K1/Q · vSDR-LB. (38)
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